
Narcolepsy: neural mechanisms of sleepiness and cataplexy

C.R. Burgess1,2 and T.E. Scammell2
1Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
2Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA 02215

Abstract
Narcolepsy is a common sleep disorder characterized by excessive daytime sleepiness and
cataplexy - episodes of muscle weakness triggered by positive emotions. Over the last few years,
researchers have discovered that narcolepsy results from a selective loss of neurons in the lateral
hypothalamus that produce the orexin/hypocretin neuropeptides. While an autoimmune process is
thought to underlie the loss of the orexin neurons this has not yet been conclusively demonstrated.
Similarly, it is only partially understood how loss of the orexin neurons results in the various
symptoms of narcolepsy. Studies in human patients and animal models of narcolepsy suggest that
excessive sleepiness is due to behavioral state instability rather than disruption of sleep
homeostasis or circadian rhythms. Cataplexy may result from the inappropriate activation during
wakefulness of the pontine circuits that normally generate muscle atonia during REM sleep. This
article reviews the clinical features and neurobiology of narcolepsy and outlines important areas in
which progress might be achieved.

Keywords
atonia; sleepiness; orexin; autoimmune; autoimmunity; sleep; hypothalamus

Narcolepsy is a common cause of chronic sleepiness and is often accompanied by symptoms
that include odd mixtures of sleep and wakefulness. A patient of ours is an intelligent and
highly motivated young woman who developed unrelenting sleepiness during law school.
No matter how much she slept at night, she struggled to stay awake while studying and her
grades began to slip. One night when dozing off, she was certain that she heard someone
breaking into her apartment, but after a few minutes, she realized it was a vivid, dream-like
hallucination. A few weeks later, while joking with a friend, she suddenly slumped face
down on her desk; she was fully conscious but unable to move for about a minute. Her story
is quite typical, and now, even with a variety of medications, her day-to-day life is much
harder than it used to be.

As in this young woman, all individuals with narcolepsy experience persistent daytime
sleepiness. They may feel rested upon awakening, but most of their day is disrupted by
moderate to severe sleepiness that causes them to doze off at inappropriate times and
interferes with their ability to remain attentive in school, at work, and when driving. In
addition, people with narcolepsy usually have a variety of other symptoms including sleep
paralysis (paralysis for about a minute upon awakening), hypnagogic hallucinations (vivid
and sometimes frightening hallucinations at the beginning or end of sleep), and cataplexy
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(sudden episodes of emotionally triggered muscle weakness). Typically beginning in
adolescence, narcolepsy is common, affecting about 1 in 2,000 people. Excessive daytime
sleepiness is usually the first symptom, with cataplexy and other phenomena developing
over the next few months and persisting for life.

For over 100 years, clinicians have recognized narcolepsy (Westphal, 1877; Gelineau, 1880;
Schenck et al., 2007), but only in the last decade have neuroscientists been able to shed light
on its true cause and underlying neurobiology. The goals of this review are to describe
briefly the symptoms, etiology, and management of narcolepsy, and then review the
underlying neurobiology and important directions for future research.

Etiology
Towards the end of World War I, an epidemic of encephalitis swept across Europe. In many
patients, this caused crushing sleepiness, and the Austrian neurologist Constantin von
Economo found that these patients usually had inflammation and injury to the posterior
hypothalamus (von Economo, 1930). He went on to speculate that the sleepiness of
narcolepsy might be caused by injury to this region, but for decades this hypothesis could
not be tested as so little was understood about the cells and functions of the hypothalamus.
In 1998, two labs independently discovered a pair of hypothalamic neuropeptides termed
orexin-A and -B (or hypocretin 1 and 2) and their receptors (OX1 and OX2) (de Lecea et al.,
1998; Sakurai et al., 1998). The orexins have since been demonstrated to play essential roles
in maintaining wakefulness and regulating transitions between sleep and wake (Chemelli et
al., 1999; Mochizuki et al., 2004; Adamantidis et al., 2007; Diniz Behn et al., 2010; Sasaki
et al., 2011). The following year, another pair of research teams found compelling evidence
that narcolepsy can be caused by a loss of orexin signalling. Masashi Yanagisawa’s group
produced an orexin ligand knockout mouse with sleepiness and cataplexy strikingly similar
to human narcolepsy (Chemelli et al., 1999). Simultaneously, Emmanuel Mignot’s group
demonstrated that canine narcolepsy resulted from a mutated orexin receptor (Lin et al.,
1999). The definitive link between narcolepsy and orexin followed soon after when
researchers demonstrated a lack of orexin peptides in the hypothalami and CSF of
narcolepsy patients (Peyron et al., 2000; Thannickal et al., 2000; Mignot et al., 2002).

Further research has demonstrated that approximately 90% of the orexin-producing neurons
are lost in human narcolepsy with cataplexy. The endogenous opiate dynorphin and NARP
(a protein involved in glutamate signalling) are also produced by the orexin neurons, and
both of these markers are absent in the lateral hypothalamus of patients with narcolepsy
(Blouin et al., 2005; Crocker et al., 2005). This cell loss seems highly selective as neurons
producing melanin-concentrating hormone (MCH), which are intermingled with the orexin
neurons, seem completely unaffected (Peyron et al., 2000; Thannickal et al., 2000).
Collectively, these studies provide strong evidence that some process selectively destroys
the orexin neurons.

These studies focused on patients that have narcolepsy with cataplexy, yet much less is
understood about the neuropathology of narcolepsy without cataplexy. This type of
narcolepsy affects about half of all patients with narcolepsy, and the severity of symptoms is
often less than in patients with cataplexy (Sasai et al., 2009). Though little is known about
the underlying neuropathology, narcolepsy without cataplexy may simply be caused by less
severe injury to the orexin neurons (Thannickal et al., 2009), resulting in mainly sleepiness
and a small reduction in CSF orexin level (Mignot et al., 2002; Andlauer et al., 2012). Mild
to moderate loss of the orexin neurons has also been demonstrated in Parkinson’s disease
(Thannickal et al., 2007; Fronczek et al., 2008; Fronczek et al., 2009) and traumatic brain
injury (Baumann et al., 2009), disorders that often produce sleepiness but no cataplexy.
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In addition to controlling sleep/wake states, the orexin neurons also regulate metabolism,
feeding, reward, and autonomic tone (Aston-Jones et al., 2010; Cason et al., 2010;
Dimitrova et al., 2011), resulting in additional symptoms. For example, weight gain is
common at the onset of narcolepsy, especially in children, perhaps from a reduction in basal
metabolic rate (Plazzi et al., 2006; Sonka et al., 2010). Mice lacking orexins have a
decreased tendency for addiction (DiLeone et al., 2003; Smith and Aston-Jones, 2012), but
whether this occurs in people with narcolepsy is not yet clear (Dimitrova et al., 2011). This
review will focus on the primary symptoms of narcolepsy, sleepiness and cataplexy, though
numerous reviews discuss other roles for the orexin system (Aston-Jones et al., 2008; Mieda
and Sakurai, 2009; Sakurai and Mieda, 2011; Sinton, 2011; Nixon et al., 2012).

Autoimmune hypothesis
Human leukocyte antigens (HLA) are linked to many autoimmune diseases, and narcolepsy
has the strongest known HLA association. HLA DQB1*0602 is found in about 90% of
patients with narcolepsy, and simply carrying this gene increases the risk of narcolepsy
about 200-fold (Mignot et al., 1993; Mignot et al., 1994). This striking association has led
many researchers to speculate that an autoimmune process kills the orexin neurons.

Several observations support the autoimmune hypothesis. Narcolepsy is linked to
polymorphisms in the T-cell receptor α gene that may alter immune responses to some
antigens (Hallmayer et al., 2009). Many patients also report that their narcolepsy began soon
after strep throat or another infection, and levels of antibodies targeted at streptococcus
bacteria are often elevated in the months after the onset of narcolepsy, suggesting that
immune system activation may trigger an attack on the orexin neurons (Aran et al., 2010). In
addition, antibodies against tribbles homolog 2, a protein found in many cell types including
the orexin neurons, are sometimes elevated in narcolepsy (Cvetkovic-Lopes et al., 2010;
Kawashima et al., 2010; Toyoda et al., 2010). Just recently, there was a 12-fold increase in
new cases of narcolepsy in children (all with DQB1*0602) in Finland and Sweden
inoculated with a brand of H1N1 influenza vaccine that contained a potent adjuvant intended
to produce vigorous immune responses (Nohynek et al., 2012; Partinen et al., 2012). These
observations suggest that in genetically susceptible individuals, an immunologic stimulus
may trigger an immune response that also kills off the orexin neurons.

The autoimmune hypothesis still has several weaknesses. Researchers have not yet
identified a key target antigen or humoral or cellular mechanisms that could attack the
orexin neurons. MRI scans and analysis of CSF have not shown evidence of brain
inflammation. Though some patients have improved with intravenous immune globulins (an
immune system modulator) (Dauvilliers et al., 2004), the response is inconsistent, and case
reports of other treatments such as high dose corticosteroids have shown little benefit (Hecht
et al., 2003). Though less likely, it is still possible that the orexin neurons are killed by a
completely different mechanism such as selective neurodegeneration or a neurotropic virus.
Clearly, much more needs to be done to determine whether an autoimmune process kills the
orexin neurons, and if so, to discover how that process can be altered.

Treatment
Narcolepsy has generally been treated with a combination of stimulants for excessive
daytime sleepiness and antidepressants for cataplexy (Table 1) (Black and Guilleminault,
2001; Mignot and Nishino, 2005). Monoamine neurotransmitters, especially dopamine,
promote arousal, while some such as norepinephrine and serotonin suppress cataplexy.
Stimulants (e.g. dextroamphetamine, methylphenidate) improve sleepiness by enhancing
release and decreasing reuptake of dopamine and other monoamine neurotransmitters
(Kuczenski and Segal, 1997; Nishino et al., 1998; Kanbayashi et al., 2000; Wisor et al.,
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2001; Leonard et al., 2004). Modafinil has some similarities with traditional stimulants and
may be a more selective dopamine reuptake blocker (Scammell et al., 2000; Wisor and
Eriksson, 2005; Golicki et al., 2010). Antidepressants, such as venlafaxine and
clomipramine are often effective at reducing cataplexy, likely by blocking reuptake of
norepinephrine (Schachter and Parkes, 1980; Nishino and Mignot, 1997).

Sodium oxybate, the sodium salt of gamma hydroxybutyrate, is also quite effective for
treating sleepiness and cataplexy (Boscolo-Berto et al., 2011). Sodium oxybate is given at
bedtime and promotes deep non-REM sleep, probably through activation of GABAB
receptors (Vienne et al., 2010). After several weeks, sleepiness and cataplexy often improve,
but the mechanisms underlying this slow improvement are unknown.

Several drug companies are now developing histamine H3 receptor inverse agonists as a
new method for increasing arousal. H3 receptors are inhibitory autoreceptors that reduce
activity in neurons that make histamine and other wake-promoting monoamines (Parmentier
et al., 2007). Thus, H3 inverse-agonists increase activity in monoamine neurons and reduce
sleepiness in people, dogs, and mice with narcolepsy (Guo et al., 2009; Inocente et al.,
2012). Clinical trials are now underway to establish the efficacy and safety of these drugs in
treating sleepiness and cataplexy.

Since narcolepsy results from selective loss of the orexin neurons, restoration of orexin
signalling should be a highly effective and targeted treatment. The orexin peptides are
relatively large, and only a small amount of orexin-A can cross the blood brain barrier
(Kastin and Akerstrom, 1999). Injection of orexin-A into the lateral ventricles of narcoleptic
mice improves wakefulness and reduces cataplexy (Mieda et al., 2004), and both
intravenous and nasal delivery of orexin-A to non-human primates alleviate performance
deficits after sleep deprivation (Deadwyler et al., 2007). These approaches may not be
practical for most patients, but the results of these studies provide good proof of concept. As
an alternative, orexin gene therapy has been used to induce expression of orexin peptides in
a variety of neurons in or near the hypothalamus in mice and has resulted in reductions in
both sleepiness and cataplexy (Liu et al., 2008; Liu et al., 2011). Still, it may be years before
gene therapy is considered safe enough for use in human narcolepsy. Ideally, narcolepsy
would be treated with a small molecule orexin agonist, and though pharmacologically
challenging, this is now a goal for several labs. This would be a great accomplishment as
narcolepsy is remarkably simple when compared to other neurological disorders: sleepiness,
cataplexy, and the other symptoms are likely all due to a loss of orexin signalling. Thus,
there is real hope that the symptoms of narcolepsy could be dramatically improved by
restoring orexin signalling.

Animal models
Researchers have now studied several engineered and naturally occurring animal models of
narcolepsy (Chen et al., 2009; Scammell et al., 2009). These models all have good face
validity (they demonstrate sleepiness and cataplexy), predictive validity (medications for
human narcolepsy reduce symptoms in animal models), and construct validity (lack of a
functional orexin system). Dogs with autosomal recessive narcolepsy have a mutation in the
gene coding for the orexin OX2 receptor, resulting in sleepiness and severe cataplexy
elicited by social interaction and palatable food (Mitler et al., 1974; Mitler, 1975; Mitler et
al., 1976; Lin et al., 1999). In mice, sleepiness and varying degrees of cataplexy occur in
models lacking the orexin neuropeptides, the orexin receptors, or the orexin neurons
(Chemelli et al., 1999; Hara et al., 2001; Willie et al., 2003; Mochizuki et al., 2004;
Mochizuki et al., 2011). In general, mice fully lacking the orexin peptides or both receptors
have more severe symptoms, while mice lacking either the OX1 or OX2 receptor have
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milder phenotypes (Willie et al., 2003). The great advantage of these mouse models is that
they now enable researchers to examine the fundamental neurobiology of narcolepsy.

Neurobiology of sleepiness
Excessive daytime sleepiness is a defining feature of narcolepsy, and researchers have
considered several possible explanations for this frequently debilitating symptom. Prolonged
periods of wakefulness increase homeostatic sleep drive, and it is possible that people with
narcolepsy have higher sleep drive than normal. However, this seems unlikely as the total
amounts of sleep in people and in mice with narcolepsy are essentially normal as are their
responses to sleep deprivation (Tafti et al., 1992; Besset et al., 1994; Mochizuki et al.,
2004). Circadian timing signals help promote wakefulness during the day, and another
explanation for excessive sleepiness is that these signals might be less effective in
narcolepsy. This too seems unlikely as the fundamental circadian rhythms of narcoleptic
mice and people are close to normal (Dantz et al., 1994; Mochizuki et al., 2004). Many
people with narcolepsy have fragmented sleep, suggesting a third explanation that poor sleep
at night could cause sleepiness during the following day. In fact, sodium oxybate was first
used in narcolepsy simply to improve sleep quality (Mamelak et al., 2004). However, though
sodium oxybate immediately improves sleep, the improvements in daytime alertness may
not become apparent until weeks later (Boscolo-Berto et al., 2011). In addition, many
patients with narcolepsy feel well rested upon awakening, and daytime sleepiness in
narcolepsy does not correlate with the quality of nighttime sleep (Sturzenegger and Bassetti,
2004).

Sleep state instability, with low thresholds to transition between wake and sleep, may
provide the best explanation for the sleepiness of narcolepsy (Mochizuki et al., 2004). The
orexin neurons innervate and excite many of the key wake-promoting systems, including
noradrenergic neurons of the locus coeruleus, serotonergic neurons of the dorsal raphe,
histaminergic neurons of the tuberomammillary nucleus, and cholinergic neurons in the
basal forebrain and pons (Figure 1) (Peyron et al., 1998; Horvath et al., 1999; Eggermann et
al., 2001). These regions not only powerfully promote wakefulness, but they also inhibit
sleep-promoting systems. In addition, the orexin neurons may be autoexcitatory (Li et al.,
2002), and once they become active during the waking period they may remain active,
leading to sustained excitation of the other wake-promoting systems. Conversely, in the
absence of orexins, the wake-promoting neurons may not receive adequate or consistent
excitatory drive, leading to reduced arousal, disinhibition of sleep-promoting pathways, and
inappropriate transitions into sleep.

Neurobiology of cataplexy
Cataplexy is sudden muscle weakness often triggered by strong emotions. The loss of
muscle tone can be partial, affecting just the face and neck, or complete, resulting in full
postural collapse. An episode of cataplexy usually lasts from a few seconds up to 1 or 2
minutes, and during this time consciousness is fully preserved. One of the most striking
aspects of cataplexy is that it is often triggered by positive emotions, such as those
associated with laughter or telling a joke (Overeem et al., 2011). Cataplexy may be a severe
form of “feeling weak with laughter” or an atavistic expression of tonic immobility, a reflex
akin to feigned death or “playing possum” (Overeem et al., 1999, 2002).

When an individual is in REM sleep, nearly all skeletal muscles (except those involved in
respiration and eye movements) are paralyzed. This is called REM sleep atonia, and similar
mechanisms may cause the muscle paralysis of cataplexy (Figure 2). During REM sleep,
motor neurons are strongly inhibited by GABAergic and glycinergic neurons in the spinal
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cord and medial medulla (Soja et al., 1987; Kodama et al., 2003; Brooks and Peever, 2008).
These inhibitory premotor neurons are activated by glutamatergic neurons in the
sublaterodorsal nucleus (SLD; just ventral to the locus coeruleus) (Boissard et al., 2002).
Lesions of these pathways in animals can produce REM sleep without atonia, and similar
injuries may case REM sleep behavior disorder in humans, in which REM sleep paralysis
fails, and patients act out their dreams (Lu et al., 2006; Boeve et al., 2007). Normally, during
wakefulness, these atonia-producing pathways are held in check by norepinephrine,
serotonin, and GABAergic neurons of the ventrolateral periaqueductal grey and adjacent
lateral pontine tegmentum (vlPAG/LPT) (Boissard et al., 2002; Lu et al., 2006). During
cataplexy, noradrenergic and serotonergic neuron activity is suppressed, permitting atonia,
but the wake-promoting, histaminergic neurons of the tuberomammillary nucleus remain
active, helping preserve consciousness (Wu et al., 1999; John et al., 2004; Wu et al., 2004).
In addition, the orexin peptides may prevent atonia by directly exciting neurons at multiple
levels of this system, including those in the vlPAG/LPT, monoaminergic regions, and motor
neurons (Horvath et al., 1999; Peever et al., 2003; Yamuy et al., 2004; Lu et al., 2006).

How might positive emotions activate these atonia pathways to produce cataplexy? The
central nucleus of the amygdala sends excitatory projections to the SLD and inhibitory
projections to the vlPAG/LPT (Boissard et al., 2003; Fung et al., 2011; Xi et al., 2011).
Perhaps, strong, positive emotions activate these limbic pathways, increasing the likelihood
of atonia. In healthy individuals, this would be offset by the atonia-suppressing effects of the
orexin peptides, resulting in no more than a fleeting sense of mild weakness. However, in
people with narcolepsy, these emotional signals would be unopposed, resulting in sustained
activation of the SLD and downstream pathways that lead to paralysis.

The models presented here provide thorough but simplistic explanations for the neural
pathways that regulate sleepiness and cataplexy. They highlight the many important roles of
the orexin system, but much more work is needed to sort out the details and essential
elements.

Future Directions
The orexin neurons innervate a variety of nuclei in the brain and spinal cord, but it remains
unclear which of these pathways are necessary for stabilizing wakefulness and muscle tone.
Recent studies using optogenetics and Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs) have demonstrated the importance of the orexin system in
promoting arousal (Adamantidis et al., 2007; Sasaki et al., 2011; Tsunematsu et al., 2011).
Hopefully, the next generation of studies will map out the key targets, by stimulating or
inhibiting orexin nerve terminals in key brain regions. Another approach will be to focally
rescue orexin signalling. For example, we recently found that restoring orexin signalling to
the tuberomammillary region can fully rescue the sleepiness of mice lacking the OX2
receptor (Mochizuki et al., 2011). This method nicely demonstrates which pathways are
sufficient to rescue a behavior, and ongoing studies in other labs to focally disrupt orexin
signalling should be able to define which pathways are necessary for regulating cataplexy
and the other symptoms of narcolepsy.

Few studies have investigated the role of forebrain and limbic structures in regulating
cataplexy. Just like in people with narcolepsy, emotional stimuli seem to trigger cataplexy in
animal models: narcoleptic dogs have marked increases in cataplexy when playing or
presented with highly palatable food (Baker et al., 1982; Siegel et al., 1989), and narcoleptic
mice have increased cataplexy with social interaction, palatable food, or running wheels
(Espana et al., 2007; Clark et al., 2009; Scammell et al., 2009). In addition, a population of
amygdala neurons fire at increased rates during cataplexy in narcoleptic dogs (Gulyani et al.,
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2002), but no experiments have tested whether the amygdala or other limbic structures are
necessary or sufficient for cataplexy. These studies would provide novel insights into the
mechanisms that trigger cataplexy and would probably also provide useful information on
limbic pathways that underlie positive affect.

The discovery of the orexin system sparked a surge of research that has substantially
improved our understanding of narcolepsy, yet there remain many important and
unanswered questions. How do positive emotions trigger cataplexy? Can we better
understand the mechanisms of narcolepsy and the drugs used in its treatment to develop
better and safer therapies? Can an effective orexin agonist be developed? Is narcolepsy an
autoimmune disorder? If so, can we halt or reverse the process that kills the orexin neurons?
These future studies will shed light not only on narcolepsy, but also on the many roles of the
orexin system in normal brain function.

For additional information on narcolepsy see Table 2.
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Figure 1. Orexin neurons project throughout the brain to promote and maintain wakefulness
Orexin neurons in the lateral hypothalamus project to the major arousal-promoting nuclei,
including neurons producing histamine (HA; tuberomammillary nucleus), norepinephrine
(NE; e.g. locus coeruleus), serotonin (5-HT; e.g. dorsal raphe), dopamine (DA; e.g. ventral
tegmental area), and acetylcholine (Ach; e.g. basal forebrain, pedunculopontine and
laterodorsal tegmental nuclei). The orexin neurons provide direct, excitatory inputs to the
cortex, thalamus, and spinal cord. In addition, the orexin neurons may be auto-excitatory.

Burgess and Scammell Page 14

J Neurosci. Author manuscript; available in PMC 2013 March 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Atonia pathways triggering cataplexy
A. Several pathways suppress atonia during normal wakefulness. Atonia is driven by
neurons in the sublaterodorsal nucleus in the pons (SLD) that activate neurons in the spinal
cord and medial medulla (MM) that inhibit motor neurons using GABA and glycine. During
wakefulness, this atonia system is inhibited by neurons in the ventrolateral periaqueductal
gray/lateral pontine tegmentum (vlPAG/LPT) and by monoaminergic neurons (e.g. NE and
5-HT). The orexin neurons are active during wake, and they help maintain normal muscle
tone by exciting neurons in the vlPAG/LPT, monoamine neurons, and motor neurons. B. In
narcolepsy, loss of the orexin neurons plus strong, positive emotions can trigger cataplexy.
Positive emotions may activate neurons in the amygdala that excite the SLD and inhibit the
vlPAG/LPT. The SLD may also be activated by cholinergic inputs and a sudden withdrawal
of monoamine tone. The SLD then excites neurons in the medial medulla and spinal cord
that strongly hyperpolarize motor neurons, resulting in cataplexy. Normally, the many
effects of the orexin system and a continued monoaminergic drive to the pons and directly to
motor neurons would counter this triggering of atonia, but in the absence of orexins, these
excitatory drives are lost and cataplexy occurs. Solid pathways from filled nuclei are active;
dashed pathways from unfilled nuclei are inactive. Green pathways are excitatory; red
pathways are inhibitory.
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Table 1
Medications that reduce sleepiness and cataplexy in narcolepsy

Human Dog Mouse

Antidepressants (e.g.
venlafaxine, clomipramine) ↓cataplexy ↓ cataplexy ↓ cataplexy

Stimulants (e.g.
methylphenidate, modafinil) ↓ sleepiness ↓ sleepiness ↓ sleepiness

Gamma-hydroxybutyrate
(e.g. sodium oxybate)

↓ sleepiness
↓ cataplexy ND ND

Histamine H3 receptor
inverse agonist (e.g.

tiprolisant)
↓ sleepiness ND ↓ sleepiness

↓ cataplexy

Orexin-A* ND ↓ sleepiness
↓ cataplexy

↓ sleepiness
↓ cataplexy

ND, not determined; *, given ICV or IV

(Babcock et al., 1976; Schachter and Parkes, 1980; Shelton et al., 1995; Scammell and Matheson, 1998; Fujiki et al., 2003; Willie et al., 2003;
Mieda et al., 2004; Willie et al., 2005; Lin et al., 2008; Golicki et al., 2010; Lammers et al., 2010)
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Table 2
Sources of additional information

Narcolepsy Fact Sheet from NINDS

http://www.ninds.nih.gov/disorders/narcolepsy/detail_narcolepsy.htm

Narcolepsy Network

http://www.narcolepsynetwork.org/

Wake Up Narcolepsy

http://www.wakeupnarcolepsy.org/
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