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SUMMARY
The transmembrane HIV-1 envelope protein gp41 has been shown to play critical roles in the viral
mucosal transmission and infection of CD4+ cells. Gag is a structural protein configuring the
enveloped virus particles, and has been suggested to constitute a target of the cellular immunity
that may control viral load. We hypothesized that HIV enveloped virus-like particles (VLPs)
consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external,
transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. To this end,
plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable
transformation, or transiently using a Tobamovirus-based expression system or a combination of
both. Our results of biophysical, biochemical and electron microscopy characterization
demonstrates that plant cells could support not only the formation of enveloped HIV-1 Gag VLPs,
but also the accumulation of VLPs that incorporated dgp41. These findings provide further
impetus for the journey toward a broadly-efficacious and inexpensive subunit vaccine against
HIV-1.
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INTRODUCTION
The highly conserved membrane proximal external region (MPER) of the HIV-1 envelope
protein gp41 plays important roles during mucosal transmission and target (CD4+) cell
infection (Ashkenazi and Shai, 2011; Checkley et al., 2011; Denner, 2011; Nieva et al.,
2011). Furthermore, antibodies (Abs) against this region have shown to exhibit broad anti-
HIV-1 responses such as viral neutralization and transcytosis blockade (Cai et al., 2011;
Denner, 2011; Garg et al., 2011). Therefore, the MPER is considered to be a potentially
important component in a subunit vaccine against the virus. However, this region was shown
to be very poorly immunogenic on its own, and the precise presentation of immunologically
relevant structure seems to critically affect its vaccine efficacy (Denner, 2011; Matoba et al.,
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2008; Matoba et al., 2009; Matoba et al., 2011; Nieva et al., 2011). In particular, it is likely
that the MPER would need to mimic its conformation on the surface of the native HIV-1
virion, and consequently, it needs to be presented in the context of a membrane (Atilgan et
al., 2001; Cerasoli et al., 2012; Postler et al., 2012; Visciano et al., 2011).

Enclosed membrane vesicles with viral membrane proteins construe one kind of virus-like
particle (VLP) and have been demonstrated in the past to be of value as immunogens (e.g.
hepatitis B surface antigen (Roldao et al., 2010), and Influenza hemagglutinin-based VLPs
(D'Aoust et al., 2010)). However, HIV-1's gp41 cannot form VLPs on its own and requires
the vesicle-forming function of the main structural protein of the virus, p55Gag (Gag, group-
associated antigen of HIV-1. For recent reviews see Balasubramaniam and Freed, 2011;
Briggs and Krausslich, 2011). Therefore, it was hypothesized that enveloped VLPs
consisting of Gag that incorporated a deconstructed form of gp41 comprising the MPER,
transmembrane domain, and cytoplasmic tail (dgp41) into the membrane of the VLPs may
present the MPER in its natural state (Klasse et al., 2012).

HIV-1 VLPs have been shown to assemble in mammalian (Hammonds et al., 2007;
Krausslich et al., 1993; Wagner et al., 1994), insect (Deml et al., 1997; Deml et al., 2004;
Jaffray et al., 2004; Tagliamonte et al., 2010; Visciano et al., 2011; Wang et al., 2007;
Yamshchikov et al., 1995), and yeast cells (Morikawa et al., 2007; Sakuragi et al., 2002).
However, expression in plants has been less successful, although plants can successfully
express enveloped VLPs from other viruses (e.g. D'Aoust et al., 2010). Two recent studies
(Meyers et al., 2008; Scotti et al., 2009) were successful in expressing full-length Gag
within the chloroplasts of Nicotiana benthamiana and N. tabacum cells, but both had
difficulty in expressing Gag within the cytoplasm, the compartment in which the biogenesis
of VLP begins in animal cells (Meyers et al., 2008; Scotti et al., 2009).

In this study, we demonstrate in planta assembly and budding of HIV-1 VLPs consisting of
full-length p55Gag and a deconstructed variant of gp41 (dgp41) - comprised of its MPER,
transmembrane domain, and cytoplasmic tail. Co-expression of plant-optimized recombinant
genes encoding these proteins was achieved through the novel combination of traditional
stable nuclear transformation and a tobamovirus-based transient over-expression system.

RESULTS
De novo Construction of Plant-expression Optimized gag and dgp41 Genes

To increase the level of transcription of the two HIV-1 genes under the two expression
modalities explored here, stable transgenic expression was driven by the strong constitutive
cauliflower mosaic virus 35S promoter (Fig 1) and by the vigorous activity of turnip vein-
clearing virus's RNA dependent RNA polymerase (RdRp) of the MagnICON transient
expression system (Marillonnet et al., 2004; Marillonnet et al., 2005). In addition, to reduce
the extent of DNA methylation of the gag transgene, associated in plants with transcriptional
gene silencing, 49 of the 85 potential methylation sites present in the native gene were
abolished by silent mutations introduced into the plant-optimized version of the gene (Table
S1).

Beyond transcription rates, the accumulation of recombinant proteins in plants can be
greatly affected by post-transcriptional, translational and post-translational events. To this
end, we have removed from the plant-expression optimized gag gene all 30 spurious splicing
signals (Hebsgaard et al., 1996), cryptic polyadenylation sites (Loke et al., 2005) and mRNA
destabilizing sequences with which the native sequence was ridden (Fig S1, Table S1).
Similarly, 14 such deleterious sequences were removed from the sequence of the plant-
optimized dgp41 sequence (Fig S2, Table S1).
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Translatability of foreign gene transcripts can be increased by replacing unfavorable codons
with synonymous codons that are more widely used in plant genes of highly expressed
proteins. Our analyses demonstrated that approximately a third of the codons in the native
gag and dgp41 genes were unfavorable for expression in plants (33% and 32% of the
codons, respectively, had w<0.5, for definition see the Experimental Procedures section
below). In the plant-expression optimized versions of the gag and dgp41 genes, the majority
of the unfavorable codons have been eliminated reducing their occurrence, respectively, to
7% and 2% (Fig S1, S2, Table S1). In accordance with these results, the calculated codon
adaptiveness (CAI) increased from 0.5 to 0.8 (gag) and from 0.6 to 0.9 (dgp41) similar to
the CAI value of the small subunit of ribulose-1,5-bisphosphate carboxylase oxygenase
(RuBisCO, CAI value = 0.8), a nuclear encoded protein that accumulates to very high levels
(Fig S3).

Gag Transient and Stable Expression
Following Agrobacterium-mediated transformation of more than 300 explants, 100 of which
regenerated into kanamycin resistant plants, we could identify only two independent
transformants that expressed the Gag protein. Remarkably, these two plant lines were
phenotypically indistinguishable from wild type plants, at least under normal greenhouse
growth conditions. Crude water-soluble protein extracts were resolved by SDS-PAGE
followed by immunoblotting (Fig 2) and the analysis indicated the presence of a major band
with apparent molecular mass of ~55 kD corresponding to the full length p55Gag protein. In
addition, crude extracts almost always contained discrete lower molecular bands
corresponding to either cleavage products of the polyprotein or to partial-translation
products. Using quantitative immunoblot analysis with Abs raised against the p24 moiety of
the polyprotein (Fig 1), we determined that the stably-expressed full-length Gag
accumulated to ~ 22 mg/kg fresh weight.

Transient Expression of dgp41
The deconstructed gp41 was first expressed in wild type N. benthamiana plants using an
ICON apoplastic targeting module containing the barley alpha-amylase signal peptide
(pICH22488, Kalthoff et al., 2010). Expression was confirmed using immunoblotting (Fig
3), showing a prominent band at 24 kD, the expected size of the dgp41 protein, as well as a
smaller degradation product containing the MPER fragment (~10 kD). As expected,
targeting the recombinant protein to the cytoplasm did not allow its accumulation to
detectable levels (data not shown). Interestingly, using alternative 5'-modules equipped with
different signal peptides, including those of apple pectinase, rice alpha-amylase, and N.
plumbagenifolia calreticulin, resulted in drastically lower accumulation levels that were
below the sensitivity of our immunoblot assay.

Once expression was confirmed in wild-type plants, stable lines expressing the Gag protein
were infiltrated with the dgp41 MagnICON constructs. Co-expression of the proteins in
these plants was confirmed by immunoblotting (Fig 5). Interestingly, both proteins
accumulated to higher levels when co-expressed as compared to their expression on their
own, suggesting a mutual co-stabilization effect that allowed their accumulation to higher
levels – 2.3 fold and 2.4 fold increase for dgp41 and Gag, respectively. Our results are
congruent with previous reports about the co-stabilization of multimeric proteins in plants
(e.g. monoclonal antibodies, Hiatt et al., 1989). Quantification of gp41 when co-expressed
with stably-expressed Gag was determined by quantitative immunoblot to be approximately
9 mg/kg fresh leaf weight.
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Co-sedimentation of Gag and dgp41
The co-stabilization of Gag dgp41 (or their more efficient extraction) observed when the
proteins are co-expressed, suggests that they may be interacting with each other, as indeed
happens within the HIV-1 virus particle (Brandano and Stevenson, 2011; Weclewicz et al.,
1998). Virions and VLPs have characteristic sizes and densities and can be separated from
other cellular components by rate-zonal ultracentrifugation employing preformed density
gradients. We subjected clarified homogenates of plant extracts to optiprep® (iodixanol)
step-gradient centrifugation (10–60%), and results demonstrated that most, but not all of the
Gag and dgp41 proteins migrated well into the gradients and could be recovered in the 20–
30% fractions (Fig 5). Similar results were previously reported for HIV-1 VLPs from other
sources such as insect cells (Buonaguro et al., 2001) and yeast (Sakuragi et al., 2002). It is
important to note that when expressed by itself, dgp41 has a different fractionation pattern
(Fig 5D). The protein can be found mostly in the 0% to 20% fractions suggesting a different
mode of association of the protein in the absence of its Gag partner.

Plant-produced HIV-1 VLPs are Enveloped
The fact that dgp41 changes its sedimentation pattern upon co-expression with Gag, and
especially its shift to a denser fraction co-sedimenting with Gag, suggests that these proteins
could be co-localized to the same particles, in turn suggesting that the particles should be
enveloped. This hypothesis was tested by subjecting Gag/dgp41 preparations, enriched by
optiprep gradient centrifugation, to controlled proteolysis in the presence or absence of
detergent to disrupt the membrane. Our results (Fig 6) demonstrated that in the absence of
the detergent Triton-X-100, plant-derived Gag protein was protected from trypsin digestion.
However, when the membrane was compromised by the detergent, Gag was no longer
protected, strongly suggesting that the protein was enclosed within membrane vesicles.
Importantly, the MPER moiety of gp41 was digested by trypsin whether detergent was
present or not, indicating it was exposed at the external face of the membrane.

HIV-1 VLPs Can Be Directly Observed in situ
Transmission electron microscopy (TEM) was performed on both the leaf extracts and intact
leaf tissue of both stably and transiently transformed Gag-expressing plants. In leaf extracts,
enveloped VLPs with diameters of approximately 100 nm were visualized (Fig 7E, F).
Similarly-sized particles could also be observed in situ in both transiently and stably
expressed leaf tissue (Fig 7A–D). VLPs were found in the apoplastic space between the cell
wall and the plasma membrane (Fig 7C, D), but also within an intracellular compartments
such the lumen of cytoplasmic membrane vesicles (Fig 7B) and perhaps even in the
cytoplasm itself (Fig 7A).

Moreover, in tissues of plants that express the Gag protein, but not in tissues from
untransformed plants (data not shown), we observed electron-dense patches on various
cellular membranes that we interpreted as congregating Gag protein molecules during the
process of VLP budding across the plasma membrane out into the apoplastic space. Similar
structures were observed in mammalian (Hammonds et al., 2007), insect (Tagliamonte et al.,
2010) and yeast cells (Sakuragi et al., 2002) that express Gag from HIV-1 and other
lentiviruses.

VLPs from leaf tissue of plants co-expressing Gag and dgp41 were also observed in both
leaf tissue and enriched VLP containing extracts, and these VLPs were morphologically
similar to those found in the Gag-only expressing plants (data not shown).
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Budding of Gag into Protoplast Medium
Our observation by TEM of HIV-1 Gag and Gag/dgp41 VLPs budding across cellular
membranes, especially across the plasma membrane prompted us to hypothesize that such
VLPs could be collected from extracellular medium upon their export out of the cells.
However, we expected these relatively large structures to become trapped in the apoplastic
space between the plasma membrane and the cell wall. To facilitate testing our hypothesis,
we removed the constraint of the cell wall by its enzymatic digestion to generate
protopolasts from transgenic Gag plants. These protoplasts were incubated in culture
medium, which was sampled every hour up to 6 h after protoplast isolation to check for
presence of Gag protein (Fig 8). Protoplasts remained intact for the duration of the 6 hours
of incubation, and lysis was apparent only after longer incubation periods (data not shown).
We observed time-dependent accumulation of Gag protein in the protoplast medium
(separated from the protoplasts by gentle short centrifugation). The initial supernatant (fresh
buffer with newly isolated protoplasts) did not contain any Gag protein. The presence of
Gag was detected at 2 h and their levels continued to increase as a function of the incubation
time.

Importantly, only intact Gag protein was found in the medium, whereas intracellular
accumulation of the protein was always accompanied by the accumulation of truncated
forms/degradation products. Specifically, a 44-kD band was found in the cells but not in the
incubation medium. These results strongly suggest that Gag, not a secretory protein, is
released from the cells, probably in the form of VLPs that bud out of the plant plasma
membrane into the medium. Taken together with the TEM pictures showing VLPs budding
into the apoplastic space in vivo, it can be concluded that plant cells can support the
formation and budding of HIV-1 Gag VLPs.

DISCUSSION
Our lab has been exploring the immunologically important MPER domain of the
transmembrane envelope protein of the HIV-1 virus, gp41 as a plant-derived vaccine antigen
through its fusion to the mucosa-targeting CTB protein (Matoba et al., 2006; Matoba et al.,
2008; Matoba et al., 2009; Matoba et al., 2004). However, the unique immunological
properties of the MPER domain that make it an attractive vaccine target may stem from its
proximity to- and its possible interactions with the phospholipid membrane that can be
found only in enveloped virions or enveloped VLPs. The work presented here was aimed to
explore the hypothesis that plants can accumulate immunogenic HIV-1 enveloped VLPs
consisting of the main structural protein of the virus, Gag surrounded by a membrane in
which a deconstructed version of gp41 is correctly anchored with its MPER domain
exposed. We have brought evidence that plants can indeed express these two recombinant
proteins (Fig 1–5) and that they assemble into enveloped VLPs (Fig 5, 7) that can bud out of
the cell (Fig 7–8).

Plant expression of derivatives of p55Gag (including p24, p17 and smaller determinants) was
previously attempted with varying degrees of success using both stable (Gonzalez-Rabade et
al., 2011; Kim et al., 2004; Lindh et al., 2008; Meyers et al., 2008:McCabe, 2008 #4952;
Obregon et al., 2006; Shchelkunov et al., 2006; Zhang et al., 2002) and transient
transformation techniques (Meyers et al., 2008:Regnard, 2010 #4948; Perez-Filgueira et al.,
2004; Zhang et al., 2002). The more successful cases of those efforts relied on plant-virus
vectors (Perez-Filgueira et al., 2004) and expression in transplastomic plants (Gonzalez-
Rabade et al., 2011; McCabe et al., 2008).

Even fewer, only two in fact, studies have been published that describe the accumulation of
full length p55Gag in plants (Meyers et al., 2008; Scotti et al., 2009) and both studies

Kessans et al. Page 5

Plant Biotechnol J. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reported little or no success when the protein was directed to accumulate in its natural
subcellular compartment, the cytoplasm. Better accumulation levels were reported when the
protein was expressed in chloroplasts (i.e. transplastomic plants) or targeted to the
organelles following transient or stable nuclear transformation (Meyers et al., 2008; Scotti et
al., 2009). Both studies reported lack of success to demonstrate full length p55Gag in its
natural subcellular compartment, the cytoplasmic face of the plasma membrane (Meyers et
al., 2008; Scotti et al., 2009). Stable transformants, whether harboring a nuclear or plastidic
gag transgene, showed signs of stress that resulted in “[o]verall, Pr55Gag expression [that]
was negligible compared with that of p24 and p17/p24” in the case of transgenic plants
(Meyers et al., 2008) or in greatly reduced fitness under greenhouse conditions in the case of
transplastomic plants (e.g. chlorosis and reduced productivity, Scotti et al., 2009). In
contrast, our approach led to successful accumulation of the full-length Gag protein in the
cytoplasm, at more than 20 mg/kg - levels that were >400 fold higher than those reported by
Meyers and co-workers for p55Gag that was posttranslationally targeted to the chloroplast
(Meyers et al., 2008). Moreover, while the levels of accumulation we report here are about
10-fold lower than those reported by Scotti and co-workers for transplastomic plants under
greenhouse conditions (Scotti et al., 2009), our plants did not exhibit any signs of stress
under normal cultivation routines. The differences between these reports and the current one
are difficult to assess in the absence of side-by-side systematic studies or meta analysis of
published research (see Supplementary Discussion online),

Stable transgenic lines that express Gag provided us the needed tool for the co-expression of
both Gag and dgp41 (MPER, trans-membrane and cytoplasmic domains of gp41). This feat
was achieved by employing our Gag-expressing plants for the transient expression using one
of the most robust systems available to date, the MagnICON system. While the MagnICON
system was used with transgenic host plants before (Strasser et al., 2009), to our knowledge,
such a combination of transgenic and transient expression has not been reported for proteins
that form a complex whose partners are expressed by the two gene expression modalities.

Co-accumulation of the two proteins seemed to stabilize the expression of both Gag and
dgp41. This can be easily explained if the two proteins interact within the context of an
enveloped VLP as we have demonstrated here for the first time for plants. The ability of
plants to support enveloped VLPs is not immediately apparent. Only a handful of enveloped
plant viruses were described belonging to just two families – rhabdoviridae and
bunyaviridae (Ammar el et al., 2009; Kormelink et al., 2011; Kuzmin et al., 2009; Pappu et
al., 2009; Walter and Barr, 2011) and not much is known about the molecular biology of the
assembly and budding of these viruses. Nonetheless, it seems likely that plants have the
machinery needed for enveloped VLP production, which is supported by the fact that the 19
species of the enveloped plant-virus genus Tospovirus have one of the widest ranges of
hosts (over 800 plant species) of any plant-virus (Adkins et al., 2005; Pappu et al., 2009).

At least some of the genes (and subsequent gene products) that are necessary for the
assembly and budding of HIV-1 VLPs from the cell have homologs in plants. For example,
in order for VLPs to form and bud from the cell, an N-terminal myristoyl group must be
covalently attached to the terminal glycine of the matrix portion of the Gag protein by N-
myristoyl-transferase (NMT) during translation, which increases membrane affinity of Gag.
Most eukaryotes have two NMT genes (Podell and Gribskov, 2004), which have been
sufficient for VLP production in mammalian, insect, and yeast cell cultures. Plants express
several myristoylated proteins and plant homologs of animal NMTs have been described
(Fig S4, Podell and Gribskov, 2004).

In addition to myristoylation, targeting of Gag to the plasma membrane also requires the
presence of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a minor phospholipid located
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at the plasma membrane in mammals (Campbell et al., 2001; Patil et al., 2010; Saad et al.,
2007). Although PI(4,5)P2 in higher plants is found at lower levels than those found in
animals, it seems to be important for vesicular trafficking and cytoskeleton regulation
(Meijer and Munnik, 2003). Interestingly, it is not confined to the plasma membranes,
perhaps explaining the apparent presence of Gag in other cellular membranes, such as the
vacuolar membrane (Fig 7). However, it has been shown that the phosphoinositide becomes
concentrated at the plasma membrane in response to certain environmental conditions (e.g.
salt stress), developmental cues (at the tips of growing root hairs for example) or
biochemical treatments (like phospholipase C inhibition, (van Leeuwen et al., 2007). When
it is localized to the plasma membrane, it is mostly concentrated at membrane rafts (Furt et
al., 2010) as is the case in mammalian cells (Holm et al., 2003), meeting another condition
for targeting Gag to the plasma membrane in plant cells and suggesting a way to increase the
efficiency of the process.

One of the most evocative finding in the work presented here is the observation of VLPs
cannot not only form in the plant cell, but also bud out. The endosomal sorting complex
required for transport (ESCRT) plays an important role in the budding of HIV-1 from
mammalian cells (Jager et al., 2007; Pincetic and Leis, 2009). Two epitopes, PTAP and
YPLTSL, on the C-terminus of Gag's p6 domain are involved in the ESCRT pathway
(Strack et al., 2003). PTAP (which is dominant) binds the cellular ESCRT protein, Tsg101
(Stuchell et al., 2004), and YPLTSL binds ALIX/AIP1 (Strack et al., 2003). Plants contain
orthologs for all major ESCRT complex subunits, including Tsg101 (Fig S5) and ALIX/
AIP1 (Fig S6, Otegui and Spitzer, 2008; Spitzer et al., 2009), and it can be speculated that
budding of HIV-1 VLPs from plant cells' plasma membrane (Fig 7, 8), is aided by the
endogenous plant ESCRT pathways. Budding of enveloped VLPs from plant cells was also
recently demonstrated for influenza virus hemagglutinin-based VLPs (D'Aoust et al., 2010).

The results presented here, considered in toto, suggest that the availability of plant-based
HIV-1 Gag/dgp41 VLPs should enable their evaluation as an effective component of a
vaccine against HIV-1 (Kessans, Matoba and Mor, manuscript in preparation). Since plant-
made VLPs are yet to obtain regulatory approval, the extent of their purity remains to be
determined. To use VLPs as HIV vaccines, future studies need to develop a more
economical and scalable downstream processing procedure using simple filtration and
chromatographical techniques to replace the ultracentrifugation-based procedure employed
in this proof-of-concept work.

EXPERIMENTAL PROCEDURES
Plant Optimization and de novo Construction of the gag and dgp41 Genes

The gag gene (from subtype C R5 HIV-1 isolate, 1084i, GenBank accession no. AY805330)
containing the coding sequences for the entire p55Gag protein (Fig 1) was optimized for
expression in N. benthamiana using methods previously described (Geyer et al., 2010).
Changes made to the sequence in order to obtain the newly designed gene (Fig S1, GenBank
accession number JX534517) are listed in Table S1. A total of 29 forward and 29 reverse
partially overlapping oligonucleotides were assembled via assembly PCR using the Expand
High Fidelity PCR kit (Roche). The primers at the 5' and 3' end of the gene were then used
to amplify the entire gene (Fig S1).

The deconstructed gp41 gene was designed as a chimera consisting of the gp41 MPER
derived from the B-clade MN isolate (GenBank accession number AF075722) and the
transmembrane domain and cytoplasmic tail region of the C 1084i isolate (GenBank
accession number AY805330). The gene (GenBank Accession number JX534518) was plant
optimized as described above and was synthesized by Integrated DNA Technologies.
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The assembled synthetic genes were cloned into the PCR-cloning vector, pTOPOTA
(Invitrogen) to create pTM445 and pTM601 for gag and dgp41, respectively. The restriction
sites NcoI and SacI were added to the 5' and 3' ends of the genes (Fig 1), respectively.

Gag Stable Expression
The gag construct from pTM445 was cloned into the binary vector, pGPTV-Kan (Becker et
al., 1992) as previously described (Mor et al., 2001) to create pTM535. Stable transgenic N.
benthamiana expressing Gag were established by co-cultivation of A. tumefaciens LBA4404
harboring pTM535 with sterile leaf explants (>300) selection for kanamycin resistance and
regeneration as previously described (Geyer et al., 2007). Gag expression in regenerated
plants was confirmed by SDS-PAGE and immunoblotting, and regenerated Gag-expressing
plants were transferred to soil for seed generation.

Transient Expression of dgp41
A deconstructed TMV Vector system (MagnICON, used by kind permission of ICON
Genetics under material transfer agreement) was used for transient expression of dgp41 in
N. benthamiana (Marillonnet et al., 2005). To this end, the NcoI-SacI restriction fragments
from pTM601 were cloned into the 3' module of the ICON system (pICH11599) as
previously described (Huang et al., 2006) to yield pTM602, which was introduced into
competent A. tumefaciens LBA4404 (Fig 1). Targeting the ER (and consequently the
plasma membrane), was achieved with a 5'-provirus module that contained the rice alpha
amylase signal peptide (pICH22488, Kalthoff et al., 2010). For transient expression, A.
tumefaciens LBA4404 cell lines harboring the modules of the viral vector pTM602 were
grown to logarithmic phase, resuspended in infiltration buffer (10 mM MES, 10 mM
MgSO4, pH 5.5) at a final optical density at 600 nm of 0.01, and inoculated into 6- week old
N. benthamiana plants by vacuum infiltration. Plants were inverted into a vacuum container
containing 2 L of A. tumefaciens and a vacuum of −600 mm Hg was applied to the container
for 2 min. The vacuum was quickly released, allowing the A. tumefaciens to infiltrate the
leaf. Infiltrated plants were kept in a controlled environmental growth chamber at 25°C until
harvest, and presence of dgp41 in leaf extracts was confirmed by SDS-PAGE and
immunoblotting.

SDS-PAGE and Immunoblotting
For immunoblotting, leaf extract was homogenized with plant extraction buffer in a ratio of
1 mg leaf tissue: 3 μL extraction buffer (25 mM Na2HPO4/NaH2PO4, 100 mM NaCl, 1 mM
ethylenediaminetetraacetic acid (EDTA), pH 7.8) and a ceramic bead in a Fast Prep-24 (MB
Biomedicals) machine for 40 s. Extract was clarified at 12,000 g for 10 min and the
supernatant was collected. Extract (200 μL) was added to 5× SDS loading buffer (40 μL,
30% glycerol, 35 mM SDS, 60 mM dithiothreitol (DTT), 18 mM bromophenol blue, 350
mM Tris-HCl, pH 8.0) and incubated for five min at 100°C to denature the proteins. 12%
polyacrylamide gels were prepared and each sample (20 μL) was loaded into its respective
well. Gels were run at 40 mV until proteins were separated. Proteins were then transferred to
nitrocellulose membrane and blocked with phosphate-buffered saline (PBS, 10 mM
Na2HPO4, 1.8 mM KH2PO4, 2.6 mM KCl, 135 mM NaCl, pH 7.4) supplemented with
tween-20 (0.05%, v/v, PBST) and 5% (w/v) dry milk (PBST-M) for 1 h at 25°C.
Membranes were then incubated for 1 h in PBST-M containing either a polyclonal anti-p24
rabbit serum (for detection of Gag protein, see Supplementary Information for details) or the
human monoclonal 2F5 antibody, a kind gift from Morgane Bomsel (for detection of
dgp41). Membranes were washed 3× 30 min with PBST and then incubated with PBST-M
in the presence of a secondary antibody conjugated to HRP (anti-rabbit IgG for p24 and anti-
human IgG for 2F5) for 1 h at 25°C. Membranes were then washed 3× 30 min with PBST,
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and Abs were detected using enhanced chemiluminescence (ECL) with ECL reagent (Santa
Cruz), and exposed to film.

The quantification of proteins was performed with quantitative immunoblotting. Pure
samples of either the fusion protein p24-CTA2 (the p24 peptide genetically-fused to the
CTA2 domain of cholera toxin, see Supplementary Information) or CTB-MPR (Matoba et
al., 2008) were used as standards that were quantified spectrophotometrically (A260) using
the following extinction coefficients: 1.22 mM−1 cm−1 (p24-CTA2) and 2.22 mM−1 cm−1

(CTB-MPR). Samples of the standard proteins (at 10 μL) containing 50, 40, 30, 20, or 10 ng
of p24 (80% mass of p24-CTA2) or the MPER peptide (33% mass of CTB-MPR) alongside
appropriately diluted samples of proteins to be quantified were resolved by SDS-PAGE
followed by immunoblotting as described above. Densitometry of scanned blot images was
performed using the ImageJ software. Concentrations of experimental samples were
calculated from equations derived by linear regression of the standard curves.

Optiprep Density Sedimentation
Further characterization and purification of VLPs was performed using Optiprep (60%
iodixanol in water, Sigma Aldrich) density gradient sedimentation. Ultra Clear tubes (14×89
mm, Beckman-Coulter) were layered from the bottom with 1.5 mL each of 60%, 50%, 40%,
30%, 20%, and 10% iodixanol. Clarified, water-soluble leaf extract (3 mL) was layered on
the top of the Optiprep gradient and the tube was spun at 35,000 rpm in a SW41Ti rotor
(Beckman-Coulter) for 5 h at 4°C. Fractions (1 mL) were collected from the top of the
gradients, analyzed as described above, and VLP-enriched fractions were used in further
experimentation.

Trypsin Digestion Assay
Enriched fractions containing VLPs were digested with trypsin in the presence or absence of
1% Triton X-100 (v/v) as per Sakuragi et al (2002). VLP-enriched fractions, containing 200
μg/mLp24 obtained from Optiprep gradient centrifugation, were aliquoted (1 mL) to each of
four 1.5 mL centrifuge tubes. One tube remained a negative control, while 1% Triton X-100
or trypsin (final concentration 1 μg/mL) were added separately to one tube each, and both
1% Triton X-100 or trypsin (final concentration 1 μg/mL) were added to the final tube.
Extract was incubated at 26°C for 30 min, and was then analyzed for Gag and dgp41 protein
by immunoblotting.

Transmission Electron Microscopy
For visualization of whole VLPs, clarified extract from transgenic Gag plants or Gag/dgp41
plants (6 days post-infiltration for dgp41) were incubated for 2 min on 200 mesh formvar-
coated grids and stained by incubating grids containing sample with 2% (w/v) uranyl acetate
for 2 min. For visualization of VLPs in situ, leaf tissue (cut into 1 mm2 sections) from Gag-
or Gag/dgp41-expressing plants was chemically fixed in primary fixation buffer (2% (v/v)
gluteraldehyde, 0.1 M Na2HPO4/NaH2PO4, pH 6.8) for 2 h at 25°C. Following primary
fixation, tissue was washed with phosphate buffer (pH 6.8) and incubated in secondary
fixation buffer (2% (w/v) osmium tetroxide, 0.1 M Na2HPO4/NaH2PO4, pH 6.8) for 2 h at
25°C. Following fixation, samples were washed three times with phosphate buffer (pH 6.8)
to remove osmium tetroxide, and then incubated with 0.5% (w/v) uranyl acetate for 2 h at
25°C to stain samples. Stained samples were completely dehydrated with ethanol (10 min
incubations with five increasing concentrations of ethanol for a total of 60 min dehydration
time) and then infiltrated with a 1:3 ratio of Spurr's resin: acetone. After a 4 h incubation in
1:3 Spurr's resin: acetone, samples were moved to a 1:1 Spurr's resin: acetone mixture for
another 4 h incubation at 25°C. Additional 4 h incubations with 3:1 and 100% Spurr's resin
were performed to completely embed the samples in resin. Fresh resin was then added to
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samples and the mixture was placed into molds and heated in a 60°C oven for 24 h. Sections
(70 nm) from these samples were cut on diamond knives, positioned on formvar coated grids
and stained with 2% uranyl acetate and 2% lead acetate as above. Specimen grids were
viewed on a Philips CM12S transmission electron microscope.

Protoplast Experiments
Leaves (10 g) of transgenic Gag-expressing plants were surfaced sterilized with 70%
ethanol, rinsed in water, cut into ~1 cm2 sections, and immersed in protoplast isolation
buffer (20 ml, 0.625 M sucrose, 25 mM MES, pH 5.7) containing cellulase (2.5 mg/mL) and
pectinase (4 mg/mL) for 1 h at 25°C. The protoplast isolation buffer was then carefully
siphoned off and replaced with fresh isolation buffer and gently shaken (50 RPM) for 5 min.
The solution containing released protoplasts was then centrifuged at 200 g for 5 min to pellet
any remaining cell debris and the supernatant containing live protoplasts was carefully
transferred to a sterile petri dish and incubated for 6 h at 25°C with gentle shaking (50
RPM), with supernatant samples taken at the indicated time points for further analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Expression cassettes for synthetic genes encoding p55Gag and dgp41. A. Gag (top) and
dgp41 (bottom) constructs, showing domain regions of the corresponding protein, as well as
codon number of native HIV-1 gene. B. T-DNA construct of gag in pGPTV-Kan (LB - left
T-DNA border, Ag7 - Agrobacterium gene 7 poly-A signal, nptIII – kanamycin resistance
gene, nos t - nos terminator, 35S – cauliflower mosaic virus 35S promoter, TEV - tobacco
etch virus 5' untranslated region, VSP - polyadenylation signal of soybean vegetative storage
protein gene, RB - right T-DNA border) and T-DNA construct of dgp41 in the 5' module of
the MagnICON system (AttB - recombination site, int - intron, NTR - non-translated
region). Scale for A. and B. at the bottom of the figure.
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Figure 2.
Expression of Gag in transgenic plants. WT – Wild type plant extract. Two lines (#72 and
42) were created. T0 is the first generation, T1 is the second generation for both of those
lines. Immunoblot developed with α-p24 antibodies.
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Figure 3.
Transient expression of dgp41. NI – Non-infiltrated wild type. 1, 2, and 3 are three samples
of three independently infiltrated plants that were harvested 5 days postinfiltration.
Immunoblot developed with 2F5 antibodies.
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Figure 4.
Coexpression of Gag and dgp41. The coexpression of Gag and dgp41 seemed to stabilize the
expression of both proteins as compared to the expression of either protein by itself,
suggesting that the two proteins might be interacting with each other, possibly in the context
of a VLP.
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Figure 5.
Co-sedimentation of Gag and dgp41. Plant water soluble extracts were subjected to 10–60%
iodixanol gradient centrifugation. Individual fractions were collected, subjected to SDS-
PAGE (A.) followed by blotting and immunodecoration with anti-Gag Abs (B.) or anti-MPR
Abs (C.). In a separate experiment, extracts were obtained from WT plants transiently
expressing dgp41 (in the absence of Gag) and were similarly treated as described above
(D.). Lane 1: Wild type control. Lane 2: Whole extract Lane 3: water-soluble clarified
extract. Lane 4–7: 10%, 20%, 30%, 40%, 50%, and 60% iodixanol fractions.
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Figure 6.
Gag, but not dgp41, is protected from trypsin digestion, suggesting the proteins are
organized into enveloped VLPs. Following density centrifugation, the Gag/dgp41 enriched
fraction was subjected to proteolysis in the presence or absence of 1% Triton X-100,
subjected to SDS-PAGE and immunoblotting. (A) Detection with anti-p24 antiserum. (B)
Detection with 2F5 monoclonal Ab against MPER. The first lane (from left) contains
proteins from non-infiltrated wild type plant extract. The remaining lanes contain VLP
enriched samples from a transgenic Gag-expressing plant, incubated as indicated with or
without Triton X-100 and/or trypsin.
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Figure 7.
Gag enveloped VLPs observed in situ by TEM. A – D. Representative sections from
chemically fixed transgenic gag leaf tissue showing VLP production accumulation (red
arrows) in cytoplasm (A.), in endosomes near the vacuole (B.) and within the apoplastic
space (C. and D.). E and F. Representative negatively stained VLPs from VLP enriched
extract of transgenic gag leaves. Bar represents 100 nm.
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Figure 8.
Gag VLPs are released extracellularly as a function of time. Protoplasts were prepared from
leaves of Gag-expressing transgenic plants and were then incubated in isotonic protplast
medium for up to 6 hours and samples were taken hourly from the medium as indicated. P –
Protoplast extract showing total amount of Gag within the cells.
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