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Abstract
The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now
implicated in processes as disparate as organ development, innate immunity, DNA damage repair,
photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an
unusual combination of biochemical activities; tyrosine phosphatase and threonine phosphatase
activities in separate domains, and transactivation potential when associated with a DNA-binding
partner. EYA mutations are linked to multi-organ developmental disorders, as well as to adult
diseases ranging from dilated cardiomyopathy to late-onset sensori-neural hearing loss. With the
growing understanding of EYA biochemical and cellular activity, biological function, and
association with disease, comes the possibility that the EYA proteins are amenable to the design of
targeted therapeutics. The availability of structural information, direct links to disease states,
available animal models, and the fact that they utilize unconventional reaction mechanisms that
could allow for specificity, suggest that EYAs are well-positioned for drug discovery efforts. This
review provides a summary of EYA structure, activity, and function, as it relates to development
and disease, with particular emphasis on recent findings.
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Introduction
The Eyes Absent (EYA) proteins are components of a conserved regulatory network
involved in cell-fate determination in organisms ranging from insects to humans. In
Drosophila, where most of the initial characterization was conducted, this network is
referred to as the Retinal Determination Network and is composed of the genes twin of
eyeless (toy), eyeless (ey), sine oculis (so), eyes absent (eya) and dachshund (dac). These
genes are regulated by interconnected feedback loops and their protein products form
complexes that play a critical role in fly eye development [1–5]. In higher animals, an
analogous network variably composed of genes belonging to the Pax (corresponding to toy
and ey), Six (corresponding to so), Eya (corresponding to eya), and Dach (corresponding to
dac) families plays a key regulatory role in the development of multiple organs including the
eye, muscle, ears, heart, lungs, endocrine glands, placodes, pharyngeal pouches, craniofacial
skeleton, and parathyroid. This network is often referred to as the Pax-Six-Eya-Dach
network (PSEDN) to better reflect the vertebrate genes/proteins involved. Because of its
deployment in multiple developmental contexts and its high degree of conservation through
animal evolution, the PSEDN has been extensively studied.
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A unique feature of the EYA proteins is that they combine several biochemical activities in a
single polypeptide; independent protein tyrosine phosphatase and threonine phosphatase
domains, and a transcriptional activation domain. Each of these activities has been linked to
distinct cellular functions, biological roles, and disease states. There is now an emerging
understanding of the molecular mechanisms and regulation of EYA’s biochemical activities,
the cellular pathways influenced by EYAs, and the biological context in which these
processes occur. This is leading to a better understanding of the role of EYAs in both normal
development and in disease, thereby raising the possibility that EYAs might be attractive
molecular targets for therapeutic intervention. Here we focus on the EYA proteins, their
structure, mechanism of action, and association with human development and disease.

EYES ABSENT PROTEIN ARCHITECTURE AND ACTIVITIES
Vertebrates encode four EYA proteins (EYA1-4) that are characterized by a conserved C-
terminal 271 amino-acid domain commonly referred to as the EYA domain (ED) (Figure 1).
Animal EYA proteins have a poorly conserved N-terminal domain (NTD) that ranges in size
between 266 and 320 amino acids in vertebrates, but is 491 amino acids long in Drosophila.
In contrast, plant EYA does not have an N-terminal domain.

The conserved C-terminal EYA domain (ED)—The ED domain was originally
described as a protein interaction domain involved in binding the SIX and DACH proteins
[6–8]. It was later recognized that ED also includes the sequence motifs characteristic of the
large haloacid dehalogenase class of enzymes [9,10,7] and that it has tyrosine phosphatase
activity [10,9]. This observation linked the PSEDN to signal transduction and altered the
conventional view that it was a purely transcriptional network. The EYAs represent a novel
mechanistic class of protein tyrosine phosphatases (PTP) as they do not have the signature
Cys-containing motif that traditionally defines the large PTP family (reviewed in [11,12]).
Instead EYAs use an Aspartate residue as a nucleophile and require a divalent metal ion in
the active site to catalyze tyrosine phosphate hydrolysis. To date, the only other tyrosine
phosphatase shown to share this reaction mechanism is the TFIIF associating component of
CTD phosphatase/small CTD phosphatase (FCP1/SCP) [13].

Three-dimensional structural data is available for the EYA2 ED domain [14]. Like most
HAD family enzymes EYA2(ED) is comprised of two subdomains: a “core” catalytic
domain that includes all three conserved motifs that bear the catalytic residues, and an
inserted helical “cap” domain (Figure 1b). A divalent metal ion is found in the active site.
The cap domain is positioned such that it forms part of the catalytic center, and is thus likely
to participate in substrate binding and/or selection.

The N-terminal domain (NTD)—While the amino acid sequence in the N-terminal
domain (NTD) is very poorly conserved (Table 1), in all cases it is rich in Pro, Ser and Thr
residues reminiscent of the PST transactivation domains [15]. Xu et al used a classical
GAL4-DNA binding domain-fusion of the NTD to demonstrate that it could modestly
activate the expression of a CAT reporter [16]. Subsequently Ohto et al showed that the
EYA proteins can be localized on DNA via the homeodomain-containing SIX proteins and
can activate transcription from SIX-responsive elements [6]. Thus the prevailing model
(Figure 2) holds that the intrinsically cytosolic EYA proteins are translocated to the nucleus
as complexes with SIX proteins, and that the SIX-EYA complex can activate transcription,
whereas the SIX proteins by themselves are generally transcriptional repressors.

Most recently the NTD has been shown to have threonine phosphatase activity [17,18].
While the NTD bears no sequence resemblance to any known family of Thr phosphatases,
Alanine-replacement of a set of four relatively conserved tyrosine residues disrupts
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threonine phosphatase activity [17]. Whether this observation reflects involvement of the
tyrosine residues in the catalytic function, or general disruption of the three-dimensional
structure of the NTD remains to be determined.

Despite the apparent conservation of biochemical function across species, the NTDs of
bilaterian EYAs bear little amino acid-level homology to EYAs from protostomes.
Furthermore, plant EYAs have no true NTD, but just a short stretch of 18 to 23 residues
[19]. This raises the possibility that an ancestral plant EYA PTP gained an NTD and a
transcriptional function in animals. Pertinent to this is the observation that plants do not
encode orthologues of the other members of the PSEDN, and thus there is no conservation
of this transcriptional regulatory cascade between plants and animals.

EYA - a protein phosphatase with dual-specificity—Conventional dual-specificity
phosphatases (DUSPs) are characterized by their ability to dephosphorylate both phospho-
tyrosine and phospho-serine/threonine residues within the same substrate using the same
catalytic domain [20,21]. In contrast, EYA’s threonine phosphatase and tyrosine
phosphatase activities exist in separate domains, and there is no evidence yet that EYAs can
dephosphorylate both phosphothreonine and phosphotyrosine residues in the same substrate.
Hence EYAs do not fit the classical definition of DUSPs, but rather represent a unique and
unusual class of phosphoprotein-phosphatases with dual specificity. It remains to be
established whether the NTD and ED domains regulate each other’s catalytic activities.

To date the only truly validated substrate for the EYA tyrosine phosphatase activity is the
minor histone protein H2AX (described in detail below) [22,23]. No substrate has yet been
identified for the threonine phosphatase activity. Given the growing list of cellular roles that
are emerging for the EYA family of proteins, it is highly likely that multiple EYA substrates
will be identified in the future.

EYA – a transcriptional activator - phosphatase—Early studies in Drosophila
characterized the transcriptional role of EYA through genetic and/or biochemical interaction
with the SO/SIX [24] and DAC/DACH [25] classes of transcription factors. SIX proteins
physically interact with, and actively translocate EYAs from the cytoplasm to the nucleus
[26,6,24]. Since EYA has no recognized DNA binding activity, but possesses a
transactivation domain, it is widely accepted that EYAs act as transcriptional co-activators
upon recruitment by the SIX protein [6,27,16]. A direct interaction between Eya and Dac is
thought to underlie the synergistic induction of ectopic eyes in Drosophila [25], and a
similar interaction was reported between mouse EYA2 and DACH2 [26]; however, a later
study revealed that the interaction between EYA and DACH may be mediated by the CREB
Binding Protein (CBP) [8]. DACH is believed to be a transcriptional repressor that binds
directly to specific DNA sites [28,29] and recruits the co-regulator transcriptional elongation
regulator 1 (TCERG1) [30]. The DACH-CBP-EYA complex acts as a transactivator [8].
Similarly, multiple studies suggest that the SIX proteins are either repressors of transcription
or weak activators. In either case, the presence of EYA converts them into strong activators
of transcription [6,31,7,32]. Moreover, no SIX- and DACH- independent transcriptional
activities of EYA have yet been clearly described.

While GAL4-DBD-fusions of the EYA-NTD can activate transcription on their own [16],
transactivation by a SIX-EYA complex is dependent on the EYA tyrosine phosphatase
activity [7]. This observation is intriguing and implies that the N-terminal transactivation
activity is somehow regulated by the C-terminal phosphatase activity, or that a substrate of
the SIX-EYA complex is involved in transcriptional activation. The precise mechanism
underlying this observation is yet to be determined. There has been some suggestion that the
phosphatase activity of the EYAs may participate in a cytoplasmic cellular function while
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the transactivation activity of the SIX-EYA complex represents a nuclear function. This is
borne out by evidence that cytoplasmic EYA4 plays a role in innate immunity via its
threonine phosphatase activity [17] and that cytoplasmic EYA3 promotes cell motility via its
tyrosine phosphatase activity [33]. However, the role of the EYA tyrosine phosphatase
activity in DNA damage repair [22] is clearly a nuclear function.

In the Drosophila eye, eya target genes include lozenge, hedgehog, eyeless, so, and atonal
(reviewed by [34]). In vertebrates, Eya target genes are implicated in the development of
multiple organs and include Na+/K+ ATPase α1 subunit, myogenin, Igfbp5, aldolase A, c-
myc, Gdnf, cyclin A1, cyclin D1, Slc12a2, p27Kip1, muscle creatine kinase, ezrin and Six2
[7,35–43]. In the immune response to viral infection, EYA4 promotes the expression of
IFN-β and CXCL10 [17,44].

EYA binding proteins—In a study aimed at mapping the interactome of the worm C.
elegans, EYA was found to have an unusually large number of interacting partners [45].
EYA binding proteins supported by experimental evidence are listed in Table 2. The SIX
and DACH transcription factors remain the best-characterized and functionally validated
EYA-binding proteins. Nuclear translocation of EYA can be prevented by EYA interaction
with the alpha subunits of Gz and Gi proteins [46]. This might be relevant to eye
development, as a mouse knockout of a G-coupled protein receptor recapitulates anterior
ocular defects seen in patients with mutations in the EYA1 gene [47,48]. On the other hand,
EYA’s co-transcriptional activator function can be enhanced by its interaction with SIPL1
(Shank-interacting protein-like 1) and RBCK1 (RBCC protein interacting with PKC1), and
this interaction is important in craniofacial development in mouse and zebrafish [49]. In
lung epithelial morphogenesis, EYA1 forms a complex with several polarity proteins
including PAR3, PAR6, NUMB, LGN and MLNSC, through its direct binding to the zeta
isoform of the atypical protein kinase C (aPKC-zeta) [50]. In response to DNA damage,
EYA3 is phosphorylated by the ataxia telangiectasia mutated (ATM)/ATM Rad3-related
(ATR) kinase, and upon activation, can bind to and dephosphorylate H2AX, a prerequisite
for DNA damage repair [51,22]. In Drosophila eye development, the interaction of Eya with
the Abelson (Abl) tyrosine kinase (which phosphorylates Eya) is required for Eya to
function as a cytoplasmic protein phosphatase [52]. The Drosophila MAP kinase family
member Nemo regulates retinal determination genes by phosphorylating Eya, thereby
potentiating the transcriptional activity of the Eya-So complex [53]. In its role as stimulator
of the innate immune response against viruses, EYA4 forms a complex with the interferon-
beta promoter stimulator 1 (IPS-1), the stimulator of interferon genes (STING) and the
nucleotide-binding oligomerization domain leucine rich repeat containing X1 (NLRX1) in
immune cells [17,44,52]. EYA1 also forms a complex with the transcription factor SOX2 in
the sensory epithelium of the inner ear and in the future organ of Corti, implicating this
interaction in the development of sensory progenitors as well as hair cell differentiation [54].
SOX2 represents the only DNA-binding partner (other than the SIX/So proteins) thus far
identified for an EYA protein, raising the possibility that a SOX2-EYA1 complex could
regulate expression of SOX2-dependent genes. While such SOX2-EYA1 targets are yet to
be described, SOX2, SIX1 and EYA1 are known to interact and regulate ATOH1 expression
through both SOX2 and SIX1 binding sites in the Atoh1 enhancer, and to specify hair cell
fate in the developing ear [55].

CELLULAR FUNCTIONS OF THE EYAs
EYA in cell proliferation and survival—Embryonic growth and patterning is dependent
upon the proper balance between proliferation and cell death. Drosophila germ line eya
mutations are embryonic lethal, and eye specific mutations are characterized by massive cell
death in the eye primordium [4,3]. In C. elegans, loss of Eya1 by RNAi and deletion
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mutations resulted in early larval lethality with incomplete penetrance, and late embryos
displayed pharyngeal malformation and excess cell death in the anterior region [56]. Zygotic
depletion of Xeya3 induces local apoptosis in the anterior neural plate, and overexpression
of exogenous Xeya3 was able to enlarge the neural plate by causing an over-proliferation of
neural precursor cells [57]. Mouse mutant for Eya display abnormal apoptosis and reduced
cell proliferation during the development of multiple tissues including the kidney, muscle,
and ear [58,7,59]. EYA has also been shown to regulate proliferation through negative
modulation of Sonic hedgehog signaling in mouse lung epithelium [60]. Although the
developmental role of the EYA proteins appears to be overwhelmingly anti-apoptotic and
pro-proliferative, there are instances in which it has a pro-apoptotic function.
Overexpression of Eya triggers apoptotic cell death in 32D.3 murine myeloid cells [61], and
the C.elegans SIX protein (CEH-34) and EYA1 cooperate to promote programmed cell
death of a particular pharyngeal neuron by directly activating expression of the pro-
apoptotic protein egl-1 [62].

EYA in cell migration—The process of cell migration is fundamental to embryogenesis,
as the initial morula ball segregates into the three main germ layers and cells move relative
to each other to shape and populate different tissues. The pro-migratory function of EYA
was first reported in Drosophila, since mutant embryos displayed defects in germ cell
migration and head morphogenesis [63,1]. In C. elegans, Eya1 mutants are characterized by
a loss of directionality in the migration of gonad cells [56]. In vertebrates, Eya transcripts
are expressed in migrating cells, including muscle precursor cells, neural crest cells and their
derivatives [57,64–67], suggesting that EYA proteins may play a role in developmental cell
migration. Overexpression of Eyas in breast epithelial cell lines increases single cell
migration [33,68], and siRNA-mediated depletion of EYA4 in MPNST cells [69], or EYA3
in endothelial cells [68], reduces their migration in transwell assays. While all of these
observations support a role for EYAs in promoting cell migration, the precise cellular
signaling pathways involved have not yet been delineated. However links between EYA
phosphatase activity and processes fundamental to cell motility such as GTPase activation
and cytoskeletal architecture have been observed in mammary epithelial cells [33].

EYA in DNA damage repair—The most validated substrate for the EYA tyrosine
phosphatase activity thus far is the minor histone protein H2AX, linking EYA to DNA
damage repair [23,22]. In both mouse embryonic kidney and human embryonic kidney cell
lines, H2AX is dephosphorylated at the C-terminal tyrosine 142 (pY142) by EYA1, EYA2,
and EYA3. This permits recruitment of the MDC1/MRN repair complex and tips the
balance towards survival rather than cell death. While phosphorylation of H2AX at Ser139
following DNA damage has been well-established (reviewed in [70]), phosphorylation at
tyrosine 142 has only recently been uncovered. Xiao et al report that the William-Beuren
syndrome transcription factor (WSTF) (also known as BAZ1B) phosphorylates H2AX
Tyrosine 142 utilizing a novel kinase domain [71]. Furthermore, Xiao et al showed that
H2AX is constitutively phosphorylated at tyrosine 142 in MEFs and that Y142
phosphorylation levels fall, while Ser139 phosphorylation levels rise, upon DNA damage
[71]. However, Xie et al could not detect H2AX Y142 phosphorylation using mass
spectrometric techniques, and they did not observe differences between the abilities of wild-
type and Y142F H2AX to promote either MDC1 focus formation or homologous
recombination in mouse embryonic stem cells [72]. This discrepancy could reflect true cell-
and/or condition-specific differences of biological interest, or merely technical differences in
the referenced studies.

EYA and angiogenesis—Endothelial cell migration, a process promoted by EYA, is a
prerequisite for angiogenesis – the formation of new blood vessels. EYA tyrosine
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phosphatase activity has recently been shown to contribute to sprouting angiogenesis in cell-
culture-based assays, ex vivo assays, and in a zebrafish model system [68]. Although
angiogenesis is essential for vascular development throughout embryogenesis and in the
formation of functionally distinct, tissue-specific vascular beds, there is only one report of a
vascular defect upon Eya deletion; Eya1−/− embryos show hemorrhage around the large
pulmonary vessels attributed to vascular smooth muscle defects that weaken the blood
vessels [60]. It is possible that compensation by other isoforms of Eya mask more
widespread vascular phenotypes, or that the phenotypes are subtle and thus escaped notice.

The mechanism by which EYA modulates angiogenesis has not yet been defined. However,
recent evidence links the DNA damage response to hypoxia-induced angiogenesis [73].
Specifically, hypoxia induces replicative stress and stalled replication forks. This activates
the ATR kinase, leading to phosphorylation of H2AX (to yield -H2AX; phosphorylated on
Ser139), the recruitment of MDC1 and DNA repair. Thus the proliferative potential of
endothelial cells is restored leading to neovascularization. Economopoulou et al. have shown
that inactivation of H2AX substantially impairs neovascularization in several hypoxic
conditions including retinal disease, hind limb ischemia and tumor growth [73]. Given the
established link between EYA and H2AX-mediated recruitment of MDC1 and other MRN
components, it is possible that activation of EYA in hypoxic conditions, during both normal
development and in disease, promotes DNA damage repair via H2AX tyrosine
dephosphorylation. This in turn could promote angiogenesis.

Salient to this discussion, a recent report shows that SIX1 in breast cancer cells promotes
lymphangiogenesis by upregulating VEGF-C expression [74]. A SIX1 binding-site was
reported in the VEGF-C promoter. As in other contexts, SIX1 activates VEGF-C
transcription only in the presence of EYA2 thus implicating EYA2 in promoting
lymphangiogenesis. This mechanism is likely to be distinct from the angiogenic role for
EYA in endothelial cells described by Tadjuidje et al [68].

EYA and developmental cell polarity—Oocyte polarity is a prerequisite to normal
cleavage and the establishment of proper cell fate in animal embryos. Tissue polarity is
important for proper differentiation of embryonic tissue and homeostasis of adult tissues
[75,76]. Drosophila Eya is a key repressor of polar cell fate during oogenesis [77], and
EYA1 is involved in the control of cell polarity and mitotic spindle orientation in lung
epithelium [50]. Therefore, EYA may play a role in polarity not only during the early
cleavage stage, but also later in development when highly specialized epithelial tissues
differentiate. Atypical protein kinase C zeta is a proposed EYA1 tyrosine phosphatase
substrate reported to play a role in specifying the apical-basal (A-P) polarity of lung
epithelial cells [60] since aPKCz tyrosine phosphorylation levels were increased upon Eya1
knockdown. However, the literature provides little information on either tyrosine
phosphorylation site(s) on aPKCzeta or the role of aPKCzeta tyrosine phosphorylation,
hence the molecular mechanism by which EYA1 specifies cell polarity remains unclear.

EYA in innate immunity—Okabe et al. identified EYA4 as a regulator of the innate
immune response to challenge from either cytosolic nucleic acids or undigested DNA from
apoptotic cells [17]. In vitro, EYA4 led to phosphorylation of IRF3 and upregulation of NF-
B, and enhanced induction of IFN-β and CXCL10. These authors propose that EYA4
initiates this response as a complex with RIG-1, TNF receptor-associated death domain,
TNF receptor–associated factor 3 and NEMO (IKK). They further showed that the N-
terminal threonine phosphatase activity of EYA4 is required for this function. While a role
for EYA in nucleic acid induced immunity is yet to be established in vivo, EYA as a
mediator of such a response, possibly by dephosphorylating and inactivating an inhibitory
kinase, is an attractive possibility.
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EYES ABSENT IN DEVELOPMENT
In Drosophila, specific recessive eya mutations result in elimination of compound eyes in
viable flies, while eya null mutations are embryonic lethal [63,4,78]. This could imply that
Eya is required in other embryonic tissues and prior to eye development. In support of this,
eya transcripts are expressed during embryogenesis of plants [19], squid and worms [79,56],
flies [3] and vertebrates [57,64,80,81,67,82,83]. Expression data from flies and vertebrates
are consistent with a requirement for EYA function during the entire process of animal
embryogenesis, beginning from the oocyte in which the transcript is deposited during
oogenesis [77,57]. This correlates with the numerous defects observed upon genetic
inactivation of Eya genes in mice (Table 3). Here we will outline the role of EYA in the
development of organs where there is a clearly established association with human
developmental disorders.

EYA in eye development—Early studies showed that eya mutation led to a lack of
compound eyes in flies with otherwise normal head structures [84,85]. Furthermore forced,
ectopic expression of eya is sufficient to induce retinal development [5]. Despite this strong
link between eya and retinal development in Drosophila, mouse Eya1, Eya2, Eya3 and Eya4
mutants have thus far reported no eye phenotype. It is possible that functional redundancy in
the vertebrate eye, where multiple Eyas are expressed in overlapping patterns may underlie
this discrepancy. In particular, Eya1 and Eya2 are expressed in a complementary fashion in
the developing retina, with the lens placode being the only optic structure that only
expresses Eya1 [64,16]. EYA1 mutations have been reported in human patients with
congenital cataracts [47], suggesting a role for EYA in human eye development. Moreover,
transgenes of mouse Eya1, 2 and 3 can rescue the eyeless phenotype in the Drosophila eya
mutant [86], suggesting that vertebrate Eyas are indeed endowed with eye specification
potency. The recently uncovered role for EYAs in angiogenesis and cell migration may also
point to roles in developmental retinal angiogenesis that will be uncovered upon more
detailed and targeted analyses.

EYA in kidney development—EYA1 and EYA2 are expressed in fetal and adult human
kidneys respectively [87,79]. In mouse, Eya1 is expressed in the developing kidney, and
Eya3 is expressed in the adult kidney [88,87,81]; chick Eya1 is expressed in the
nephrogenous mesenchyme [89] and Xenopus eya2 is expressed in the nephric mesoderm
[82]. Moreover, Eya1-mutant homozygous mice lack kidneys, and molecular analysis
suggests that Eya1 expression in the metanephric mesenchyme is required for the expression
of the gene encoding glial-derived neurotrophic factor (Gdnf), which in turn is required to
direct ureteric bud outgrowth [59,90]. Six1-deficient mice lack kidneys, but have ureters.
Detailed analysis revealed that the initial expression of Gdnf is not lost; therefore, the
ureteric bud emerges from the Wolffian duct, but fails to invade the mesenchyme, which
subsequently leads to apoptosis in the mesenchyme [91,92]. Six2 deficient mice have
hypoplastic kidneys, due to a depletion of the progenitor cell population within the
metanephric mesenchyme as a result of a premature and ectopic differentiation of
mesenchymal cells into epithelia [93]. Since Eya1 is required very early in kidney
development, a comparison of Eya1, Gdnf, Six1 and Pax2 mutant mice led to the suggestion
that Eya1 probably functions at the top of the genetic hierarchy controlling kidney
organogenesis [90]. Surprisingly, no Eya1 expression has been reported in the developing
kidney of frog or fish [67,94,66]. Thus the function of EYA1 in nephrogenesis might be a
characteristic of higher vertebrates, or another EYA may undertake this function in lower
vertebrates as suggested by the expression of eya2 in Xenopus nephric mesoderm.

EYA in ear development—Disorders of the auditory system co-exist with renal
anomalies in humans with mutations of EYA genes [95–98], and EYA4 mutations cause late
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onset deafness [99]. Expression and loss of function data support a role for EYA in the
development of the auditory system. The otic vesicle develops from the otic placode; in
zebrafish, amphibians and chick, all placodes originate from a common precursor domain,
the pre-placodal region, marked by the expression of Six1/4 and Eya1/2 [100]. In zebrafish,
Eya1 is found in the developing otic primordium as early as the placodal stage [66,49], and
mutations in the eya1 gene or morpholino-mediated knockdown of the protein cause the
dog-eared phenotype which is characterized by a defect in the formation of the inner ear
[101]. In Xenopus, eya1 and eya2 transcripts are expressed in the otic placode [67,82] and
immuno-staining reveals that the eya1 protein displays a distinctive expression pattern
during multiple stages of ear development [102]. Moreover, overexpression of mutant forms
of eya1 mRNA cause Xenopus embryos to develop with dysmorphogenesis of the otic
vesicle, defects in the establishment of sensory tissue and defective otic innervations [103].
Mouse Eya1 is expressed in the developing otic vesicle [64] and Eya1-deficient mice lack
ears [59]. It is suggested that EYA1 is required in a dose dependent manner for proper ear
development because hypomorphic mutations of the Eya1 gene result in inner ear
malformations and hearing defects in mice and humans [54]. Furthermore EYA1 and SIX1
can induce the putative neurosensory stem cells in the cochlea (GER cells) to differentiate
into hair cells [55], while co-expressed EYA1, SIX1 and SOX2 can induce GER cells to
differentiate into neurons [104]. Thus EYA1 (along with SIX1) initiates neuronal
development in the inner ear. On the other hand EYA4 is involved in middle ear
development, with Eya4−/− mice having abnormal middle ear cavities and Eustachian tube
dysmorphology [105]. They are also more prone to otitis media, and could represent a
valuable animal model for this common childhood disease.

EYA in heart development and function—Mutations in EYA4 cause dilated
cardiomyopathy, a disorder characterized by ventricular dilation and impaired systolic
function resulting in congestive heart failure and arrhythmia [106]. Cardio-facial syndrome,
a combination of an asymmetric crying face and heart defects, associated with an EYA1
mutation has also been reported [107]. Consistent with these findings, transcripts of EYA1
and EYA2 are expressed in the adult human heart [87,81,79,106]. In zebrafish, eya4 is
expressed both in the embryonic and adult heart, and anti-sense morpholino mediated
depletion of eya4 caused a progressive ventral swelling due to pericardial edema, suggestive
of cardiovascular dysfunction. Further analyses revealed that eya4-depleted embryos had
smaller ventricles as compared to controls [106]. Although there is no report of cardiac
expression of Eyes Absent during mouse embryogenesis, Eya2 and Eya3 are expressed in
the adult heart [81,79,108]. Moreover, Eya3-deficient young adult mice show a defect in the
electrophysiology of the heart, possibly suggesting a role for EYA3 in heart function [108].
EYA2 appears to be an important regulator of both pathological and physiological
hypertrophy. Eya2 is up-regulated during regression of cardiac hypertrophy and blocks
phenylephrine-induced development of cardiomyocyte hypertrophy in vitro. Similarly, Eya2
was up-regulated during the recovery following transverse aortic constriction (a treatment
that caused prominent cardiac hypertrophy) [109] suggesting that EYA2 may function
during the regression of hypertrophy. Transgene mediated overexpression of Eya2 inhibited
development of cardiac hypertrophy, prevented wall thinning, ventricular dilation, and
deterioration of cardiac function as well as fibrosis and inflammation in the heart under
long-term pressure overload. In addition, this prevention of pathological hypertrophy and
heart failure by EYA2 correlated with the elevation of genes involved in mitochondrial
biogenesis and metabolism in transgenic mice [110]. Eya2 expression is upregulated in
hearts with swimming exercise-induced physiological hypertrophy [111]. In summary,
although there is no solid evidence for the involvement of EYAs in mammalian heart
development, there is considerable evidence that EYA is critical for cardiac function.
Pathological and physiological cardiac hypertrophy are known to have different molecular
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signatures [112], and the involvement of EYA in both suggests that EYA could play a
cardio-protective role.

EYA in craniofacial development—The craniofacial complex (including the head, face
and oral cavity) is mostly formed of neural crest and mesoderm derived tissue. Many
congenital craniofacial malformations display major anomalies in neural crest cell
patterning, but often they arise as a secondary consequence of anomalies in other tissues
with which the neural crest cells interact during their development and migration (reviewed
by [113]). Cranial placodes and neural crest cells also depend upon each other for proper
development. Craniofacial anomalies are part of the phenotypic characteristics of EYA-
deficiency related syndromes such as cardio-facial (CF) and the oto-facio-cervical (OFC)
syndromes indicative of a role for EYA in craniofacial development [107,97,114,115].
Consistent with the human phenotypes, Eya transcripts are expressed in cranial placodes
and/or their derivatives during the embryogenesis of lower vertebrates. In Xenopus, eya1 is
expressed in all neurogenic placodes [67,94], and reducing eya1 protein levels by injection
of morpholino antisense oligonucleotides leads to reduced expression of neuronal marker
genes such as neuroD in all neurogenic placodes (reviewed by [116]). Eya2 is expressed is
multiple cranial placodes [82], and Eya3 is expressed in migrating cranial neural crest [57].
Zebrafish eya1 is expressed in cranial placodes [66], and chick EYA1 and EYA2 are
expressed in cranial placodes and derivatives [65,89]. In mice, Eya1 and Eya2 are
extensively expressed in cranial placodes, [64], and Eya4 is expressed in the nasal placode
[80]. Moreover, EYA1 and SIX1 have been directly implicated as promoters of the early
steps of neurogenesis in mouse cranial placodes [117,118]. A role for EYA in craniofacial
development is further supported by the work of Landgraf and colleagues who showed that
Eya1 interacts with Sipl1 and Rbck1, proteins important in craniofacial development whose
knockdown causes zebrafish embryos to develop with a BOR syndrome-like phenotype
[49].

EYA and photoperiodism—An exciting new development has been the observation that
EYA3 is the first and strongest molecular response that is activated by a long photoperiod
(light cycle) in birds [119], mice [120], and sheep [121]. It appears that Eya3 expression in
the pars tuberalis (PT) always occurs ~12 hours after the onset of a dark phase, and is
directly suppressed by darkness [122]. Along with SIX1 and TEF, EYA3 synergizes to
induce Tshβ (thyroid stimulating hormone β) expression in both sheep and mice. Tshβ
contributes to the conversion of the inactive thyroid hormone (T4) to its active form T3,
which in turn influences the activity of gonadotropin releasing hormone (GnRH)-producing
neurons that regulate levels of follicle-stimulating hormone (FSH) and luteinizing hormone
(LH). Hence photoperiod regulated EYA3 levels can directly influence the reproductive
cycles of seasonally-breeding animals. This places the EYA and SIX proteins at the heart of
a conserved transcriptional photoperiodic response in the pars tuberalis that mediates a rapid
response to changes in day length. Rhythmic cycling of Eya expression has also been
observed in corals where transcription appears to be under the control of an endogenous
light-entrained clock [123]. Here the diurnal pattern of Eya expression continued in constant
darkness and cycling of Eya expression was observed in both larvae and adult corals. Since
the reproductive cycles and other physiological functions of animals are linked to seasonal
environmental changes, including light cycles, these observations open up a new biological
context in which EYA proteins play a fundamentally important role.

EYES ABSENT IN HUMAN DISEASE
Mutations in EYA genes have long been associated with human developmental disorders
(Table 4). In addition there is now growing evidence that over-expression of EYAs is

Tadjuidje and Hegde Page 9

Cell Mol Life Sci. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



associated with several malignancies. Below we outline the documented links between EYA
proteins and human diseases.

EYA in BOR and BOR-related syndromes—The first human Eya homolog (EYA1)
was identified by positional cloning in the search for the gene responsible for Branchio-Oto-
Renal (BOR) syndrome [87,95,98]. The autosomal dominant BOR syndrome with a
prevalence of 1:40,000 is characterized by hearing loss, branchial fistulae, preauricular pits
or tags, and renal abnormalities [124]. These multi-organ defects were recapitulated in
Xenopus embryos in which the endogenous eya1 protein was depleted and replaced with
exogenous protein bearing similar mutations seen in the BOR syndrome patients [103],
suggesting that the observed human phenotypes were a direct consequence of the reported
mutations. Some EYA1 mutations encountered in BOR patients were shown to disrupt
EYA1-SIX [125] and EYA1-SOX2 [54] interactions, but most of them affect the enzymatic
activity of EYA without affecting protein translation or stability [126,103]. In addition to
BOR syndrome, EYA1 mutation has been reported in patients with congenital cataracts and
ocular anterior segment anomalies [47]. A point mutation of the EYA1 gene leading to
aberrant mRNA maturation was reported in the oto-facio-cervical syndrome, which is
characterized by trophic alterations of face and shoulder girdles in addition to the
malformations seen in BOR [97]. A deletion within the EYA1 gene that leads to a premature
truncation of the protein has been reported in cardio-facial syndrome, associated with an
asymmetric crying face and congenital heart defects [107]. Frame-shift insertion and point
mutations that create a truncation of EYA4 C-terminal domain are associated with late-onset
of deafness [99], and deletion of the whole ED domain as well as part of the transactivation
domain of EYA4 was identified in patients with a form of dilated cardiomyopathy and heart
failure preceded by sensorineural hearing loss [106].

In light of the extensive involvement of the EYAs in organ development it is rather
surprising that the list of humans diseases associated with their loss of function is so short,
albeit characterized by defects in multiple organs. One explanation may be redundancy
arising from overlapping expression patterns of EYA transcripts. Furthermore, a survey of
the expression profile of human EYA transcripts using the UniGene database [127] reveals
that EYAs are present throughout human development from the embryoid body stage
through adulthood, which suggests that they may also function very early in development.
Therefore, one cannot exclude the possibility that some human loss of function mutations of
EYA may go unnoticed due to early embryonic lethality, a phenomenon that has been
reported in flies and worms [56,1].

EYA in cancer and related pathologies—Over-expression of EYAs has been reported
in various human cancers (Table 4). EYA4 is over-expressed in malignant peripheral nerve
sheath tumors (MPNST) [128], esophageal adenocarcinoma, colon and colorectal cancers
[129–132]. In esophageal squamous cell carcinoma, its expression level in the peripheral
blood correlates with disease progression [133]. Moreover, depletion of EYA4 induces
malignant peripheral nerve sheath tumor (MPNST) cells to undergo necrosis [128],
suggesting that it promotes the survival of those tumor cells. EYA2 is over-expressed in
epithelial ovarian cancers and lung adenocarcinoma [134,135], and its overexpression has
been correlated with poor prognosis. EYA2 is also over-expressed in breast cancers
[134,136] and correlates with a worse prognosis. EYA over-expression in mammary
epithelial cells promotes transformation, migration and invasion [33], and EYA2 is required
to mediate the pro-metastatic function of SIX1 in an established human breast epithelial
cancer cell line [136]. Loss of a portion of chromosome 2 (2q37), encoding a micro RNA
(miR562) that regulates EYA1, has been reported in Wilms’ tumors and EYA1 mRNA has
also been shown to be over-expressed in these tumors [137,138]. EYA1 may also be
involved in gastric cancer, as its gene is often methylated in Epstein-Barr virus-negative
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gastric cancers [139]. Despite this tendency of EYAs to be oncogenic, some reports suggest
that the outcome of the deregulation of EYA expression may be context-dependent. For
example, silencing-methylations of the EYA2 gene have been reported in colorectal cancers
as opposed to normal tissues [140]; the EYA3 gene is frequently deleted in certain
pancreatic ductal adenocarcinomas [141], and overexpression of EYAs (including human
EYA2) can trigger the apoptotic program (an anti-tumorigenic process) in a murine myeloid
cell line [61].

Since the EYA proteins have multiple biochemical activities, and these are apparently
associated with different cellular functions, it is likely that EYAs contribute to tumor
growth, metastasis, and angiogenesis by different mechanisms. Another intriguing
possibility, in light of the proposed role of the EYA tyrosine phosphatase activity in DNA
damage repair, is that elevated EYA levels might contribute to increased resistance to DNA-
damaging therapeutic regimens commonly used in cancer treatment.

Interestingly, there appears to be a coordinated mis-regulation of EYA, SIX and DACH
gene expression in many cancers. Specifically in breast cancer [134,136] and MPNST [128],
levels of SIX1 and either EYA2 or EYA4 are elevated while DACH levels are reduced
[142–145]. This is consistent with the reported tumor suppressor functions of the DACH
proteins, and the tumor promoting properties of the SIX and EYA proteins. The PSEDN
may thus represent an instance in which a pathway involved in fetal organogenesis promotes
tumorigenesis when re-instated in the adult.

EYA – a novel therapeutic target?—While most EYA-associated developmental
disorders are linked to loss-of-function mutations, there is growing evidence that elevation
of EYA levels (gain of function) is associated with cancers. In both in vivo and in vitro
experiments EYAs promote proliferation and invasiveness of tumor cells
[33,68,128,146,134]. Furthermore the tyrosine phosphatase activity is specifically associated
with cell migration/invasion and angiogenesis [33,68] and removal of endogenous EYA can
prevent the metastasis of tumor cells overexpressing SIX1 [136], suggesting that even when
they are not overexpressed EYAs are still required for metastasis. Together these
observations would imply that inhibition of the EYA tyrosine phosphatase activity could be
useful as a targeted mode of cancer therapy.

Cell proliferation and migration are prerequisites for angiogenesis, the generation of new
blood vessels from pre-existing ones. A role for angiogenesis in cancer progression has been
long-established. Newly-formed blood vessels not only supply the tumor cells with oxygen
and nutrients that they need for growth, but also serve as routes for the dissemination of
cancer cells during metastasis (for review, see [147]). The EYA tyrosine phosphatase
activity has been shown to contribute to angiogenesis using in vitro, ex vivo and in vivo
assays [68]. Hence EYA proteins could be positive contributors to tumor growth through
their angiogenic function. Pathological neovascularization is not limited to tumor
angiogenesis; it is also seen in proliferative retinopathies, arthritis and vascular tumors as a
response to a local hypoxic environment [148]. In all these instances inhibition of the EYA-
PTP could be useful.

There is growing evidence that tumor cells with greater metastatic potential frequently show
activation of DNA repair pathways; this has been reported for melanomas, bladder cancer
and breast cancers [149,150]. Furthermore, solid tumors are frequently treated with DNA-
damaging therapies both in the form of chemotherapeutics and ionizing radiation. Since
EYA promotes DNA damage repair, it is quite likely that elevated EYA levels would reduce
the effectiveness of such treatment. Hence EYA inhibitors could potentially be useful in
combination regimens as sensitizing agents.
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EYA as a druggable target—While the association between EYA tyrosine phosphatase
activity and various disease states suggests that it is a good target for drug development, the
identification of specific inhibitors of PTPs has been historically difficult. This is largely
because there are over 100 PTPs encoded in the genome that share similar active site
architecture, making the discovery of selective ligands/inhibitors challenging. EYAs do not
suffer from this problem, being the only known members of their mechanistic class, and
having an active site that is stereo-chemically distinct from that of all other PTPs. A general
consensus (recent review [151]) in the field of drug development is that a “druggable target”
must have two important features: (1) be linked to a disease and, (2) have the potential to
bind, with high affinity, a small molecule having the appropriate chemical properties. As
described in this review, EYA has both of these properties. Being an enzyme it has a defined
active site that can be targeted by small molecules. Structural information is available [14]
permitting rational design of inhibitors, and specific EYA inhibitors have been identified.
The most extensively validated EYA PTP inhibitors include the compounds benzbromarone
and benzarone [68]. While their IC50 values are modest (<10 M) in enzymatic assays, these
compounds exhibited potency in cellular assays inhibiting cell motility and tubulogenesis in
vitro, and angiogenic sprouting ex vivo. They were also effective in an in vivo assay
measuring vascular development in zebrafish. Hence these compounds are proof-of-
principle that inhibition of EYA can attenuate angiogenesis and are also valuable leads for
the development of more potent and effective EYA inhibitors. This class of compounds also
has the advantage that because of their history of usage for gout treatment, their long-term
toxicity, pharmacokinetic and pharmacodynamics profiles are well-established. As a result
they are excellent candidates for re-purposing; the old compound – new target – new use
paradigm.

Other classes of EYA inhibitors identified through virtual screening have been reported
[152]. These compounds bind in the active site and chelate the essential divalent metal ion
of EYA2. While they have not yet been tested in cellular or in vivo assays, these studies
point to the feasibility of both in-silico and experimental screening for EYA inhibitory small
molecule compounds.

Conclusions
EYAs are an unusual class of proteins that combine tyrosine phosphatase, threonine
phosphatase and transactivation activities. Along with other components of the PSEDN,
Eyes Absents have been conserved among widely disparate animal species ranging from
amphioxus to humans [153]. EYAs are required for the development of multiple organs and
have correspondingly been implicated in multiple developmental disorders. Increasing
evidence points to an oncogenic, pro-metastatic and angiogenic function for the EYAs, and
based on its proposed role in angiogenesis it is likely that EYAs will be associated with
vascular disorders.

Key questions regarding EYA regulation and function remain. The range of biological
processes associated with EYAs (including, but not restricted to, cell proliferation and
migration, angiogenesis, DNA damage repair, innate immunity, photoperiodism) would
imply that the EYA proteins are an integral part of core signaling processes in the cell.
Moreover, since many of these activities are being described in the adult cell and not the
developing embryo, EYAs clearly have a role in the maintenance of function. Other than
H2AX, no substrate for the EYA’s two phosphatase activities has been thoroughly validated.
Undoubtedly, yet-unidentified substrates exist and in light of the multiple cellular roles of
EYAs they are likely to exist in both the nucleus and the cytoplasm. Pertinent to this, the
mechanism by which EYA’s sub-cellular localization is regulated is of interest. It is
generally believed that EYA translocation to the nucleus is predicated on its forming a
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complex with a SIX protein. Furthermore since EYA has no intrinsic DNA-binding ability,
it needs to be localized on DNA by a binding partner such as the SIX proteins. Hence SIX-
EYA complexes must act in concert both in a transcriptional regulation role and in any
proposed nuclear phosphatase activity such as DNA damage repair. Thus it would be
reasonable to assume that any nuclear function of the EYAs is SIX-dependent, or that
unidentified EYA binding partners facilitate the movement of this acidic protein into the
nucleus. The converse also appears to be true in some instances; the pro-metastatic and
lymphangiogenic functions of SIX1 are EYA–dependent, and quite likely dependent on
EYA tyrosine phosphatase activity. And finally, with the ever-growing association between
EYAs and disease states including developmental disorders, cardiac conditions, innate
immune responses, pathological angiogenesis, and tumor growth and metastasis, inhibition
of EYA tyrosine phosphatase activity is an attractive target for drug development.
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Fig. 1.
Molecular architecture of the EYA proteins. a) There are four vertebrate EYA proteins.
They have a well-conserved C-terminal domain call the EYA domain (ED) and a poorly
conserved N-terminal domain (NTD). The ED domain is participates in protein interactions,
notably with the SIX family of proteins that are part of the PSEDN. The ED domain also has
tyrosine phosphatase activity. The NTD has transactivation and threonine phosphatase
activities. b) The three-dimensional structure of the EYA2 ED domain as determined by X-
ray crystallography [14]. t has two sub-domains referred to as the core (light blue) and cap
(dark blue) domains. The active site residues are shown in green. A divalent metal ion
(green sphere) in the active site participates in the catalytic reaction.
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Fig. 2.
EYA sub-cellular localization and functions. The EYAs are intrinsically cytoplasmic
proteins. Upon interaction with the SIX proteins (with the exception of SIX3) they are
translocated into the nucleus where they are localized on DNA via the homeodomain of the
SIX proteins, and convert the SIX proteins into transcriptional activators. The proposed
cellular functions for cytoplasmic and nuclear EYA are shown in the grey boxes and
discussed in the text.
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Table 2

Experimentally validated Eyes Absent binding proteins. [86]

EYA-binding partner Validation Method Functional outcome References

SIX/So and DACH/Dac YTH, Genetic, IP Nuclear translocation of EYA by SIX; increase of SIX transcriptional
activity by EYA; Alleviation of DACH repressor activity toward SIX;

Increase of SIX-DNA binding affinity

[25,8,86,154]

G z and G i YTH, IP, IF Recruitment of EYA to plasma membrane and prevention of SIX-mediated
nuclear translocation

[155,46]

SIPL1and RBCK1 YTH, IP Enhancement of the transactivation potential of the SIX-EYA complex [49]

aPKC-zeta IP Dephosphorylation of aPKC-zeta and NUMB, regulation of polarity in the
lung epithelium

[50]

ATM/ATR IP Phosphorylation of EYA, interaction of EYA with H2AX [22,51]

H2AX IP, IF Dephosphorylation of pY142- H2AX, initiation of DNA damage repair [22,23]

Abl Kinase IP, genetics Phosphorylation of Eya and retention in the cytoplasm [52]

Nemo Kinase IP, genetics Phosphorylation of Eya, potentiation of the transcriptional activity the Eya-
So complex

[53]

IPS-1, STING, NLRX1 IP Dephosphorylation of a phospho-Ser/Thr substrate, enhancement of innate
immune response

[17,44]

SOX2 IP Possibly acts with EYA1 in the generation of progenitor cells in the otocyst [54]

Abbreviations: IF, immunofluoresence; IP, immonuprecipitation; YTH, yeast-two-hybrid
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Table 3

Phenotypes of Eya mutant mice

Mouse mutant Phenotype References

Eya1−/− Die at birth with craniofacial and skeletal defects, ear malformation, dysmorphic/absent kidneys, thymus
and parathyroid agenesis, thyroid hypoplasia, open eyelids. Hypoplastic lungs.

[59,156,60]

Eya2−/− No external phenotype, viable and fertile. [157]

Eya1−/− Eya2−/+ No diaphgram, severe limb muscle hypoplasia. [157]

Eya3−/− Viable and fertile with no external phenotype. Reduced body length. [108]

Eya4−/− Die shortly after birth. Abnormal ear development and hearing deficiency. Males were sterile or had
reduced fertility.

[105]
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Table 4

EYA and human disease

Disease Gene Type of Misregulation References

BOR Syndrome EYA1 Loss of function mutations [95,87]

OFC Syndrome EYA1 Loss of function mutations [97]

Cardiofacial syndrome EYA1 Loss of function mutations [107]

Congenital cataract EYA1 Loss of function mutations [47]

Wilms’ tumors EYA1 Overexpression [138]

EBV negative Gastric cancer EYA1 Frequent methylation [139]

Late onset of deafness EYA4 Loss of function mutations [99]

Dilated cardiomyopathy EYA4 Deletion [106]

Esophageal adenocarcinoma EYA4 Frequent methylation (overexpression) [129]

Colon cancer EYA4 Overexpression [131]

Colorectal cancer EYA4 Overexpression [132]

Colorectal cancer EYA2 Silencing methylation [140]

Epithelial ovarian cancer EYA2 Overexpression [134]

Lung adenocarcinoma EYA2 Overexpression [135]

Pancreatic ductal adenocarcinoma EYA3 Frequent deletion [141]
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