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Abstract
Oscillatory activity in neuronal networks correlates with different behavioral states throughout the
nervous system, and the frequency-response characteristics of individual neurons are believed to
be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods
of high membrane conductance, and that action potentials are often driven by membrane-potential
fluctuations in the living animal. To investigate the frequency-response characteristics of CA1
pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed
dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli
that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent
data analysis, we determined action potential phase-locking profiles with respect to background
conductance, average firing rate, and frequency of the sinusoidal component. We found that
background conductance and firing rate qualitatively change the phase-locking profiles of CA1
pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass
profiles, and the high-conductance state promoted phase-locking at frequencies well above what
would be predicted from changes in the membrane time constant. Mechanistically, spike-rate
adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping
the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively
change their synchronization properties in response to global changes in activity associated with
different behavioral states.

Introduction
Rhythmic activity in a wide range of frequencies has been observed in the central nervous
system during different behavioral states (Engel et al., 2001; Buzsáki and Draguhn, 2004;
Steriade, 2006). In rodents, hippocampal theta oscillations coincide with periods of active
exploration and REM sleep, and are involved in spatial information processing and memory
formation (Buzsáki, 2002; Andersen et al., 2007). CA1 pyramidal neurons, which project the
hippocampal output to the enthorhinal cortex (Andersen et al., 2007), have a preferential
theta phase of firing in vivo (Klausberger et al., 2003; Harvey et al., 2009). However, the
network and cellular mechanisms involved in the generation and maintenance of
hippocampal theta oscillations are still unclear. In particular, knowing how the firing rate of
pyramidal neurons encodes time-varying stimuli requires understanding of the biophysical
mechanisms governing their spiking activity.
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In vitro experiments have shown that CA1 pyramidal cells have an intrinsic preference for
theta frequency input (Leung and Yu, 1998; Pike et al., 2000; Hu et al., 2002; Narayanan
and Johnston, 2007; Zemankovics et al., 2010). However, these works mostly focus on the
entrainment of subthreshold membrane potentials, whose relation to spike phase locking is
undetermined. Moreover, recent work shows that the in vitro scenario differs considerably
from the in vivo one: during active states neurons are bombarded with synaptic inputs
(Penttonen et al., 1998; Henze and Buzsáki, 2001; Destexhe et al., 2003; Harvey et al., 2009;
Epsztein et al., 2011); this bombardment leads to increased membrane conductance and
highly irregular membrane potential fluctuations, which drive spiking. In CA1 pyramidal
neurons, these effects alter basic electrophysiological properties, and introduce changes in
the input-output function (Prescott et al., 2006, 2008; Fernandez and White, 2010;
Fernandez et al., 2011).

Dynamic-clamp technology allows the introduction of membrane voltage fluctuations and
conductance to cells in vitro. Using this technique, we can create an in vivo-like state, and
investigate the action potential phase-locking profile of CA1 pyramidal neurons in response
to a wide range of input frequencies. We performed recordings under low and high
background conductance, at different firing rates, to account for in vivo data showing task-
related variations in mean rates of CA1 pyramidal cells (Harvey et al., 2009; Epsztein et al.,
2011). We here show that in CA1 pyramidal neurons spike-frequency adaptation acts as a
high pass filter, which interacts with the cutoff frequency and an intrinsic frequency
preference of the spike-generating mechanism, to set their phase-locking profile. The
sensitivity of these properties to background conductance and firing rate accounts for the
different locking profiles: this implies that pyramidal neurons are dynamic entities, changed
by the state of their input.

Materials and Methods
Tissue preparation

All experimental protocols were approved by the University of Utah Institutional Animal
Care and Use Committee. Horizontal sections of hippocampus and entorhinal cortex were
prepared from 21 to 36 day-old Long-Evans rats of either sex. All chemicals were obtained
from Sigma (St. Louis, MO) unless otherwise noted. After anesthetization with isoflurane
and decapitation, brains were removed and immersed in 0 °C solution consisting of the
following (in mM): Sucrose (215), NaHCO3 (25), D-glucose (20), KCl (2.5), CaCl2 (0.5),
NaH2PO4 (1.25), MgCl2 (3), buffered to pH 7.4 with 95/5% O2/CO2. Horizontal slices were
cut to a thickness of 400 μm (Leica VT 1200, Leica Microsystems GMBH, Wetzlar,
Germany). After the cutting procedure, slices were incubated in artificial cerebrospinal fluid
(ACSF) at 30 °C for 20 minutes before being cooled to room temperature (20 °C). Slices
were allowed to recover for at least 60 min before recordings commenced. The ACSF
consisted of the following (in mM): NaCl(125), NaHCO3 (25), D-glucose (25), KCl (2),
CaCl2 (2), NaH2PO4 (1.25), MgCl2 (1), and was buffered to pH 7.4 with 95/5% O2/CO2.
After the incubation period, slices were moved to the stage of an infrared differential
interference contrast-equipped microscope (Axioscope 2+; Zeiss, Oberkochen, Germany).
ACSF contained 10 μM CNQX and 50 μM picrotoxin to block ionotropic synaptic activity.
All recordings were conducted between 32 and 34 °C.

Electrophysiology
Electrodes were drawn on a horizontal puller (P97; Sutter Instruments, Novato, CA) and
filled with an intracellular solution consisting of the following (in mM): K-gluconate (120),
KCl (20), HEPES (10), diTrisPhCr (7), Na2ATP (4), MgCl2 (2), Tris-GTP (0.3), EGTA
(0.2) and buffered to pH 7.3 with KOH. Final electrode resistances were between 1.5 and 3
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MΩ, with access resistance values between 5 and 15 MΩ. Electrophysiological recordings
were performed with a Multiclamp 700B amplifier (Molecular Devices, Union City, CA),
and data were acquired using pClamp 10 (v. 10, Molecular Devices, Union City, CA) or the
Real-Time Experimental Interface software (RTXI - www.rtxi.org; Bettencourt et al. (2008);
Lin et al. (2010)). In some experiments, tetrodotoxin (TTX, 5nM) was bath-applied and
recordings were taken after a 10–15 minute incubation period. For dynamic clamp
experiments, the patch-clamp amplifier was driven by an analog signal from a personal
computer running RTXI. Membrane-potential fluctuations (i.e. background noise) were
introduced by two independent Poisson processes, triggering unitary artificial synaptic
events. Frequency modulation was introduced by injection of a separate current-based
cosine, or through manipulation of the rate of one of the two Poisson processes. One Poisson
process triggered excitatory synaptic events at a rate of 600 Hz, the other process triggered
inhibitory events at a rate of 1000 Hz. These rates were used to obtain membrane-potential
fluctuations consistent with in vivo results (Harvey et al., 2009; Epsztein et al., 2011).
Individual synaptic waveforms were generated using a bi-exponential function. For both
excitation and inhibition the rise time constant was 0.5 ms. For excitation, the decay time
constant was 2 ms, while it was 8 ms for inhibition. All synaptic events were modeled as
currents. For both low-and high-conductance trials, the magnitude of the input-current
fluctuations was adjusted to yield subthreshold membrane-potential fluctuations with a
standard deviation of 2 mV; for these measurements neurons were held at mean membrane
potentials close to −75 mV. This corresponded to high-conductance recordings having
individual synaptic events of roughly twice the size as low-conductance recordings. In cases
where conductance was added, a linear leak conductance was introduced via dynamic clamp
using the equation IL = gL(v − EL), where v is the membrane voltage. For all experiments,
EL was set to −75 mV and gL was set to 15 nS. Modulation amplitudes were tuned at 1 Hz
modulation frequency at average rate of 2 spike/s in preceding experiments, and chosen to
yield spike phase-locking strengths of a given value (vector strength around 0.3, see
Analysis and Statistics). Values used for the average firing rate and the magnitude of
membrane-potential fluctuations were chosen in accordance to in vivo recordings
(Klausberger et al., 2003; Harvey et al., 2009; Epsztein et al., 2011). A measured junction
potential of about 10 mV was subtracted from all recordings, and taken into account during
dynamic-clamp experiments. The sample rate of the dynamic clamp was set to 20 kHz. Data
were collected at 20 kHz and low-pass filtered at 3 kHz. When spike phase-locking was
recorded, firing rates were monitored on-line and DC injection was used to control the rates.
We recorded four one-minute trials for low modulation frequencies (0.1 and 0.5 Hz) at an
average firing rate of 2 spikes/s, and three one-minute trials for all other frequencies. For
cases with an average firing rate of 8 spikes/s, we recorded three one-minute trials for 0.1
and 0.5 Hz modulations and two one-minute trials for all other frequencies. Fast-Fourier
transforms of the membrane voltage and of the binary action-potential trains revealed clear
peaks at the modulation frequencies, confirming the effectiveness of our stimulus paradigm
(data not shown). Spike trains were irregular and displayed CV values between 0.8 and 1 for
2 spikes/s average rate and between 0.5 and 0.7 at 8 spikes/s mean rate.

In the case of frequency modulation through current-based cosines, we used cosine
amplitudes of 15 pA in the high conductance and 7.5 pA in the low conductance condition,
except for the experiment shown in Figure 6, where an amplitude of 5 pA was used. The
modulation frequencies considered in the different experiments are always reported in the
respective figure legends. When 5 nM of TTX were applied, the high g condition was
recorded at 1.5 spikes/s. This was due to the inability of some neurons to spike at 2 spikes/s
in the presence of 5 nM TTX under high g.

For introduction of an artificial adaptation current we used a spike triggered bi-exponential
current with a rise time constant of 1 ms and a decay time constant of 500 ms. The
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adaptation currents peak amplitude was set to 50 pA. The adaptation current was injected
after every spike and summed with previously triggered injections. Introduction of the
adaptation current required an increased DC injection to keep the average spike rate similar
in control and adapting conditions.

When f-I relationships were measured, we used current steps whose amplitude covered
twice the range of the modulatory cosines for high and low conductance (±15 pA for low g:
range of 30 pA; ±30 pA for high g: range of 60 pA).

Analysis and Statistics
All analysis was carried out in MATLAB, (v. 2010b, The MathWorks, Natick, MA) using
custom software and/or built-in functions and/or Origin (v7.5, OriginLab, Northampton,
MA). Spike times were determined by finding the maxima of suprathreshold (> 10 mV)
intervals of membrane voltage. Phase locking to a given modulation frequency was
determined by computing the vector strength, using the phases of individual spikes. Each
spike tk was treated as a unit vector with an angle φk corresponding to the phase of the
modulation frequency. The vector strength |v⃗| is defined as the length of the normalized
vector sum:

(1)

for a total of N spikes. The current protocol for input impedance measurements consisted of
a white-noise-current input with a frequency cutoff of 100 Hz. Impedance (Z(f)) measures
were calculated by taking the ratio of the Fourier transform of the membrane-voltage
response and current-input stimulus. We evaluated the operating voltage as the mean
membrane voltage from 500 to 475 ms preceding each spike. Statistical significance was
determined using either a one-way ANOVA, or paired or unpaired t-tests. For repeated
measures, statistical difference was determined using Tukey’s honestly-significant criteria,
which increases the threshold for significance. Means are presented with the standard error
of the mean.

Relating Gain to Vector Strength
By definition, the vector strength |v⃗| is the modulus of the normalized vector sum of all the
unit complex vectors with angles equal to the phase of each spike. The number of spikes per
phase is given by the instantaneous firing rate f(φ), so that

(2)

When experimentally measured, f(φ) was found via spike-phase histograms, which appeared
sinusoidal (Figure 1Aiii, B iii). If f(φ) was indeed sinusoidal, then it could be expressed as
f(φ) = 〈f〉 + A cos(φ + φ0), where 〈f〉 indicates the mean firing rate, and φ0 is a phase shift
induced by the integration time of the cell. We then embedded such expression for f(φ) in
equation (2); note that because the vector strength is invariant under rotation, it was
sufficient to consider the case φ0 = 0. From standard integration we have

(3)
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The vector strength is computed as the length of v⃗, in our case v⃗ is real, so the vector
strength equals v⃗. We could then estimate the amplitude A of the histograms of firing phases
as a function of the vector strength and mean firing rate, for each frequency modulation.
When using those amplitudes to fit the f(φ) profiles, we had a good agreement for all
frequency modulations below 100 Hz (Pearson’s correlation coefficient > 0.94). Thus, the
instantaneous firing-rate histograms were well approximated by cosines.

We then proceeded by incorporating the potential role of gain in the vector strength. The
main assumption in this case was that, for slow frequency modulations, the amplitude of the
instantaneous firing rate would be linear in the amplitude of the input current, scaled by
gain. This assumption formalizes as f(φ) = 〈f〉 + mIA cos(φ + φ0), where m is the gain value
and IA is the amplitude of the input current. Thus, equation (3) re-writes as

(4)

Once we derived equation (4), we compared the estimated vector strength to the vector
strength measured in the experiments.

Principal-Component Analysis and frequency-preference index
In defining the principal components, we follow Jolliffe (1986). Given a finite number of
sample observations of a random vector, looking for its principal components corresponds to
identifying, in progressive ranking, the best fitting subspaces such that the distances between
the samples and each subspace is minimized. Practically, this means decomposing the space
according to the eigen-values and the eigen-directions of the covariance matrix of the given
collection, and choosing only subspaces corresponding to higher spectral values. For each
cell in a given condition (high or low conductance, 2 or 8 spikes/s firing rate, addition of
TTX to the preparation) we use principal-component analysis (PCA) to identify a first-order
linear kernel the cell might be using to filter the input it receives. We therefore performed
experiments in which each pyramidal cell received the noise current but no cosine
modulation, and its firing rate was controlled by DC. The exact noise realizations that the
cell received in the experiment could then be used to extract its first-order kernel.

The input noise received by the cells during experiments had an autocorrelation time scale
of about 201 ms, which affected the shape of the kernel we were looking for. To remove the
influence of the noise autocorrelation from this estimate of the linear filter, we de-convolved
each noise realization by its autocorrelation. Our sample collection consisted of all the
spike-triggering events (parts of the de-convolved input given to the cell in the experiments,
each 200 ms long, ending at each spike time) and an equal number of randomly-sampled
parts of the de-convolved input (each sample 200 ms long as well). We constructed the
covariance matrix of the sample, and diagonalized the matrix, selecting the eigen-vector of
the highest eigen-value as the first principal component (PC1). We chose to use only one
component once we verified that there was some distance between the maximum of the
spectrum and the following values.

The first component PC1 (Figure 7Cii) was then considered the first-order kernel of a linear
system. We tested whether such a system, when receiving inputs like the ones given to the
pyramidal cells in our experiments, showed preferential frequency locking. Specifically, we
considered as its input minutes of de-convolved noise traces plus cosine currents (with
frequencies of 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz). Note that the amplitudes of
the cosine currents used for the convolutions were scaled by the ratio of the standard
deviations of the noise and its de-convolved version, this was done to preserve the relative
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size of the cosine currents and the standard deviation of the noise. We then convolved such
inputs with the filter (the PC1), to estimate instantaneous activity, consistent with the
standard approach which uses the spike-triggered average to predict the instantaneous firing
rate of a cell given its input (Dayan and Abbott, 2001). The cycle-averaged activity profiles
were cosine shaped (Figure 7Ciii), and we rescaled the amplitude in each experimental
condition by its maximum across all modulation frequencies and cells in that condition, so
that the activity would have a maximum of 1 spike/s. Modulation frequency significantly
affected the activity amplitudes, in both the high- and low-conductance conditions (low g, p
< 0.001, n = 10; high g, p < 0.001, n = 10; both one-way ANOVA). We consider the sum of
the normalized activities and mean firing-rate values as instantaneous firing-rate
distributions. We computed the frequency-preference index as each amplitude divided by
twice the mean firing rate, in agreement with equation (3). The resulting frequency-
preference index is higher for normalized activities with higher amplitudes, and lower for
those closer to a uniform distribution (i.e. a flat line). Overall the frequency-preference-
index profiles for cells spiking at 8 spikes/s mean firing rates are lower than for cells spiking
at 2 spikes/s. Plots of the mean and standard error of the frequency-preference indices for
cells in all experimental conditions are reported in Figures 7 and 8.

Simulations
All simulations were run in MATLAB (TheMathWorks, Natick, MA) using a 4th order
Runge-Kutta solver with a time step of 0.04 ms. The biophysical model is defined as:

(5)

Where

(6)

(7)

and with

(8)

where IDC is the constant drive used to tune the firing rate, IA is the amplitude of the cosine
modulation, with frequency f, gn is a scaling factor for I(t), and I(t) is the noise input,
introduced in equations (12), (13) and (14). Note that during each experiment, the input to
the cell was scaled by a factor analogous to gn (see Electrophysiology). In this work, we
drove cells with either inhomogeneous Poisson stimuli or the sum of homogeneous Poisson
processes and sinusoidal currents; we tested the model on the latter case. For spike
repolarization, membrane voltage was reset to −65 mV subsequent to crossing 15 mV.
Resonating properties are introduced by
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(9)

(10)

(11)

where τr is constant at 125 ms.

Across the different conditions, the following parameters were kept constant: C = 1.5 μF/
cm2, gNa = 6 mS/cm2, τh = 200 ms, ENa = 50 mV, EL = −65 mV, ER = −90 mV, gR = 0.1
mS/cm2. We approximated the activation variable associated with the sodium conductance
m as instantaneous, therefore it was modeled using only its steady-state function. Membrane
voltage fluctuations were introduced in the same manner as in the experiments, and I(t) was
scaled by gn, to yield voltage fluctuations with roughly 2 mV standard deviation. The
magnitude of the sinusoidal modulation current IA was set to yield a vector-strength value of
about 0.3 for a modulation frequency of 1 Hz at a firing rate of 2 spikes/s for each
conductance condition, and held constant for different firing rates (see Figure 9).

Analytical derivation of the modulation amplitude of Inhomogeneous Poisson noise
In the last set of experiments, the input current was the sum of an inhibitory and an
excitatory component,

(12)

where each component was given by the convolution of a Poisson process with an
artificially designed synaptic wave, modeled as a bi-exponential. This writes as

(13)

(14)

where Ni(t) and Ne(t) are Poisson Processes, Sk are the event times of the processes (with
superscripts differentiating between excitatory and inhibitory), H(·) is the Heaviside
function, τR and τD are the time scales of rise and decay of each artificial synaptic signal
(with their own subscripts as well), and Fi and Fe are the normalization factors which ensure
that each synaptic event peaks at 1. We chose to introduce the frequency modulation by
changing the rate of the Poisson processes. When excitation was modulated, we had Ni(t) a
homogeneous Poisson process with rate λ̄i = 1000 Hz, and Ne(t) an inhomogeneous Poisson
process with rate λ̄e(1 + ce cos(2πft)), where λ̄e = 600 Hz, f is the modulation frequency,
and ce is the strength of the modulation (ce = 25%). When inhibition was modulated, we had
Ne a homogeneous Poisson process with rate λ̄e and Ni(t) inhomogeneous. The rate of Ni
was λ̄i(1 + ci cos(2πft)), with ci = 5%.
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Intuitively, for each decay time scale, the bi-exponential artificial synaptic waveform acts as
a filter over the instantaneous pulses of the Poisson process. Therefore, for rates modulated
with progressively faster cosines, the trains of events are increasingly attenuated.
Specifically, the trial average of the current input converges to its expected value, by the law
of large numbers. The cycle average (i.e. the average over each cosine period) of this
expectation can then be used to compute its amplitude as a function of the modulation
frequency.

On average over many trials, the input signal defined by equation 12 looks sinusoidal. In this
section, we show how to derive analytically the amplitude of this average curve, which gives
the magnitude of the frequency modulation in this signal. For clarity of reading, we will
show the derivation only for the case in which inhibition is modulated. By the law of large
numbers, the average of I(t) over m trials converges to its expected value:

We start from the inhibitory term. We derive the expectations by conditioning on the
number of events up to time t, given E[Ii(t)] = E[E[Ii(t)|N (t)]]. So we consider

It is known that for an inhomogeneous Poisson process of rate λ(t), given there are n events
in the time interval [0, t), these points are independent and identically distributed with

density  (Cox and Isham, 1980). We apply this fact to the  in the previous
equation, and find

We now can take the expectation of this conditioned expectation to find E[Ii(t)]:

Then standard calculus gives,

(15)

The same derivation applied to the excitation (which is based on the homogeneous Poisson
process Ne in this case) yields
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(16)

Then, E[I(t)] is given by the difference between equations (16) and (15).

To compute the amplitude of E[I(t)], which we will label Amp, consider the circular mean of
E[I(t)]

with , s ∈ [0, T ). That gives

Now Amp is equal to the amplitude of C(s). Given the amplitude of α cos(2πfx)+ β

sin(2πfx) is , then the amplitude of C(s) is

(17)

Analogously, one can derive the amplitude for the excitation-modulated case, which will be
exactly Amp, only with the excitation in the subscripts.

Results
Action potential phase-locking profile of CA1 pyramidal cells in response to current-based
cosines

A widely used readout for the participation of a single neuron in a network rhythm is the
relationship between its action potentials and the phase of the oscillation. In this study, our
goal was to quantify the action potential phase locking of CA1 pyramidal neurons to an
artificial oscillatory input, and to identify the underlying biophysical mechanisms. We
stimulated the neurons with bi-exponential, current-based excitatory and inhibitory artificial
synaptic inputs (see Materials and Methods) driven by separate Poisson processes. This
replicated the membrane voltage fluctuations observed in awake behaving animals (Harvey
et al., 2009; Epsztein et al., 2011). Frequency modulations were introduced via current-
based sinusoids. We recorded the phases of action potentials with respect to the different
modulation frequencies, and quantified the degree of their phase locking.

In vivo work (Destexhe et al., 2003) also shows that neurons embedded in active networks
have high membrane conductance. To investigate the effects of changes in membrane
conductance on the phase-locking behavior of CA1 pyramidal neurons, experiments were
performed in the control (low-conductance, low-g) condition and with increased background
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conductance (high conductance, high g), by injecting a linear leak of 15 nS. The added
linear leak reduced the apparent input resistance from 84 ± 1 to 39 ± 0.3 MΩ (n = 353).

To span a wide frequency region above and below the delta, theta, beta, and gamma bands,
we used modulation frequencies of 0.1, 0.5, 1, 4, 8, 12, 20, 50, 100, and 500 Hz (Figure 1).
The phases of individual action potentials were used to compute the vector strength for each
frequency (see Material and Methods). The vector strength is a measure of phase locking
which yields values between 0 and 1, where 0 indicates a uniform distribution and 1
indicates perfect locking. At average firing rates of 2 spikes/s, we found that changes in
background conductance induce qualitative differences in the phase-locking behavior in
CA1 pyramidal cells. In the low-conductance case, we observed a low pass-like phase-
locking profile, while under high conductance the profile was band pass, peaking at 4 Hz
(Figure 1C, solid symbols). In both cases the modulation frequency significantly influenced
the action potential phase locking (low g, n = 7 to 25, p < 0.001; high g, n = 8 to 22, p <
0.001, both one-way ANOVA).

The experiments described so far were performed at an average firing rate of 2 spikes/s,
which matched observations in CA1 pyramidal neurons during exploratory behavior and
under anesthesia (Klausberger et al., 2003; Harvey et al., 2009). In vivo data also indicate
that the firing rate of CA1 pyramidal neurons increases under certain physiological
conditions, for example, when the animal enters the place field of the neuron (O’Keefe,
1976; Harvey et al., 2009; Epsztein et al., 2011). We investigated the influence of an
increased firing rate on the phase-locking profile by recording the responses of CA1
pyramidal cells to current cosines of varying frequencies at an average firing rate of 8
spikes/s (Figure 1B). We found that an increase in firing rate qualitatively affected the
phase-locking behavior: under low conductance the profile changed from low pass to band
pass, peaking at 4 Hz, while under high conductance the band-pass profile changed into a
high pass-like profile (Figure 1C, open symbols). As before, the modulation frequency
significantly influenced the phase-locking strength (low g, n = 6 to 17, p < 0.001; high g, n =
4 to 15, p < 0.001; both one-way ANOVA).

Overall, our data shows a strong dependence of phase locking on both average firing rate
and background conductance. With increasing firing rate we observed an overall drop in
phase-locking strength, under both high and low g. Moreover, an increase in background
conductance shifted the cutoff frequency of action potential phase locking to a higher value.
Note that this quantity is distinct from the cutoff frequency of the membrane potential
(compare Figures 1C and 7A). This discrepancy has been found in other cell types (du Lac
and Lisberger, 1995; Carandini et al., 1996; Köndgen et al., 2008).

Gain of the f-I relationship can be used to predict the action potential phase-locking profile
of CA1 pyramidal neurons for lower modulation frequencies

Our investigation so far revealed that pyramidal cells phase-locking behavior can display a
variety of profiles depending on average firing rate and background conductance, and is
more complex than previously suggested (Leung and Yu, 1998; Pike et al., 2000; Fellous et
al., 2001; Hu et al., 2002; Narayanan and Johnston, 2007; Zemankovics et al., 2010). We
were interested in identifying the biophysical mechanisms underlying such diversity of
responses. In particular, the action potential phase locking to low modulation frequencies
(<4 Hz) was different across conductance conditions at average fring rates of 2 spikes/s, but
similar for average firing rates of 8 spikes/s (Figure 1C). For slow enough input frequencies,
we conjectured that variations of the cosine current in time could exert effects similar to DC
variations. Consequently, we hypothesized that phase locking to low modulation frequencies
may be approximated by the firing frequency vs. injected current relationship (f-I curve),
which can be derived from step responses. Previous work has shown that changes in
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background conductance change the slope (gain) of the f-I relationship of CA1 pyramidal
neurons, and that gain is influenced by the mean operating voltage (Fernandez and White,
2010; Fernandez et al., 2011). We conjectured that, for low modulation frequencies,
differences in gain across conductance conditions and mean firing rates may account for the
observed differences in vector strength. To test this hypothesis, we held CA1 pyramidal
neurons at average firing rates of 2 or 8 spikes/s and recorded action potentials evoked in
response to de- and hyper-polarizing current steps of 5 s duration (n = 11, Figure 2). We
chose the step length as half the slowest modulation period. In addition to the current steps,
the neurons received the same fluctuating background current input generated using non-
modulated Poisson processes as before. Gain was computed as the slope of the linear fit to
the f-I relationships (Figure 2Bi–ii, C i). The gain values were then used to estimate the
vector strength for a modulation frequency of 0.1 Hz.

The phase-locking estimate was derived analytically (see Materials and Methods), yielding
equation (4), which was the basis to test whether gain regulated the response of the
pyramidal cells at the slowest frequency modulation tested in the experiments. We found
good agreement between the estimate and the experimental data for action potential phase
locking to a modulation frequency of 0.1 Hz for all four experimental conditions (Figure
2Cii). We thus concluded that the gain derived from step responses was sufficient to predict
action potential phase locking to slow time varying stimuli. Furthermore, equation (4) shows
that the vector strength is inversely proportional to the mean firing rate. This explains the
small difference in vector-strength values below 1 Hz modulation observed for high and low
g at average firing rates of 8 spikes/s. This relationship could also account for the overall
drop in vector strength observed when firing rates were increased from 2 to 8 spikes/s in the
experiments.

To investigate whether the accuracy of the estimate extended to higher frequencies, we
compared the predicted and the measured vector strength for such frequencies. Except for
one case (2 spikes/s firing rate, low g), we observed decreasing prediction accuracies with
increasing modulation frequencies up to the peak or the plateau of the respective
experimental condition. This indicated that the gain measured using 5 s current steps was
most accurate for predictions of phase locking to a modulation frequency of 0.1 Hz. Given
that spike-frequency adaptation has been shown to be important for setting the gain of CA1
pyramidal neurons (Fernandez and White, 2010; Fernandez et al., 2011), and because the
influence of spike-frequency adaptation depends on the length of the step considered, we
conjectured that shorter steps might be more accurate for predictions of phase locking to
higher frequencies. To test this hypothesis, we chose modulation frequencies between 0.5
and 10 Hz, and considered step lengths of half their period. We then re-analyzed the same
dataset, considering only spikes in the time windows corresponding to a given modulation
frequency. Due to the low number of spikes in the shorter time windows in the 2 spikes/s
mean firing rate condition, we restricted this analysis to 8 spikes/s mean firing rate. We
found significant differences in gain with different step lengths (low g, p < 0.05, n = 11;
high g, p < 0.001, n = 11, one-way ANOVA; Figure 3A). For both high and low g, the gain
increased as the step length was decreased from 5 s to 125 ms. This result indicated a
contribution of spike-frequency adaptation to establishing the gain of CA1 pyramidal
neurons. We used equation (4) to estimate the vector strength for faster modulation
frequencies with the respective gain values. In the low-conductance condition, the prediction
fitted the measured vector strength well up to 1 Hz, after which the estimates decreased in
accuracy, but still captured the general trend (Figure 3B). For high conductance, we found a
good agreement from 0.1 to 10 Hz (Figure 3C).

In summary, our gain data using different step lengths indicated a prominent influence of
spike-frequency adaptation on the phase-locking profiles at mean firing rates of 8 spikes/s.
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In agreement with the high-pass filter properties ascribed to spike-frequency adaptation
(Benda and Herz, 2003), lower modulation frequencies were associated with lower vector
strengths. Different profiles were associated with different action potential cutoff
frequencies, depending on background conductance. Under high conductance the cutoff was
located at high frequencies, thus revealing a phase-locking plateau, while the band-pass
profile under low conductance was due to an earlier cutoff. Thus, at mean fring rates of 8
spikes/s, we could relate gain measured using current steps to responses to time-varying
stimuli in CA1 pyramidal neurons, and show that the phase-locking strength is given by the
combination of spike-frequency adaptation, gain, and the action potential cutoff.

Spike-frequency adaptation reduces phase locking to low frequencies
Based on results from Figures 1–3, we concluded that (1) differences at low modulation
frequencies in Figure 1C are caused by differences in gain, and (2) the shape of the vector
strength curve for the 8 spikes/s firing rate and modulation frequencies below 10 Hz is
dominated by stimulus induced changes in spike frequency adaptation. To provide a proof of
principle that adaptation reduces locking to low modulation frequencies, we introduced a
spike triggered adaptation current into CA1 pyramidal neurons via dynamic-clamp (see
Materials and Methods). We recorded phase-locking at an average rate of 4 spikes/s under
low conductance (n = 8, Figure 4). Confirming our predictions, introduction of the
adaptation current selectively reduced locking to low modulation frequencies (0.1 and 1 Hz
modulation frequency, control vs. adaptation both p < 0.001, 4 and 10 Hz modulation not
significant, all paired t-test).

Action potential phase-locking peaks are sensitive to changes in firing rate
We used gain to establish the relation between spike-frequency adaptation and phase-
locking profiles for higher firing rates. At average firing rates of 2 spikes/s, this was only
possible for the modulation frequency of 0.1 Hz. To investigate the role of spike-frequency
adaptation in the locking profiles at low firing rates, we introduced a different approach. If
spike frequency adaptation has a prominent influence on the action potential phase-locking
profile at low mean firing rates, it should be possible to change it through manipulations
likely to influence adaptation. It has been shown that increasing firing rate and conductance
enhances spike-frequency adaptation (Fernandez and White, 2010). Hence, the phase-
locking profile at 2 spikes/s firing rate in high conductance should change from band pass to
low pass if spike-frequency adaptation is decreased via a reduction in firing rate.
Analogously, the phase-locking profile at 2 spikes/s firing rate under low conductance
should change from low pass to band pass when spike-frequency adaptation increases by
increasing the average firing rate.

To test these predictions, we first recorded the action potential phase-locking profile of CA1
pyramidal neurons under high conductance at an average firing rate of around 1 spike/s, and
observed a low pass phase-locking profile (Figure 5A, n = 8). We then recorded the action
potential phase-locking profile at 3 spikes/s and observed a band-pass profile (Figure 5B, n
= 9, p < 0.05, one-way ANOVA, 0.1 Hz vs. 1 Hz modulation p < 0.001, paired t-test). These
results confirmed our prediction that spike-frequency adaptation is involved in shaping the
locking profile at 2 spikes/s average firing rate under high and low conductance.

Low concentrations of TTX reduce phase locking to low modulation frequencies
Our results so far demonstrated the importance of spike-frequency adaptation in shaping the
phase-locking profiles of CA1 pyramidal cells. Previous work suggests the involvement of
cumulative sodium-current inactivation in setting spike-frequency adaptation and gain in
CA1 pyramidal neurons (Fernandez and White, 2010). In particular, our past work shows
that low concentrations of TTX reduce the gain of CA1 pyramidal neurons through an
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increase of spike-frequency adaptation (Fernandez et al., 2011). To test whether a reduction
in gain through a reduction in sodium-current availability would affect the action potential
phase-locking profile, we recorded from CA1 pyramidal cells in the presence of 5 nM TTX
(n = 8, Figure 6). In both cases, the locking profile was band-pass, peaking at 4 Hz under
low conductance and between 4 and 8 Hz under high conductance (influence of modulation
was significant: low g, p < 0.001; high g, p < 0.001; both one-way ANOVA).

Comparing control and TTX conditions revealed a selective reduction of locking to low
frequencies (0.1–1 Hz, Figure 6B), consistent with a decrease in gain through an increased
spike-frequency adaptation, which only affects the locking strength at low frequencies. The
enhanced adaptation was likely due to two factors. First, the reduced total sodium current
available renders the neuron more susceptible to a further loss of sodium current caused by
cumulative inactivation. Second, the mean operating voltage for a given firing rate in the
presence of TTX was increased by 8–10 mV, thus augmenting cumulative inactivation.

In summary, our data shows that sodium-current is involved in setting the phase-locking
profile of CA1 pyramidal neurons. This further supports our interpretation of the role of
spike-frequency adaptation in the locking behavior of these cells.

Evidence for an intrinsic frequency preference in the spike generation mechanism
We showed that spike-frequency adaptation is a main factor in the phase locking of CA1
pyramidal neurons. Consistently, at an average firing rate of 8 spikes/s, we found a sustained
plateau-like profile across a band of higher frequencies. If spike-frequency adaptation was
the only factor involved in setting the action potential phase-locking profile, a similar
behavior should have been observed in the presence of TTX at low rates under high
conductance, but this was not the case. Furthermore, spike-frequency adaptation can not
account for the preference for modulation at 4 Hz in the high-conductance case at 2 spikes/s
under control conditions. Given these results, we hypothesized that an intrinsic frequency
preference could also be involved in shaping the phase-locking profiles (Brumberg and
Gutkin, 2007). This would point to a scenario in which the overall behavior of CA1
pyramidal neurons firing at 2 spikes/s under high conductance would result from the
combined influence of spike-frequency adaptation, setting a plateau at higher modulation
frequencies, and an additional intrinsic frequency preference around 4 Hz, resulting in a
superimposed small peak. Hence, we continued by probing CA1 pyramidal neurons for a
possible frequency preference in addition to spike-frequency adaptation.

Previously, subthreshold resonance phenomena have been proposed to be involved in setting
a frequency preference for CA1 pyramidal neurons in the theta band (Leung and Yu, 1998;
Pike et al., 2000; Hu et al., 2002; Narayanan and Johnston, 2007; Zemankovics et al., 2010).
If subthreshold resonant currents were the major cause for a phase-locking peak, increasing
conductance should shunt these currents, reducing the subthreshold resonance (Hutcheon et
al., 1996; Fernandez and White, 2008; Fernandez et al., 2011) and thus reducing the locking
preference. To test this prediction, we recorded the impedance profile under low and high
conductance (Figure 7A, see Materials and Methods). As expected, the Q-value dropped
under high conductance ( p<0.01, n = 12, paired t-test; Q-values: low g = 1.21 ± 0.03, high g
= 1.12 ± 0.02). Therefore, increasing background conductance has opposite effects on the
subthreshold impedance and the action potential phase-locking profile.

On the other end, a change in background conductance could affect the operating voltage,
which in turn can influence the impedance profile (Hu et al., 2002; Narayanan and Johnston,
2007; Zemankovics et al., 2010). This effect could counter-act the effect of background
conductance shown in Figure 7A. We observed no significant difference in the operating
voltage between high and low g at either a mean rate of 2 or 8 spikes/s (Figure 7B). This
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argues against a differential activation of resonant properties between high and low
conductance.

Our analysis suggests no strong relationship between the phase-locking profiles of CA1
pyramidal neurons and subthreshold resonance. For this reason, we investigated a possible
frequency preference in the spike-generation mechanism (see also Brumberg and Gutkin,
2007). To test whether the spike-triggering events derived from input without any frequency
modulation showed any inherent preference, we recorded from CA1 pyramidal neurons
firing at an average rate of 2 spikes/s under low and high conductance. The neurons received
the same background current inputs as before, without any frequency modulation.

We performed principal-component analysis on the population of spike-triggering input
events (PCA, see Materials and Methods). We used the Principal Components to define a
frequency-preference index (Figure 7Civ), which ranges between 0 and 1, where higher
values represent increased locking (for details, see Materials and Methods). The index
showed a band-pass profile in both low and high conductance, peaking at 2 and 4 Hz,
respectively. These results indicated a frequency preference of the spike-generation
mechanism, which was sensitive to changes in background conductance, at mean firing rates
of 2 spikes/s. Thus, we concluded that the low pass phase-locking profile in the low-g case
resulted from the absence of adaptation and the action potential cutoff frequency, which
overrode the intrinsic frequency preference. In the high-conductance case, the cutoff shifted
to higher frequencies, and the band-pass profile resulted from adaptation, and the intrinsic
frequency preference, unmasked by the shifted cutoff.

Note that, given the absence of cosine modulation in the spike-triggering events used for the
PCA, the effect of adaptation on the phase-locking profiles could not be evaluated by this
analysis. In fact, the sinusoidal modulation itself recruits adaptation, which acts differently
at different modulation frequencies. Furthermore, the voltage fluctuation induced
irregularity of the spike trains (CVs between 0.8 and 1 for 2 spikes/s mean rate and between
0.5 and 0.7 for 8 spikes/s mean rate) in combination with the absence of cosine modulation
in the input argues against a strong influence of firing-rate resonance (i.e. preferential
locking to modulation frequency equal to firing rate) to the frequency preference described
here (see below).

Next, we performed the same analysis on recordings at firing rates of 8 spikes/s. We found
band pass-like profiles for both conductance conditions (Figure 8A), with peaks at 4 Hz
under low g and between 8 and 10 Hz under high g. The higher mean rate led to an overall
drop of the frequency-preference index. This indicated that the intrinsic frequency
preference of the spike-generation mechanism was sensitive to the mean firing rate. Note
that our analysis can not address the relative importance of the different mechanisms
involved in shaping the phase-locking profiles. Therefore, consistent with the lower indices
found in this case, we think that at firing rates of 8 spikes/s, the intrinsic frequency
preference was overridden by spike-frequency adaptation.

Finally, we performed the same analysis on recordings done in the presence of 5 nM TTX,
without frequency modulation. The resultant frequency-preference index was found to be
band pass for both high and low conductance (Figure 8B), with peak frequency at 4 Hz in
both conditions.

In summary, PCA provided evidence for the existence of an intrinsic frequency preference
in the spike-generating mechanism across the different experimental conditions. In our
interpretation of these results, the preference of the spike-generating mechanism acted in
concert with adaptation, the cutoff, and possibly additional factors, to set the phase-locking
profile of CA1 pyramidal neurons.
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Action potential phase-locking profiles can be qualitatively reproduced in a simple model
Next, we tried to qualitatively reproduce the phase-locking behavior of CA1 pyramidal
neurons in a computational model. We started from the simplest spiking model, the leaky
integrate and fire (LIF), and found that it responded to inputs similar to the ones we
presented to pyramidal cells with low pass action potential phase-locking profiles, for high
and low conductance, and high and low firing rates. Moreover, for reduced sizes of
membrane potential fluctuations, the model responded with a phase-locking peak at the
firing frequency. This behavior is consistent with the LIF receiving white noise (Tateno,
2002) and the generalized Integrate-and-Fire (GIF), which incorporates a resonant variable
(Brunel et al., 2003). If the LIF or GIF were a good representation of our observations, CA1
pyramidal neurons should show firing-rate resonance. To test this, we recorded the phase
locking to 4 Hz modulation frequency, in the presence of membrane potential fluctuations,
at different average firing rates. No locking peak was present at an average firing rate of 4
spikes/s, under either high or low conductance. In fact, the vector strength decreased with
increasing rate (low g, n = 5; high g, n = 6; data not shown). We therefore conclude that
firing-rate resonance does not play a major role in setting the spike phase locking under our
recording conditions.

Our experiments indicated that changes in gain, through changes in spike-frequency
adaptation, in combination with an intrinsic frequency preference were crucial for obtaining
different phase-locking profiles. To test this idea, we started from a previously-published
model, which reproduced changes in gain and spike-frequency adaptation in response to
increases in conductance due to sodium-current inactivation (Fernandez and White, 2010).
We adapted this model by incorporating a resonant current; frequency modulation and
membrane-potential fluctuations were introduced as before (see Materials and Methods).

The model qualitatively reproduced the effects of changes in background conductance and
firing rate on the phase-locking profiles of CA1 pyramidal neurons (Figure 9). In fact, under
low conductance, increasing the firing rate changed the locking profile from low pass to
band pass. Under high conductance, the transition was more complex: at the lowest firing
rates the profile was low pass, changing to band pass - with peaks in the theta range - for
intermediate rates; at the highest rates tested the peaks broadened into plateaus. While the
curves reported in Figure 9 qualitatively reproduce the behavior shown in Figure 1C, the
firing rates of model and cells are not an exact match. In addition, the apparent cutoff
frequency for action potential phase locking was at lower frequencies in the model when
compared to real neurons. However, the model reproduces the locking profiles with very
steep voltage dependencies for sodium-current inactivation, as well as activation and
inactivation of the resonant current. As we have observed before, this is necessary, because
the changes in mean operating voltage with firing rate are much smaller in the model than in
CA1 pyramidal neurons (Fernandez et al., 2011). Furthermore, having an artificial reset rule
simplified the model at the expense of a full spike-generating mechanism, and served to
highlight the role of the sodium current in the locking dynamics. Despite these
discrepancies, our simulations indicate that the different action potential phase-locking
profiles observed in CA1 pyramidal neurons can be qualitatively reproduced in a simple
model incorporating spike-frequency adaptation and a resonant property.

Modulation amplitude attenuates with inhomogeneous Poisson processes
Rhythmic activity is likely experienced as synaptic input rate variation by a recipient
neuron. To investigate the phase locking profiles of CA1 pyramidal neurons in response to
frequency modulation via synaptic input rate oscillation, we changed our experimental
paradigm. In this series of experiments, we modulated the rate of either the excitatory or
inhibitory Poisson process using a cosine function. We recorded phase-locking at average
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firing rates of 2 spikes/s under low and high conductance. Under all conditions, phase
locking was significantly affected by modulation frequency (excitation modulated: low g: p
< 0.001, high g: p < 0.01, both one-way ANOVA, both n = 18; inhibition modulated: low g:
p < 0.001, high g: p < 0.001, both one-way ANOVA, both n = 8). For both excitation and
inhibition, we observed low-pass profiles under low g, and weakly band-pass profiles under
high g. To directly compare the responses to current-based cosines and rate modulated
synaptic events, we normalized profiles to their value at 1 Hz (Figure 10Ai and ii). While
responses at low g were comparable, we observed a drop in vector strength with modulated
inhibition at frequencies higher than 10 Hz and a smaller peak at 4 Hz for both modulated
excitation and inhibition under high g.

We hypothesized that these effects could result from filtering of the input, with the time
constants of the synaptic-like waveforms dampening the modulation at higher cosine
frequencies. This attenuation would likely be different between the excitation-modulated
and the inhibition-modulated case, because of the different τDe and τDi. We quantified the
average current injected per cycle and measured its amplitude (see Materials and Methods).
We found significant differences in the average current amplitude for different frequencies
in both the excitation-modulated and the inhibition-modulated inputs (excitation: low g, p <
0.05, high g, p < 0.001, n = 18; inhibition: low g, p < 0.01; high g: p < 0.001; n = 8 all one-
way ANOVA). For both low- and high-conductance recordings, the average current
amplitude decreased with increasing modulation frequency. The dependence on modulation
frequency was greater for inhibition-modulated inputs than for excitation-modulated inputs
(data not shown).

To highlight the mechanism underlying the decreasing per-cycle current amplitude with
increasing modulation frequency, we derived this average analytically (see equation (17),
Materials and Methods). The role the decay time constant plays in shaping this function is
shown in Figure 10B: the larger the τD, the steeper the decay of the modulation amplitude
with increasing frequency. Because the inhibitory decay-time scale is larger than the decay-
time scale of excitation, their trends for the frequency dependence of the per-cycle current
amplitude are different. It should be noted that for synaptic time constants of about 6–8 ms
(commonly associated with GABAA currents) the frequency-dependent attenuation was
already about 40% at 20 Hz modulation.

Discussion
This study demonstrates that CA1 pyramidal neurons dynamically change their frequency-
response characteristics depending on background conductance and firing rate. We identify
three main biophysical mechanisms underlying this phenomenon: spike-frequency
adaptation, the cutoff frequency of action potential phase-locking, and an intrinsic frequency
preference in the spike-generation mechanism. We propose that these properties of CA1
pyramidal neurons may enable them to adjust the processing of time-varying stimuli in
response to global changes in hippocampal activity.

Phase-locking profiles of CA1 pyramidal neurons
At low firing rates, increasing background conductance changes the locking profile from
low-pass to band-pass, peaking within the theta range. Increasing firing rate results in
bandpass profiles, peaking in the theta band under low-conductance, and in the beta-gamma
band under high conductance. Firing rate affects phase locking mainly by altering the degree
of spike-rate adaptation, which implements a high-pass filter, as predicted by theoretical
studies (Benda and Herz, 2003; Benda et al., 2010). While higher background conductance
increases the high-frequency cutoff for action potential phase locking, the intrinsic
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frequency preference of spike generation has a more subtle effect, changing the peak of the
frequency-response curve.

Implications for network function
Network oscillations of varying frequencies have been implicated in a plethora of systemic
functions in animals and humans, ranging from sensory processing to memory formation
(Engel et al., 2001; Buzsáki, 2002; Buzsáki and Draguhn, 2004; Steriade, 2006; Andersen et
al., 2007). The overall network state translates into the drive, magnitude of voltage
fluctuations and total synaptic conductance a neuron will be exposed to (Destexhe et al.,
2003; Destexhe and Contreras, 2006). We show the dependence of action potential phase
locking on these parameters. In this context, our findings imply that the ability of CA1
pyramidal neurons to participate in a network rhythm of a given frequency depends on the
overall network state. Thus, CA1 pyramidal neurons should not be thought of as invariable
network elements, but rather as active units, able to modify their behavior according to
global changes in hippocampal activity.

This work focuses on postsynaptic properties exclusively. Other network properties,
including short- and long-term synaptic plasticity, also play a role in network
rhythmogenesis. For example, recent theoretical work (Muller et al., 2011) shows that spike-
time-dependent plasticity (STDP), a form of long-term synaptic plasticity (Dan and Poo,
2004; Caporale and Dan, 2008), can induce synchrony in a population of neurons in
response to oscillatory inputs. Cells with higher locking to a given input frequency will be
more effectively synchronized by this kind of STDP mechanism. Here we measure the
spiking responses in relationship to oscillatory inputs with different frequencies, and show
that pyramidal cells change their locking preference depending on background conductance
and firing rate. Given the dependence of STDP on neuro-modulators and the general
network state, it would be interesting to investigate whether the frequencies associated with
higher locking as we measure it correlate with those inducing stronger plasticity across
network conditions.

Evidence for the distinction of sub- and supra-threshold regimes
For the last few decades, subthreshold properties of neurons have been subject of intensive
investigation, under the natural, implicit or explicit assumption that observations made in the
sub-threshold regime are strongly predictive of neuronal spiking responses, especially in the
context of network oscillations (Alonso and Llinas, 1989; McCormick and Pape, 1990;
Llinas et al., 1991; McCormick and Bal, 1997; Leung and Yu, 1998; Pike et al., 2000; Hu et
al., 2002; Narayanan and Johnston, 2007). Although sub-threshold properties can influence
neuronal firing properties and phase locking (Richardson et al., 2003; Acker et al., 2003;
Gutkin et al., 2005), our data show that spike phase locking is not a simple reflection of the
sub-threshold impedance profile in CA1 pyramidal neurons. We find that the spike-cutoff
frequency is much greater than the cutoff of sub-threshold membrane voltage, particularly in
the high-conductance state. The cause for this behavior, which has also been observed in
other cell types (Köndgen et al., 2008; Higgs and Spain, 2009), remains unclear. Theoretical
work (Fourcaud-Trocme et al., 2003; Wei and Wolf, 2011) suggests that the speed of spike
initiation in combination with the firing rate and the spectral composition of the input noise
are involved in setting the spike cutoff frequency. Furthermore, our data demonstrates that
increasing background conductance has opposite effects on the sub-threshold impedance and
action potential phase locking profiles at low firing rates: increasing background
conductance greatly reduced the sub-threshold resonant peak, while introducing a peak in
the action potential locking profile. A discrepancy between subthreshold and spiking
regimes has been observed before (Carandini et al., 1996; Haas et al., 2007; Brumberg and
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Gutkin, 2007; Fernandez and White, 2008; Kispersky et al., 2012), calling into question the
general validity of predictions of the spiking regime based on sub-threshold observations.

Representing in vivo inputs
Accumulating evidence suggests that CA1 pyramidal neurons in vivo experience periods of
high membrane conductance associated with membrane-voltage fluctuations (Penttonen et
al., 1998; Henze and Buzsáki, 2001; Destexhe et al., 2003; Harvey et al., 2009; Epsztein et
al., 2011). We introduced membrane-voltage fluctuations by injecting artficial synaptic
waveforms driven by Poisson processes: such inputs capture uncorrelated firing rates of
individual neurons observed in vivo (Softky and Koch, 1993). However, this signal is still an
imperfect representation of the actual in vivo input: for example, excitation-inhibition
correlations (Okun and Lampl, 2008; Atallah and Scanziani, 2009; Gentet et al., 2010), and
the variability within synaptic waveforms are not included. We found that introducing
frequency modulation in the rate of the Poisson processes resulted in the dependence of its
intensity on frequency. It can be expected that other more complex stimulation paradigms
will display some form of non-uniform modulation strength across frequencies as well. To
avoid this confound, we introduced frequency modulation via independent current-based
cosine waveforms in the major part of this study. Spiking responses to this simple input can
be used to predict the locking profiles to more complex inputs, once the dependence of their
modulation strength on frequency is known. Furthermore, we believe the basic effects of
changes in background conductance and firing rate on the phase-locking behavior can be
observed more readily using this form of modulation. In the work presented here, we chose
to simulate the high-conductance state by introducing a linear leak conductance instead of
using conductance-based synaptic events. In preceding experiments, we found no obvious
difference in phase locking behavior between the two paradigms. We found a strong
influence of firing rate on phase locking in our dataset, highlighting the importance of
controlling this parameter.

Contribution of sodium-current inactivation to adaptation and phase locking
Previous work has emphasized the contribution of M-type and Ca2+ activated potassium
currents to spike frequency adaptation in CA1 pyramidal neurons (Madison and Nicoll,
1984; Pedarzani and Storm, 1993; Aiken et al., 1995; Peters et al., 2004; Otto et al., 2006).
Although a contribution of these conductances cannot be ruled out, we are able to show that
a reduction in sodium-current availability can account for most of the effects of spike-
frequency adaptation on locking profiles.

The degree of spike-frequency adaptation sets the gain of the input-output function of CA1
pyramidal neurons (Fernandez and White, 2010; Fernandez et al., 2011), and cumulative
sodium-current inactivation strongly affects adaptation in CA1 pyramidal neurons. For low
to medium modulation frequencies, we relate gain to vector strength, and show that the local
linearization of the f-I relationship predicts the responses to time-varying stimuli. Moreover,
reducing sodium-current availability through TTX selectively reduces locking to low
modulation frequencies. All together, this makes a strong argument for the role of sodium-
current inactivation in phase locking of CA1 pyramidal neurons.
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Figure 1.
Action potential phase locking in response to current-based cosines. A, Response to current-
based cosines at average firing rates of 2 spikes/s under low (i) and high (ii) conductance.
Sinusoidal modulation at 8 Hz is indicated below the voltage traces. (iii), Average spike-
phase histogram in response to 8 Hz modulation at average spike rates of 2 spikes/s. Low
conductance is shown in black, high conductance is shown in red. B, Response to current-
based cosines at average firing rates of 8 spikes/s under low (i) and high (ii) conductance.
Sinusoidal modulation at 8 Hz is indicated below the voltage traces. (iii), Average spike-
phase histogram in response to 8 Hz modulation at average spike rates of 8 spikes/s. Low
conductance is shown in black, high conductance is shown in red. (iv), Vector strength vs.
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modulation frequency under low (black) and high (red) conductance at average firing rates
of 8 spikes/s. Tested modulation frequencies were: 0.1, 0.5, 1, 4, 8, 12, 20, 50, 100, and 500
Hz. C, Overlay of vector strength vs. modulation frequency plots for low (black) and high
(red) conductance at average firing rates of 2 (closed squares) and 8 (open squares) spikes/s.
Tested modulation frequencies were: 0.1, 0.5, 1, 4, 8, 12, 20, 50, 100, and 500 Hz.
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Figure 2.
Prediction of vector strength for a modulation frequency of 0.1 Hz through gain measured
using step responses. Neurons received step de- and hyper-polarizations while held at
baseline firing rates of 2 and 8 spikes/s. A, Example voltage traces showing responses to
depolarizing (right traces in each panel) and hyperpolarizing (left traces in each panel)
current steps from baseline firing rates of 2 (i and iii) and 8 (ii and iv) spikes/s. A recording
under low conductance is shown in (i) and (ii), a recording under high conductance is shown
in (iii) and (iv). B, Example plots of firing rate vs. step size, at base firing rates of 2 (i) and 8
(ii) spikes/s. A step size of zero indicates the DC value used to keep the neuron at the
respective firing rate. Recording under low conductance is shown in black, high
conductance is shown in red. Solid lines indicate linear fits used to calculate the gain (slope
of the linear fit). C, (i), Average gain values for recordings at baseline firing rates of 2 (solid
squares) and 8 (open squares) spikes/s. Low conductance is shown in black, high
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conductance in red. (ii), Comparison of measured and predicted vector strength. Predictions
were derived using equation (4) for a modulation frequency of 0.1 Hz, and are denoted by
triangles. Measured vector strength are given for the same modulation frequency and are
shown as squares. Closed symbols refer to 2 spikes/s average firing rate, open symbols refer
to mean rates of 8 spikes/s. Low conductance is shown in black, high conductance in red.
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Figure 3.
Prediction of vector strength for higher modulation frequencies through gain measured using
step responses at baseline firing rates of 8 spikes/s. Analysis was done on the same dataset
shown in Figure 2. A, Gain for different step lengths associated with modulation frequencies
of 0.1, 0.5, 1, 4, and 10 Hz. Step length was half the period of the respective frequency
(5000, 1000, 500, 125, and 50 ms, respectively). B, Comparison of measured and predicted
vector strength for different modulation frequencies under low conductance. Predictions are
shown as triangles and were derived using equation (4) and the frequency specific gain
shown in A. Measured vector strengths are shown as squares. C, Comparison of measured
and predicted vector strength for different modulation frequencies under high conductance.
Predictions are shown as triangles and were derived using equation (4) and the frequency
specific gain shown in A. Measured vector strengths are shown as squares.
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Figure 4.
Introduction of an adaptation current selectively reduces action potential phase locking to
lower modulation frequencies. A, Response to current-based cosines at average firing rates
of 4 spikes/s under low conductance. Sinusoidal modulation at 10 Hz is indicated below the
voltage traces. B, Response to current-based cosines at average firing rates of 4 spikes/s
under low conductance with addition of an artificial adaptation current. Sinusoidal
modulation at 10 Hz is indicated below the voltage traces. C, Average spike-phase
histogram in response to 10 Hz modulation at average spike rates of 4 spikes/s. Low
conductance is shown in black, low conductance with an additional adaptation current is
shown in grey. D, Vector strength vs. modulation frequency under low conductance (black)
and low conductance with added adaptation current (grey). conductance at average firing
rates of 4 spikes/s. Tested modulation frequencies were: 0.1, 1, 4, and 10 Hz. Note the
decreased locking to 0.1 and 1 Hz with added adaptation current.
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Figure 5.
Action potential phase-locking peaks are sensitive to changes in firing rate. A, Phase locking
at average firing rates of 1 spike/s under high conductance with a modulation amplitude of
15 pA. (i), Example voltage trace. Sinusoidal modulation at 8 Hz is indicated below the
voltage trace. (ii), Average spike phase histogram in response to 8 Hz modulation at an
average spike rate of 1 spike/s. (iii), Vector strength vs. modulation frequency. Tested
modulation frequencies were: 0.1, 1, 4, and 8 Hz. (iv), Comparison between vector strength
at average firing rates of 1 (upward triangles) and 2 (squares) spikes/s. The vector strength
normalized to 0.1 Hz modulation is plotted vs. the modulation frequency. Note the change
from low pass at 1 spike/s average rate to band pass at 2 spikes/s mean rate. B, Phase
locking at average firing rates of 3 spikes/s under low conductance with a modulation
amplitude of 5 pA. (i) Example voltage trace. Frequency modulation of 8 Hz is indicated by
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the sinusoid below the voltage trace. (ii), Average spike-phase histogram in response to 8 Hz
modulation at an average spike rate of 3 spikes/s. (iii), Vector strength vs. modulation
frequency. Tested modulation frequencies were: 0.1, 1, 4, and 8 Hz. (iv), Comparison
between vector strength at average firing rates of 3 (downward triangles) and 2 (squares)
spikes/s. Vector strength normalized to 0.1 Hz modulation is plotted vs. the modulation
frequency. Modulation amplitude for 2 spikes/s mean rates was 7.5 pA, amplitude for 3
spikes/s mean rate was 5 pA. Note the change from low pass at 2 spikes/s average rate to
band pass at 3 spikes/s mean rate.
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Figure 6.
Application of 5 nM TTX reduces phase locking to low frequencies. A, (i), Response to
current-based cosines at average firing rates of 2 spikes/s under low conductance.
Modulation amplitude was 7.5 pA. (ii), Response to current-based cosines at average firing
rates of 1.5 spikes/s under high conductance. Modulation amplitude was 15 pA. Sinusoidal
modulation at 8 Hz is indicated below the voltage traces in i and ii. (iii), Average spike
phase histograms in response to 8 Hz modulation under low (black) and high (red)
conductance. (iv), Vector strength vs. modulation frequency under low (black) and high
(red) conductance. Tested modulation frequencies were: 0.1, 1, 4, 8, 12, and 20 Hz. B,
Comparison between vector strength in the presence (large triangles) and absence (small
squares) of 5 nM TTX under low (black) and high (red) conductance. Locking to low
modulation frequencies is selectively reduced by TTX.
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Figure 7.
Evidence for an intrinsic frequency preference. A, Subthreshold impedance profile under
low (black) and high (red) conductance. Grey lines show sliding window averages. Note the
reduced peak under high conductance. B, Mean operating voltages at average firing rates of
2 (closed squares) and 8 (open squares) spikes/s under low (black) and high (red)
conductance (values for 8 Hz modulation frequency are presented, we observed no
significant differences between modulation frequencies, one-way ANOVA). C, Principal-
component analysis of spike-triggering events at average firing rates of 2 spikes/s. (i), Spike-
triggered averages of the input current for mean firing rates of 2 spikes/s under low (black)
and high (red) conductance. Input currents used to measure spike-triggering events in
neurons did not include any frequency modulation. (ii), Average 1st principal components of
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the spike-triggering events under low (black) and high (red) conductance at mean firing rates
of 2 spikes/s. (iii), Average normalized activity vs. phase for a modulation frequency of 8
Hz. Activity for low conductance is shown in black, high conductance shown in red. (iv),
Frequency-preference index of the 1st principal components under low (black) and high
(red) conductance. Tested modulation frequencies were: 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100,
and 500 Hz.
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Figure 8.
Principal-component analysis of spike-triggering events at 8 spikes/s mean rate under
control conditions, and at 2 (low g) and 1.5 (high g) spikes/s mean rate in the presence of 5
nM TTX. A, (i), Spike-triggered averages of the input current for mean firing rates of 8
spikes/s under low (black) and high (red) conductance. Input currents used to measure spike-
triggering events in neurons did not include any frequency modulation. (ii), Average 1st
principal components of the spike-triggering events under low (black) and high (red)
conductance at mean firing rates of 8 spikes/s. (iii), Frequency-preference index of the 1st
principal components under low (black) and high (red) conductance. Tested modulation
frequencies were: 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz. B, (i), Spike-triggered
averages of the input current for mean firing rates of 2 (low g, black) and 1.5 (high g, red)
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spikes/s, in the presence of 5 nM TTX. Input currents used to measure spike-triggering
events in neurons did not include any frequency modulation. (ii), Average 1st principal
components of the spike triggering events under low (black) and high (red) conductance in
the presence of 5 nM TTX. (iii), Frequency-preference index of the 1st principal
components under low (black) and high (red) conductance. Tested modulation frequencies
were: 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz.
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Figure 9.
Phase-locking profiles of CA1 pyramidal neurons can be qualitatively reproduced in a
simple model incorporating spike-frequency adaptation and a resonant current. A, Example
of simulated voltage traces under low (upper trace) and high (lower trace) conductance, at
mean rates of 1.5 spikes/s. B, Average spike-phase histogram in response to 8 Hz
modulation at average spike rates of 1.5 spikes/s. Low conductance is shown in black, high
conductance in red. C, Vector strength vs. modulation frequency at a mean rate of 1.5
spikes/s under low (black) and high (red) conductance. Model parameters were: low g, gL =
0.03 mS/cm2, IDC = −0.098 μA/cm2, IA = 0.018 μA/cm2, gn = 0.04 μA/cm2; high g, gL =
0.18 mS/cm2, IDC = 0.43 μA/cm2, IA = 0.098 μA/cm2, gn = 0.2 μA/cm2. Tested modulation
frequencies were: 0.1, 0.5, 1, 2, 4, 8, 10, 20, and 100 Hz. D, Vector strength vs. modulation
frequency at a mean rate of 4 spikes/s under low (black) and high (red) conductance. Model
parameters were: low g, gL = 0.03 mS/cm2, IDC = −0.058 μA/cm2, IA = 0.018 μA/cm2, gn =
0.04 μA/cm2; high g, gL = 0.18 mS/cm2, IDC = 0.68 μA/cm2, IA = 0.098 μA/cm2, gn = 0.2
μA/cm2. Tested modulation frequencies were: 0.1, 0.5, 1, 2, 4, 8, 10, 20, and 100 Hz.
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Figure 10.
Phase-locking of CA1 pyramidal neurons in response to rate modulated Poisson processes
driving artificial synaptic-current waveforms at 2 spikes/s average firing rate. A, Normalized
vector strength vs. modulation frequency for modulated excitation (red, 2 ms decay-time
constant), modulated inhibition (blue, 8 ms decay-time constant), and modulation through
current cosines (black, same dataset shown in Figure 1) under low (i) and high (ii)
conductance. B, Dependence of the modulation amplitude on the modulation frequency and
the decay-time constant of the artificial synaptic-current waveforms. (i), Comparison of
modulation amplitudes derived from the same Poisson processes used in the experiments
with amplitudes derived analytically. For amplitudes derived numerically, the process
driving the inhibitory artificial synaptic current waveforms was rate-modulated with an
amplitude of 5% and the decay-time constant was varied. Results for decay-time constants
of 8 (open blue squares) and 2 ms (open red squares) are shown. Superposition of the
analytical solution (black lines) shows a good agreement with the numerical results. Note
the steeper drop in amplitude with the larger decay-time constant. (ii), Normalized analytical
amplitudes for a range of decay-time constants. Modulation amplitudes decreased with
increasing modulation frequency. Attenuation for decay-time constants ranging from 1 to 10
ms are shown. Note the stronger decrease with higher decay-time constants.
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