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Abstract
Despite recent technological advances, the study of the human transcriptome is still in its early
stages. Here we provide an overview of the complex human transcriptomic landscape, present the
bioinformatics challenges posed by the vast quantities of transcriptomic data, and discuss some of
the studies that have tried to determine how much of the human genome is transcribed. Recent
evidence has suggested that more than 90% of the human genome is transcribed into RNA.
However, this view has been strongly contested by groups of scientists who argued that many of
the observed transcripts are simply the result of transcriptional noise. In this review, we conclude
that the full extent of transcription remains an open question that will not be fully addressed until
we decipher the complete range and biological diversity of the transcribed genomic sequences.
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1. Background and Introduction
The transcriptome of a cell is the collection of all the RNA molecules, or transcripts, present
in that cell. To generate the transcriptome, the DNA of an organism is first transcribed by
RNA polymerase to create complementary RNA strands, which in turn are spliced to
remove introns, producing mature transcripts that contain only exons. For many years, it was
assumed that these RNA transcripts were primarily used as templates for translation to
proteins. The vast majority of the remaining human genome, which is not protein coding,
was thought to be non-functional and therefore considered “junk” DNA [1]. Soon after the
publication of the human genome sequence in 2001 [2,3], a new view emerged, holding that
only a small percentage of the human transcriptome is clearly translated into proteins [4–6],
and most of the remaining transcripts have unknown purposes. In recent years, the number
and variety of known RNA genes has grown dramatically, and in addition to protein-coding
messenger RNAs (mRNAs), the catalog of transcribed elements now includes a myriad of
non-coding RNAs (ncRNAs) that play multiple structural and regulatory roles in the
molecular biology of the cell [7].

Ever since the discovery of the genetic code, scientists have labored to decipher the
complete human transcriptome. It was only with the emergence of automated DNA
sequencing in the 1980s that real progress was made in this direction [8]. In the 1990s,
scientists realized the value of using expressed sequence tag (EST) sequencing to rapidly
identify expressed genes, or at least fragments of those genes, in many human tissues [9,10].
Although at the time EST sequencing was considered a very high-throughput technique,
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both costs and technical limitations prevented it from producing a complete transcript
catalog. As a consequence, much of our knowledge of the protein-coding portion of the
human transcriptome relied on different computational gene prediction methods [11,12].

Various other technologies were developed to complement the traditional EST approach.
These include tag-based methods such as serial analysis of gene expression (SAGE) [13],
cap analysis of gene expression (CAGE) [14], and massively parallel signature sequencing
(MPSS) [15]. Unlike the EST approach, the tag methods uniquely identify each transcript to
achieve gene-level expression quantification. However they are generally unable to
distinguish specific isoforms. In addition, most of them are based on traditional Sanger
sequencing technology, making them very expensive to apply on a large scale.

Hybridization-based microarrays provided the first relatively inexpensive way to detect and
quantify transcripts on a large scale [16–18]. These include transcription tiling arrays, which
allow the mapping of transcribed regions to a very high resolution, from 5 to 50 base pairs
(bp), depending on probe density [19,20]. They have several advantages over previous
methods, including their high throughput and their ability, with some designs, to quantify
distinct spliced isoforms [21]. However, because of differences in hybridization strength,
cross-hybridization, and other experimental variables, microarrays provide a noisy output
signal. In addition, they can only measure genes for which the sequence and the precise
exon-intron boundaries are known, making them unable to identify novel genes or novel
splicing events [22,23].

Recently, RNA-seq methods technologies provide unprecedented opportunities for
characterizing the set of RNA transcripts produced in a cell [24–28]. Called a “revolutionary
tool for transcriptomics”, RNA-seq is the first sequencing-based method that allows the
entire transcriptome to be surveyed in a very high-throughput and quantitative manner [29].
Unlike hybridization-based methods, it is not limited to the detection of known transcripts,
and it can measure a much larger range of expression levels. Among its other advantages,
RNA-seq data has relatively low background noise; it achieves base-pair resolution,
allowing precise identification of exon and intron boundaries; and it can detect single
nucleotide polymorphisms (SNPs) and other variants within transcripts. Although RNA-seq
has already dramatically changed the landscape of genetic studies, it is clear that many years
remain before we will have a complete catalogue of human genes and their expressed
isoforms.

2. The Diversity of the Transcriptome
2.1. Various Classes of ncRNAs

Over the past decade, many studies have revealed an unexpected level of diversity in the
human transcriptome, which in turn has required scientists to expand their definition of a
gene. The traditional definition of a gene—a DNA sequence that is transcribed to produce a
functional product—has been expanded to include not only to the ~22,000 protein-coding
genes present in the human genome [11], but also a myriad of non-protein coding sequences.
These set of transcribed non-protein coding DNA sequences show complex patterns of
expression and regulation [30], and they are no longer restricted to the well known
ribosomal and transfer RNAs (rRNAs and tRNAs, respectively). Furthermore, when we
introduce these new and growing functional RNAs into our gene counts, the number of
genes in the human genome increases from ~22,000 (which includes only protein-coding
genes) to the 2001 estimates of about 30,000–40,000 genes [31].

The discoveries of endogenous small interfering RNA (siRNA) [32] and microRNA
(miRNA) [33] genes represented dramatic breakthroughs in our understanding of the
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transcriptome. These two classes of small ncRNAs play a central role in RNA interference
by binding to specific mRNA molecules to either increase or decrease their activity. Various
other classes of ncRNAs have a now-broadly recognized functional role. These include
regulatory RNAs such as PIWI-interacting RNAs (piRNAs), promoter-associated RNAs
(PARs), transcription initiation RNAs (tiRNAs), X-inactivation RNAs (xiRNAs), and many
others [34,35]. Among them, the long non-coding RNAs (lncRNAs), defined as ncRNAs
longer than 200 bp, are probably the least well-understood transcripts. Although few of them
have been experimentally studied, a view is emerging that these are key regulators of
epigenetic gene regulation in mammalian cells [36].

Large intergenic RNAs (lincRNAs) are a subclass of lncRNAs that do not overlap protein-
coding regions. Cabili et al. [37] catalogued more than 8,000 lincRNAs (58% of which were
novel) using an integrative approach that unifies existing annotation sources with transcripts
assembled from RNA-seq data collected from 24 tissues and cell types. Several global
properties of lincRNAs were evidenced by this study:

- they are expressed in a highly tissue-specific manner compared to protein-coding
genes,

- they are typically co-expressed with their neighboring genes, and

- they only show moderate conservation in other species.

The functional classification of lincRNAs is far from complete, even though Cabili et al.
assigned putative functions to many predicted lincRNAs based on the functions of protein-
coding genes with similar expression patterns.

2.2. Alternative Splicing
Even when considering only protein-coding RNAs, the scientific community still does not
have a complete picture of the transcriptome. Not only is there uncertainty about the exact
number of human protein-coding genes, but recent evidence has emerged to show that
different humans have slightly different individual gene sets [38–40]. The number of mature
mRNA transcripts is even less certain, and varies across tissues and different stages during
cell differentiation [41,42]. Further complicating matters, we now know that more than 90%
of multi-exon protein-coding genes undergo alternative splicing [43,44], which is considered
to play a major role in increasing cellular and functional diversity in the transcriptomes of
higher eukaryotes [45]. However, we do not yet know the function of the vast majority of
alternatively spliced human transcripts, and it is now clear that alternative splicing does not
simply act to generate variant protein sequences [46].

Alternative splicing also affects ncRNA genes, about 30% of which produce at least one
alternatively spliced transcript [47]. Cabili et al. found that lincRNAs, although shorter and
with fewer exons than mRNAs, are also alternatively spliced with an average of 2.3
isoforms per locus [37]. New transcripts are continuously being discovered [19,41,48,49],
strengthening the observation that we are far from determining all transcript isoforms.

2.3. Estimating the Annotated Human Transcript Count
In an attempt to identify how many human transcripts are currently annotated, I combined
all human gene annotations from Ensembl (release 64) [50], NCBI’s RefSeq database [51],
and the UCSC Genome Browser [52] with the lincRNAs catalogued by Cabili et al. [37].
After eliminating redundant transcripts (i.e., transcripts with identical annotation as an
already included transcript from one of the databases), I divided the remaining ones into
three categories: mRNAs if they were annotated as protein-coding transcripts, long ncRNAs
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if they were annotated as non-coding and were at least 200 bp long, and small ncRNAs
otherwise.

As also observed by others [53], I found a highly complex architecture in the human
transcriptome, in which some base pairs could be part of many overlapping transcripts in
any of the three categories, and emanating from both strands of the genome. Loci containing
all three categories of transcripts were not frequent (see Figure 1a). Not surprisingly, the
annotations include more mRNA than ncRNA transcripts, possibly due to a bias towards
annotating protein-coding transcripts, although loci with at least one ncRNA are more
numerous than loci containing one or more mRNAs (see Table 1). Overall, annotated
transcripts today cover 4.62% or 3.85% of the human genome, depending on whether or not
we include pseudogenes. Expression of pseudogenes is controversial, with some reports
suggesting that they might be transcribed and could play a significant part in gene regulation
[54,55]. They cover about 30% of the total base pairs included in all ncRNA transcripts.
Figure 1b shows the base pair coverage of the human transcriptome (including pseudogenes)
by the three categories of transcripts. I found that 62% of the base pairs in the transcriptome
are part of mRNAs, supporting the fact that ncRNAs tend to be smaller in length than
mRNAs.

2.4. RNA Editing
RNA editing is another cellular process that contributes to the complex landscape of
mammalian transcriptomes. In the RNA editing process, single nucleotide changes occur
after DNA has been transcribed into RNA. The resulting RNA transcripts may produce
altered proteins, or they may disrupt translation more severely [56]. Two RNA editing
mechanisms are known in humans, causing two types of substitutions: adenosine to inosine,
and cytosine to uracil. The A-to-I editing, also called A-to-G, is a process mediated by a
family of adenosine deaminases (ADARs) that act on RNA and replace certain adenosines
(A) with inosines, which then act as guanosines (G) during translation [57,58]. Similarly, the
C-to-U switches are mediated by APOBEC1 [59–61].

Until recently considered a rare event, RNA editing is now believed to affect both coding
and non-coding sequences of thousands of genes, including ncRNAs [56,62,63]. A 2011
study by Li et al. [64] looked at RNA-seq and DNA sequence data from 27 individuals and
reported that RNA-DNA differences (RDDs) are not limited to the two previous types of
substitutions described above. In their study, Li et al., observed all 12 possible RNA-DNA
substitutions at more than 10,000 exonic sites, most of them present in multiple individuals
and in different cell types. Their result suggests that previously unknown RNA editing
mechanisms may be active in humans. However, this result has been strongly contested by
several other groups, who argued that the vast majority of the observed RDDs were
technical artifacts, mostly due to read mapping errors or systematic sequencing errors [65–
68]. Nevertheless, RNA editing has an important role in molecular biology, and recent
studies show that it may produce even more transcriptome diversity than alternative splicing
[69].

3. Reconstructing the Transcriptome
As discussed above, high-throughput RNA sequencing surpasses all previous technologies
in its ability to profile the extent and complexity of eukaryotic transcriptomes. The latest
generation of sequencing machines can generate up to 600 gigabases (Gb) in a single run,
equivalent to 200-fold coverage of the human genome. The 600 Gb is produced in the form
of 6 billion short reads, each approximately 100 bp in length (using the Illumina HiSeq
sequencer), and assembling these reads into chromosomes is a very complex, highly
specialized task. Therefore one of the main challenges posed by RNA-seq is a computational
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one. Here I will briefly mention some of the most common bioinformatics systems for
transcriptome assembly, and the challenges faced by these systems. For a more
comprehensive review of next-generation transcriptome assembly methods, the interested
reader can consult several recent reviews [70–72].

Although many programs have been developed for whole-genome assembly (e.g., [73–75]),
these methods cannot be directly applied to transcriptome assembly due to specific
characteristics of RNA-seq data sets. Genome assembly programs assume that the DNA
sequence’s depth of coverage is relatively uniform across the genome. This is not true for
transcripts, which have highly variable sequence coverage depending on their expression
levels. Sequence depth is used to indicate repeats by genome assemblers, which are designed
to take this into account. Another confounding fact for genome assemblers is that alternative
transcripts from the same locus typically share exons that are difficult to assemble
unambiguously. Specific features of RNA-seq data (e.g., strand-specific sequencing or
partially covered gene transcripts from low-abundance genes [48]) can also confound a
whole-genome assembly algorithm. Therefore new methods have had to be developed to
address the particular characteristics of transcriptome assembly.

There are two main approaches for assembly of a transcriptome: a genome-guided approach
when a reference genome is available; or de novo assembly, which does not need a genome
reference and can theoretically reconstruct transcripts that are transcribed even from parts
missing from that genome’s assembly. De novo transcriptome assembly is far more
challenging in higher eukaryotes due to the large number of genes, the great variation in
their expression levels, and especially because of the large number of alternatively spliced
transcript variants. For this reason, de novo methods are primarily used for organisms that
lack a sequenced reference genome.

Read mapping is one of the main technical challenges of genome-guided approaches.
Alignment of short reads to the reference genome is a challenge in itself, but with RNA-seq
data these reads may be sequenced from exons and exon-exon junction regions. Methods
such as Bowtie [76] and BWA [77] can be used for the alignment of reads to either a
reference genome or directly to the transcriptome, but this strategy will miss novel exons
and novel splicing events. Spliced aligners were developed to overcome these limitations.
Some of them (e.g., TopHat [78], SpliceMap [79], MapSplice [80]) use an ‘exon-first’
approach where reads are first mapped to the genome, and then the unmapped reads are split
into shorter segments and aligned independently. Other spliced aligners, such as GSNAP
[81] or BLAT [82], use a ‘seed-and-extend’ strategy in which the reads are first divided into
small segments (seeds) that are individually aligned to the genome, and then candidate
regions are locally aligned to obtain the final spliced alignment of the read. There are
different advantages to these strategies, but in general ‘exon-first’ aligners are usually faster,
while ‘seed-and-extend’ ones may be slightly more sensitive by reducing the bias towards
unspliced alignments in the exon-first approach.

After mapping all reads to the reference genome, transcriptome assemblers cluster the
overlapping reads at each locus and build a connectivity graph representing all possible
isoforms. Different transcriptome assembly programs, such as Cufflinks [41], Scripture [83],
IsoInfer [84], and IsoLasso [85], use different criteria to parse the connectivity graph.
Cufflinks uses a parsimony principle to generate the minimal number of transcripts that will
explain all reads in the graph. If there are multiple ways to assemble a minimal number of
transcripts, Cufflinks uses the read coverage across each path to decide which combination
is most likely to originate from the same RNA transcript. Scripture reconstructs all possible
isoforms by enumerating all possible paths in the connectivity graph that have statistically
significant read coverage. While Cufflinks and Scripture estimate the abundance of
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transcripts after they are assembled, IsoInfer and IsoLasso assemble transcripts at the same
time that they estimate their expression levels. They take two different approaches: IsoInfer
uses a heuristic approach to reduce the huge search space of all valid isoforms, while
IsoLasso uses a multivariate regression method that also minimizes the number of predicted
transcripts.

De novo transcriptome assembly methods, generally based on de Brujin graphs, are less
efficient and less sensitive than genome-guided methods for the human genome. Despite
that, running a de novo assembler in addition to a genome-guided method may produce a
more comprehensive transcriptome. Because de novo assemblers do not need a reference
genome, they can identify genes that are missing from the reference genome, such as trans-
spliced transcripts and similar transcripts originating from chromosomal rearrangements.
Trinity [86], Oases [87], SOAPdenovo [88], and Trans-ABySS [89] are some of the
programs used for de novo transcriptome assembly. A recent comparative study [90]
evaluated the performance of different de novo transcriptome assembly programs and found
that Trinity performed well across various conditions, but took the longest running time;
Oases consumed the most memory; SOAPdenovo required the shortest runtime but
performed poorly at reconstructing full-length transcripts; and Trans-ABySS showed a good
balance between resource usage and quality of assemblies. Although it would undoubtedly
prove useful, there is no automated software pipeline to carry out a combined assembly
strategy to bring together the high sensitivity of genome-guided assemblers with the ability
of de novo methods to detect novel and trans-spliced transcripts.

4. The Size of the Transcriptome
Less than 2% of the human genome codes for proteins [91]. As described above, if we add
to this fraction the DNA sequences that correspond to annotated ncRNAs, we are still left
with less than 5% of the human genome covered by known transcripts. Other reports have
found that only ~5–10% of the genome is stably transcribed in cell lines [19,20,92]. My own
independent analysis (Figure 2) shows that it is rare to see more than 5% of the total base
pairs in the genome covered by assembled transcripts in normal human tissue. While these
studies don’t capture the expression of the transcriptome at all stages in the cell
development, they suggest that only a small portion of the human genome is transcribed.
And yet a mounting number of studies suggest that the vast majority of the genome is
transcribed at some time or other. Beginning in the early 2000s, full length cDNAs from
various mouse tissues at different developmental stages, and genome-wide tiling arrays in
different human tissues and cell lines revealed that much more of the mammalian genomes
is transcribed than what is annotated in public databases [5,19,20,49,93–95]. These studies
culminated with the publication in 2007 of the results from the pilot phase of the ENCODE
Project [96], which estimated that as much as 93% of the human genome is transcribed in at
least one cell type. Does this broad pattern of transcription mean simply that the cell creates
a great deal of transcriptional noise by RNA polymerase binding accidentally (or randomly)
to many sites in the genome? Or does this result challenge the long-standing view that most
of the human genome is not biologically active? Scientists have conflicting opinions on the
answer to this question.

A recent study published by van Bakel et al. [97] claims that most ‘dark matter’ transcripts
— defined as ncRNAs of unknown function - are associated with known genes. In this
paper, van Bakel et al. argue that there is a high false-positive rate associated with the tiling
array technology that was the basis of most analyses that suggested the pervasiveness of
transcription. When compared to RNA-seq data, tiling arrays produce a larger proportion of
low-abundance transcripts originating from intergenic and intronic regions, although tiling
arrays and RNA-seq data generally agree on the location of the greatest transcript “mass.”
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The low coverage of intronic transcripts suggests that they might in fact represent random
sampling from partially processed or unprocessed RNAs. Supporting this idea is also the
observation that the transcription mass in intergenic regions increases at much lower rates
than in intronic regions as the number of reads is increased. Van Bakel et al., also identified
several thousand small transcripts that map outside known genes, however most of them
could be explained as accidental by-products of enhancer activity. Overall, the authors
conclude that most of the genome is not appreciably transcribed, and the majority of
intergenic and intronic transcripts observed in previous studies may be attributed to
biological and/or technical background noise.

Clark et al. [99] acknowledge that indeed most dark matter transcripts are associated with
known genes, but they strongly disagree with van Bakel et al.’s conclusion that the genome
is not as pervasively transcribed as previously reported. In their study, Clark et al., argue that
we cannot dismiss the observations from multiple independent techniques, including RT-
PCR, RACE, and Northern blot analyses, which together validated more than 90% of the
identified transcripts [100,101]. They also argue that van Bakel et al.’s RNA-seq data suffers
from insufficient sequencing depth and poor assembly, and is biased towards polyadenylated
RNA, which selectively omits significant amounts of RNA as has been shown earlier [102].
Overall, similarly to other studies [103,104], Clark et al. find that the detection accuracy of
tiling arrays is not significantly lower than that of RNA-seq, and they conclude that a
significant fraction of dark matter RNA comes from very long, intergenic transcribed
regions.

In a subsequent paper [105], van Bakel et al. agree with the fact that most of the genome
appears to be transcribed. But given the various sources of extraneous reads, both biological
and laboratory-derived, they expect that given sufficient sequencing depth the whole
genome may be covered with transcripts. A recent study that sequenced total RNA from
human brain and liver supports van Bakel et al.’s suggestion that unannotated transcripts
within introns represent unspliced introns rather than unique independent transcriptional
units [106]. And yet another study found that sequenced reads observed in conventional
RNA sequencing data sets, previously dismissed as noise, are in fact indicative of
unassembled rare transcripts [107]. Therefore the debate about the pervasiveness of
transcription continues, but as van Bakel et al., and others [30,108] point out, it is time to
stop arguing over the content of the transcriptome, and focus on finding evidence for dark
matter functions.

5. Discussion and Conclusions
The unprecedented depth of sequence coverage achieved by RNA-seq has revealed how
much of the human transcriptome is still uncharacterized. Many novel transcripts are still
being discovered, stimulating the debate as to the extent to which the genome is transcribed.
Non-coding RNAs represent the majority of the human transcripts, and there is no doubt that
many of them, initially considered to be transcriptional artifacts, are in fact functional. They
play important roles in transcriptional and post-transcriptional gene regulation via both cis-
and trans-acting mechanisms, chromatin modification, control of transcription factor
binding, regulation of alternative splicing. These functions have important consequences for
development and for diseases, including cancer [30,36,109,110].

Despite current intense research efforts, many of the novel transcripts identified thus far
have an unknown function. Most of them have been found only in specific cell types,
tissues, or developmental stages [37,100,111]. They lack functional ORFs, have lower
expression levels, and are only modestly conserved, although conservation is only a week
indicator of functionality [96,112,113]. Occasionally, entirely novel protein-coding genes

Pertea Page 7

Genes (Basel). Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with strong mRNA expression have been identified [114], but most unannotated transcripts
that are protein-coding are alternatively spliced isoforms of known mRNAs [41]. However,
as of today the vast majority of alternatively spliced transcripts lack described functions, and
the role of alternative splicing itself in gene evolution remains largely unexplored [46].

Is low RNA polymerase fidelity the principal cause of the widespread transcription observed
in the human genome? We do not have a definite answer to this question [115]. A focus on
deciphering the biological functions of transcribed genomic sequences might provide us
with a clearer picture. Over the last decade, the estimated proportion of the human genome
that might be functional has been constantly adjusted upwards, and today it lies between
10% and 15% [116]. This estimate is still much lower than the ~93% estimate for the
transcribed fraction of the genome [96]. In a 2009 review, Ponting et al., argue that a large,
but as yet unknown, number of noncoding RNAs cannot be explained solely as the product
of transcriptional noise [30]. If ncRNAs were simply transcriptional noise, than their
expression levels would not show the wide diversity that is often observed among different
tissues. In addition, their nucleotide substitution rates would be very similar to neutrally
evolving sequences. Instead, several evolutionary studies suggest that many ncRNAs exhibit
signatures of functionality that are more usually associated with protein-coding genes
[47,117], or that their low sequence conservation is due to the fact that they are frequently
acted upon by positive selection [118,119]. Nevertheless, some percentage of the transcripts
observed are very likely the result either of transcriptional noise [120] or of genomic DNA
contamination [121]. Even if not functional themselves, these unannotated transcripts might
reflect transcriptional processes that facilitate the expression of other genes. Until we can
functionally validate these transcripts or gain a better understanding of the range of
transcriptional mechanisms involved, the question of how much of the human genome is
transcribed will remain an open question.
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Figure 1.
Composition of the human transcriptome. (a) Venn diagram of the number of loci
containing mRNA transcripts (green), long ncRNAs (blue), and small ncRNAs (red); (b)
Base pair coverage of the transcriptome by the three categories of transcripts.
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Figure 2.
The size of the transcriptome, computed as the fraction of the total number of base pairs in
the human genome covered by the assembled transcripts, for 16 normal human tissues
included in the Illumina Body Map [98]. Each RNA-seq data set was mapped to the genome
with TopHat [78] and assembled with Cufflinks [41]. Note that except for adrenal tissue, in
which transcripts cover 5.3% of the human genome, all other reconstructed transcriptomes
are smaller in size than the currently annotated transcriptome.
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Table 1

Number of known annotated transcripts and human gene loci collected from Ensembl, NCBI’s RefSeq, UCSC
Genome Browser, and Cabili et al.’s lincRNA catalog. A single locus typically contains multiple transcripts,
particularly for mRNAs.

Annotation mRNA Long ncRNA Small ncRNA

Transcripts 111,451 89,981 11,366

Loci 20,944 40,765 11,195

Genes (Basel). Author manuscript; available in PMC 2012 September 01.


