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Abstract
Islet autoantigens associated with autoimmune type 1 diabetes (T1D) are expressed in pancreatic β
cells, although many show wider patterns of expression in the neuroendocrine system. Within
pancreatic β cells, every T1D autoantigen is in one way or another linked to the secretory
pathway. Together, these autoantigens play diverse roles in glucose regulation, metabolism of
biogenic amines, as well as the regulation, formation, and packaging of secretory granules. The
mechanism(s) by which immune tolerance to islet-cell antigens is lost during the development of
T1D, remains unclear. Antigenic peptide creation for immune presentation may potentially link to
the secretory biology of β cells in a number of ways, including proteasomal digestion of misfolded
products, exocytosis, and endocytosis of cell-surface products, or antigen release from dying β
cells during normal or pathological turnover. In this context, we evaluate the biochemical nature
and immunogenicity of the major autoantigens in T1D including (pro)insulin, GAD65, ZnT8, IA2,
and ICA69.

Pancreatic β cells are built for efficient regulated insulin secretion in response to acute
changes in metabolic demand, which can exceed the rate at which new insulin can be
synthesized. To accommodate this demand, β cells presynthesize insulin secretory granules
that are accumulated in the cytoplasm, commonly referred to as the insulin storage pool.
Although overall pancreatic insulin content changes relatively little during acute secretory
stimulation (Poitout et al. 2004), insulin content in β cells responding to the secretory
challenge acutely decreases, as detected by a decreased volume density of secretory granules
(Stefan et al. 1987). Thereafter, up-regulated biosynthetic activity in the endoplasmic
reticulum (ER) and Golgi complex of those cells (Stefan et al. 1987), orchestrated in
conjunction with granule membrane protein recycling (Vo et al. 2004; Torii et al. 2005;
Wasmeier et al. 2005) to form new granules (Orci et al. 1985) restores secretory granule
abundance to its homeostatic set point (Trajkovski et al. 2008). The net result of this “insulin
factory” (Orci 1985) is that the entire β-cell secretory pathway is tuned to be iteratively
responsive to meals and other stimuli. This paradigm constitutes the basic secretory cell
biology of the pancreatic β cell, creating multiple opportunities for cell-surface exposure of
many potential islet-cell autoantigens.
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Type 1A diabetes (autoimmune T1D) results when autoreactive T cells become activated,
resulting in destruction of insulin-secreting pancreatic β cells. Even before the process of
T1D is first recognized clinically, islet-cell auto-antibody responses also become detectable
(Atkinson and Maclaren 1993)—indeed, onset of detectable islet autoantibodies can be used
to predict the appearance of clinical T1D in otherwise healthy individuals (Orban et al.
2009). As the name indicates, immune autoreactivity is directed against self-antigens.
Although we do not yet know if autoreactivity against endogenous β-cell protein antigens
actually triggers onset of disease—this remains a leading hypothesis. The acknowledgment
of autoantigens in pancreatic islet cells in patients with T1D (who may also have additional
endocrinopathies) has been recognized for nearly 40 years—initially by
immunofluorescence of human pancreas (Bottazzo et al. 1974)—and occasionally by cross-
reaction in pancreatic β-cell lines in culture (in some cases even including β cells of other
species [Dotta and Eisenbarth 1989; Karounos and Thomas 1990]). The islet autoantigens
identified to date tend to be largely (but not exclusively) proteinaceous.

Curiously, the majority of identified islet autoantigens are located within the secretory
pathway of pancreatic β cells. Indeed, most are located directly within the insulin secretory
granule itself (the most abundant of these being insulin). It is not known why in T1D,
secretory pathway proteins should be selected as antigens over proteins in other cellular
compartments, or over other macromolecules such as RNAs or carbohydrates. However, the
iterative surface exposure of T1D autoantigenic proteins, in conjunction with a susceptibility
to autoimmunity in certain individuals, is a useful working hypothesis to explain these
observations. One leading hypothesis for autoimmune susceptibility is a genetic
predisposition to diminished thymic expression of islet-cell antigens, contributing to
decreased self-tolerance. This could result in one or another secretory pathway protein
serving as a “primary antigen” to which T-cell (as well as autoantibody) reactivity is
directed at the earliest stage during a sequential progression of islet autoimmunity
(Krishnamurthy et al. 2006). Alternatively, once autoimmunity in T1D is initiated, β-cell
injury or activation may expose further antigens, increasing the number of targeted islet
autoantigens—so-called epitope spreading (Pietropaolo et al. 2008). The sheer abundance of
the major secretory pathway proteins of pancreatic β cells makes them good candidates
either as primary antigens or as secondary antigens involved in epitope spreading.

Using autoantibodies for immunoprecipitation, it has been possible to pursue the molecular
identity of a number of major islet auto-antigens—such an approach originally led to the
identification of GAD65 (islet-cell antibodies to this antigen is now a standard clinical assay
for the diagnosis of T1D), which encodes glutamic acid decarboxylase (Baekkeskov et al.
1990; Kaufman et al. 1992), an enzyme engaged in the synthesis of the neurotransmitter γ-
aminobutyric acid (GABA, see below). In addition to GAD65, other major islet-cell
autoantigens are now recognized, including proinsulin/insulin, ZnT8, IA2, and ICA69—in
this work, we offer a brief perspective of each of these major β-cell autoantigens, their
functions, and their exposure to the immune system at the time of initiation of T1D.

Because recent studies suggest that age at first presentation of clinical T1D is correlated
with the mean levels of autoantibodies against insulin selectively (Steck et al. 2011), we
consider this antigen first, and then proceed to review additional β-cell autoantigens.

INSULIN
Insulin is the central anabolic regulator of metabolic homeostasis, but for this discussion it is
considered in its pathological role as a critical T1D autoantigen. Functional variation of the
INS gene promoter conferred by the variable number of tandem repeats (VNTR)
polymorphism, or mutations at other genetic loci, can lead to reduced insulin expression in
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the thymus and lymphoid organs that may lead to loss of tolerance to insulin (Vafiadis et al.
2001; Durinovic-Bello et al. 2005) (and other self-antigens [Nagamine et al. 1997; Anderson
et al. 2002; Ramsey et al. 2002]). Immune responses to antigenic peptides within insulin and
its precursor proteins are likely to drive the pathogenesis of T1D in at least some patients
and animal models—and as noted above, insulin autoanti-bodies usually precede T1D onset
and can (along with other autoantibodies) predict development of the disease (Gottlieb and
Eisenbarth 2002). Further, in susceptible mice, T-cell clones (both CD4 and CD8)
recognizing insulin, can transfer the disease (Daniel et al. 1995; Wong et al. 2009).

Insulin biosynthesis (see below) is estimated at 0.4% of total pancreatic protein synthesis
(Permutt et al. 1984) despite that islets make up only 1%–2% of total pancreatic mass
(Jansson 1994). The net result is that the INS gene product can represent up to 50% of the
total production of β-cell protein under stimulated conditions (Eizirik et al. 2009). In β cells,
the initial site of insulin biosynthesis (and that of other insulin secretory granule proteins) is
within the ER (Eskridge and Shields 1983) as preproinsulin, which includes the following
contiguous peptides: a 24-residue signal peptide, the 30-residue B chain, the 31-residue C-
peptide plus two sets of two basic flanking amino acids, and the 21-residue A chain.
Delivery of preproinsulin into the lumen of the ER is initiated by signal peptide binding to
the signal recognition particle (Okun et al. 1990), followed by docking and translocation at
the ER membrane (Eskridge and Shields 1983), and cleavage of the signal peptide (Dodson
and Steiner 1998) associated with completion of proinsulin biosynthesis (Sando et al. 1972).
Interestingly, the preproinsulin signal peptide is one of the sites containing epitopes to which
“insulin autoantibodies” (Berg et al. 1993) and cytotoxic T lymphocytes (Skowera et al.
2008; Toma et al. 2009) can be directed.

Subsequently, in the secretory pathway, coordinated proteolytic cleavages excise the C
peptide of proinsulin, dependent on the subtilisin-like convertases PC1 and PC2 (Smeekens
et al. 1992; Furuta et al. 1997; Zhu et al. 2002) in conjunction with carboxy peptidase E
(Naggert et al. 1995) to produce the mature two-chain hormone linked by two interchain
disulfide bonds. The enzymic reactions converting proinsulin to insulin occur primarily
within immature secretory granules beginning at the time of their emergence from the trans-
Golgi network (Kuliawat and Arvan 1992; Huang and Arvan 1994).

It is back in the ER lumen where proinsulin folds into a globular protein that includes a
native like insulin moiety and C-peptide, which lacks an ordered structure (Yang et al.
2010). Although the amino-terminal and carboxy-terminal parts of the B chain are flexible
(Zoete et al. 2004), the central B-chain structure includes three notable features: (1) the
interchain disulfide bonds that link C(B7)–C(A7), and C(B19)–C(A20) as is conserved in
multiple members of the insulin/IGF superfamily (Blundell et al. 1983); (2) a 10-residue α
helix running from S(B9) to C(B19) (Kristensen et al. 1997); and (3) a β turn between
residues G(B20) and G(B23) (Nakagawa et al. 2006). These features are especially
interesting because proinsulin dimerizes (Derewenda et al. 1989)—possibly within the ER
(Huang and Arvan 1995)—and the proinsulin dimerization interface precisely matches that
for insulin dimers (Blundell et al. 1972). In these dimers, the side chains of residues S(B9)–
G(B23) from each monomer contribute more than half of the surface area at the interface
between the monomers(Fig. 1), and thus they are ordinarily buried when the properly folded
protein resides within secretory compartments of the β cell. In contrast, on exocytosis (Gold
and Grodsky 1984), insulin very rapidly dissociates to its component monomers (B chain
disulfide linked to A chain is still considered a monomer) at which time S(B9)–G(B23) side
chains become exposed. Indeed, the ability to form dimers is well correlated with the ability
to activate insulin receptors (Nakagawa et al. 2000), in which the side chains of residues
V(B12) and Y(B16) (Huang et al. 2004) as well as G(B23) (Bakeret al. 1988) play
significant roles.

Arvan et al. Page 3

Cold Spring Harb Perspect Med. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



T1D in nonobese diabetic (NOD) mice and in humans may have important differences, but
NOD mice serve as one of the best animal models available for studies of autoimmune
diabetes. Indeed, pathogenic T lymphocytes in NOD mice developing autoimmune diabetes
recognize an immunodominant epitope contained within residues S(B9)–G(B23) of pro-
(insulin), and this is also true in patients with recent-onset T1D (Alleva et al. 2001). In T1D
patients with the HLA-DRB1*0401 (DR4) DQ8 haplotype (conferring susceptibility to
T1D), another immunodominant epitope has been reported within proinsulin, which includes
the carboxy-terminal portion of the C-peptide running through the endoproteolytic cleavage
site contiguous with the A chain (Congia et al. 1998). Characterization of human T cells
reacting to this cleavage-site autoantigen were found to be CD4+ FoxP3-positive
(regulatory) T cells (Durinovic-Bello et al. 2006) rather than pathogenic T cells. Still other
studies have found that in T1D patients with HLA DR4, either clonally expanded T cells
from draining pancreatic lymph nodes, or insulin autoantibodies, recognize one or more
epitopes within the insulin A1–A15 sequence (Achenbach et al. 2004). However, in many
recent-onset and long-standing T1D patients, peripheral blood monocytes produce IFN-γ
primarily in response to B-chain (rather than A-chain) peptides (Toma et al. 2005). Indeed,
in NOD mice, injection/immunization with recombinant Ins2 A chain fails to protect from
development of T1D, yet injection of the recombinant Ins2 B chain and, more narrowly, the
B9–B23 peptide, does protect (Daniel et al. 1995; Muir et al. 1995). Curiously, with respect
to subcutaneous “vaccination,” injection of the B9–B23 from the Ins2 gene sequence [that
begins with S(B9)]—but not the Ins1 B9–B23 peptide [that begins with P(B9)]—
significantly protects NOD mice from diabetes (Devendra et al. 2004). Indeed the only
difference between the B9–B23 peptide sequence from mouse Ins1 and Ins2 gene products
is at the B9 position (Table 1) (moreover, the mouse Ins2 B9–B23 sequence is identical to
that occurring in human insulin).

Curiously, a complete Ins2 knockout in the NOD background accelerates T1D onset
(Thebault-Baumont et al. 2003); conversely, complete Ins1 knockout diminishes T1D onset
(Moriyama et al. 2003). Complete knockout of both mouse Ins1 and Ins2 but carrying a
human preproinsulin transgene bearing endogenous S(B9) and a Y(B16) A point mutation
provides sufficient insulin activity to avoid diabetes; more importantly, the animals do not
develop T1D nor do they develop insulin autoantibodies (Nakayama et al. 2005). Altogether,
the data seem to suggest that in NOD mice, specific structural features of the B chain are
detected by the immune system with (pro)insulin-I (bearing a proline residue at position B9)
triggering pathogenic T-cell immune responses leading to diabetes. In contrast, in humans, if
insulin B9–B23 peptide serves as a primary autoantigen for T1D, then it must come from
their one and only insulin gene product, which contains exclusively Ser at the B9 position.

GAD65
Early identification of L-glutamic acid decarboxylase (GAD) as a T1D autoantigen arose
from immunoprecipitation studies (Baekkeskov et al. 1982) involving incubation of
solubilized rat islets with sera from newly diagnosed T1D patients or controls, with the
diabetic sera precipitating a 64 kDa protein. Impressively, immunoreactivity to the 64-kDa
antigen was observed both in about 80% of new-onset T1D patients, and also in pre-T1D
subjects. Thereafter, autoantibodies against the 64-kDa antigen were found to react with
pancreatic β cells as well as GABAergic neurons in a rare condition termed stiff man
syndrome (Solimena et al. 1988), facilitating subsequent identification of the 64-kDa
autoantigen in T1D as GAD (Baekkeskov et al. 1990). Subsequent research on GAD65
humoral autoimmunity in diabetes has led to the development of new assays to detect
autoantibodies against GAD65, which are now used throughout the world (Grubin et al.
1994).
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As noted above, GAD is the major enzyme required for production of the neurotransmitter,
γ-amino butyric acid (GABA). GAD requires a cofactor, pyridoxal 5′-phosphate (i.e.,
activated vitamin B6) to catalyze this reaction. GAD and GABA are principally found in
“GABA neurons” but are also found in extraneural tissues such as ovary and testis, and
especially in pancreatic islet β cells (Wang et al. 2007). Indeed in islets, GABA is stored in
the synaptic like vesicles (SNLVs) of pancreatic β cells (Sorenson et al. 1991), but the
functional consequence of this is not yet entirely clear—although GABA has been proposed
to have a local paracrine effect in islets in regulation of glucagon secretion (Wendt et al.
2004). However, the GAD65−/− mouse does not show any particular islet dysfunction (Kash
et al. 1999).

There are actually two isoforms of GAD which share 65% homology at the primary amino
acid sequence level: GAD65 and GAD67 (Erlander et al. 1991). Intriguingly, GAD65 and
GAD67 have identical enzymatic activities but have subtle differences in their structure,
with GAD65 having more flexibility in the carboxy-terminal region that is correlated with
its far greater antigenicity (Fenalti and Buckle 2010). There is a well-documented body of
data showing that early humoral autoimmune response to GAD65 in T1D is directed against
epitopes primarily in the middle region of the molecule, and also includes the carboxyl
terminus (Ronkainen et al. 2004, 2006). Additionally, intriguing structural crystallography
studies aided by monoclonal antibody testing of antigenic determinants (Fenalti et al. 2008)
have indicated that the more flexible carboxy-terminal region of GAD65 shows a close
grouping of autoantibody and T-cell antigenic determinants, raising the possibility that
antigen–antibody complexes could contribute to GAD65-induced T-cell reactivity. Although
the importance of the middle region and the carboxyl terminus bearing major
immunoreactive epitopes is recognized, epitope spreading to the amino-terminal region of
GAD65 can occur later (Bonifacio et al. 2000; Schlosser et al. 2005) although not all studies
have substantiated this (Novak et al. 2000; Hampe et al. 2002). The knowledge gained from
our understanding of the development of immunoreactive autoantigenic epitopes has
provided a useful tool to more accurately identify risk and prediction to insulin-requiring
stages in susceptible populations—not only in “classic” T1D but also in more recently
characterized forms of the disease such as latent autoimmune diabetes of the adulthood
(LADA) (Zimmet et al. 1994; Pietropaolo et al. 2007).

Unlike the case for deletion of the Ins1 gene, the cumulative incidence of autoimmune
diabetes in NOD mice was reported to not be inhibited by GAD65 gene knockout
(Yamamoto et al. 2004). However, autoimmune diabetes was inhibited by suppression of
GAD expression in antisense-GAD transgenic/NOD females (Jun et al. 2002). Moreover,
when splenocytes from female NOD/GAD65−/− animals were transferred into female NOD-
scid recipients, the onset of diabetes in the recipients was significantly delayed compared to
recipients receiving splenocytes from ordinary NOD/GAD65+/+ females (Kanazawa et al.
2009). Thus, although the data establish that GAD65 is not an obligate antigen for T1D in
the NOD background, GAD65-reactive T cells do seem to contribute to T1D onset in this
model.

Unlike the majority of islet-cell antigens, GAD65 (in SNLVs) and GAD67 (in cytosol) are
localized away from the other islet-cell auto-antigens in β cells (Sorenson et al. 1991), i.e.,
not associated with dense-core insulin secretory granules (Fig. 2). Analogous to neuronal
cells, both GAD65 and GAD67 are initially synthesized in the β-cell cytosol rather than the
ER, and are subject to different acute translational regulation than proinsulin or other insulin
secretory granule autoantigens (Uchizono et al. 2007; Wicksteed et al. 2007). However, like
for proinsulin, it has been reported that longer-term exposure to glucose (6–96 h) in isolated
islets can specifically increase the transcription of GAD65 above that of total protein
synthesis (Björk et al. 1992; Hagopian et al. 1993).
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It has been postulated that GAD65 undergoes a two-step posttranslational palmitoylation on
two cysteine residues in the amino-terminal region required for SNLV targeting (Christgau
et al. 1992), whereas GAD67 remains persistently cytosolic. The palmitoylated GAD65 is
inserted into SNLV membranes, leaving the vast majority of SNLV-associated GAD65
outwardly facing the cytosol. At this location GAD65 associates with a small protein
complex that contains the vesicular GABA transporter (VGAT). This allows local
production of GABA by GAD65 and then GABA’s immediate transport by VGAT into the
SNLV storage compartment in the β cell (Buddhala et al. 2009). GAD65 can be released
from the membrane by an apparent enzyme activity in islets, suggesting that its membrane
anchoring is potentially regulated. Unlike GAD67, the hydrophobic modifications and
consequent membrane anchoring of GAD65 to GABA-containing SNLVs might be
significant for its role as an islet autoantigen.

It is worth mentioning that human vascular endothelial cells (ECs) are capable of processing
and presenting GAD65 epitopes to autoreactive T cells (Greening et al. 2003). In particular,
in vitro transmigration across an EC monolayer by autoreactive T cells is markedly
promoted by presentation of cognate peptide/HLA complexes on the EC surface, and is
LFA-1 (lymphocyte function-associated antigen-1) dependent. These results suggest that
presentation of auto-antigens such as GAD65 by islet endothelium in vivo could promote
islet transmigration of circulating autoantigen-specific T cells primed in regional lymph
nodes.

ZNT8
β cells maintain an unusually high level of cellular zinc (Wijesekara et al. 2009), and they
express several zinc transporters including ZnT5 (Kambe et al. 2002) and ZnT3 (Clifford
and MacDonald 2000). However, the most consistently expressed β-cell zinc transporter is
ZnT8 (encoded by SLC30A8), a 369 amino acid poly-topic, dimeric membrane protein
whose pancreatic expression is concentrated in the islets (Chimienti et al. 2004; Murgia et
al. 2009). In β cells (Chimienti et al. 2005), ZnT8 resides primarily in insulin secretory
granules (Fig. 2) (Chimienti et al. 2006). ZnT8 has been found as an autoantigen in a high
fraction of new-onset T1D patients (Wenzlau et al. 2007). Analysis of single-nucleotide
polymorphisms has suggested that SLC30A8 polymorphisms are associated with type 2
diabetes in Scandinavians (Hertel et al. 2008), other Europeans, and East Asians (Cauchi et
al. 2010)—but also associated with T1D (Wenzlau et al. 2008b). Autoantibodies against
ZnT8 (Kawasaki etal. 2008, 2010; Achenbach et al. 2009; Lampasona et al. 2010; Nielsen et
al. 2011) as well as T-cell responses (such as production of IFN-γ) against ZnT8 (Dang et
al. 2010) are produced in patients that develop autoimmune diabetes. In turn, ZnT8
expression in β cells is down-regulated by cytokines (Egefjord et al. 2009) even as this
down-regulation could result in β-cell dysfunction (El Muayed et al. 2010) and apoptosis
leading to further ZnT8 antigen exposure that could exacerbate autoimmunity (Wenzlau et
al. 2008a).

Especially given the existence of several different zinc transporters in β cells (Smidt et al.
2009), our understanding of the physiological role of ZnT8 in normal β-cell function is
incomplete. However, substantial indirect evidence suggests that full ZnT8 function is
needed for optimum insulin storage and secretion. Evidence suggests that TCF7L2 and
PDX-1 (themselves both linked to normal versus pathological β-cell function) each
contribute to regulation of ZnT8 expression (da Silva Xavier et al. 2009; Pound et al. 2010)
and db/db mice down-regulate β-cell ZnT8 protein (Tamaki et al. 2009). In the hopes of
establishing a mechanistic link between ZnT8 expression and diabetes, multiple groups have
examined ZnT8-deficient mice. Isolated islets of such mice have measurably decreased
glucose-stimulated insulin secretion (Pound et al. 2009) and—with some variation between
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reports—a glucose intolerance phenotype that can be elicited on feeding the ZnT8-deficient
animals a diabetogenic diet (Lemaire et al. 2009; Nicolson et al. 2009). The phenotype is
thought to be more obvious in animals with β-cell-selective deletion of ZnT8 (Wijesekara et
al. 2010). Pancreatic β-cell lines with ZnT8 knockdown also show decreased glucose-
stimulated insulin secretion (Fu et al. 2009), and double knockdown of ZnT8 and ZnT3
reportedly triggers cell death in pancreatic β-cell lines (Petersen et al. 2011)—perhaps
owing to cytosolic or nuclear zinc intoxication. Altogether, these studies indicate that down-
regulation of ZnT8 expression can contribute to β-cell dysfunction and diminished survival,
whereas its exposure as an autoantigen can trigger immune responses.

IA-2 PHOSPHOTYROSINE PHOSPHATASE-RELATED PROTEINS
Two other common autoantigens, IA2 (also known as ICA512) and IA2β (also known as
phogrin) are also located to the insulin secretory granule membrane in β cells (Solimena et
al. 1996; Torii 2009). Autoantibodies against both proteins can be detected decades before
overt diabetes in first-degree relatives of T1D probands, and their presence is used to
identify subjects at risk of progressing to the clinical onset of the disease (Kawasaki et al.
1996; Morran et al. 2010). IA-2 consists of a signal peptide (a.a. 1–24), extracellular (a.a.
25–576), trans-membrane (a.a. 577–600), and intracellular (a.a. 601–979) domains. Its
proform is a glycoprotein of 110 kDa that is processed by furinlike convertases during
granule maturation (Mziaut et al. 2006). IA-2 is a granule membrane protein, whose
cytosolic domain binds β2-syntrophin, an F-actin-associated protein, and is cleaved on
granule exocytosis. The resulting cleaved cytosolic fragment, ICA512-CCF, is thought to
reach the nucleus and up-regulate the transcription of granule genes (including insulin and
ICA512) and may also dimerize with intact ICA512 on granules to influence granule
mobility in the cytoplasm (Trajkovski et al. 2008).

IA2 and IA2β have domains with close homology to protein phosphotyrosine phosphatases
(PTPs), yet surprisingly they do not have any such enzyme activity. IA2 and IA2β are both
initially synthesized as proprotein precursors that are proteolytically processed likely by
PC1/3 and/or PC2 in coordination with proinsulin. The mature IA2 and IA2β proteins are
type 1 integral membrane proteins, with the PTP domain oriented on the cytosolic side of
the granule membrane and a short amino-terminal domain located on the inside of the
granule. The actual function of IA2 and IA2β remains unknown, although in β cells it has
been postulated that they may play a role in regulating insulin secretory granule content and
possibly regulation of β-cell growth (Torii 2009). In this regard the IA2 and IA2β knockout
mice are glucose intolerant with reduced insulin secretion (Saeki et al. 2002; Kubosaki et al.
2004). The double-knockout mouse has no worsening of this phenotype, although the insulin
content of the islets is reduced by ~50% (Kubosaki et al. 2005). A recent report showed that
deletion of IA-2 and/or IA-2β results in a marked decrease in the number of dense-core
vesicles (DCVs) in β cells and a decrease in β-cell [Ca2+]i handling (Cai et al. 2011). In the
single IA-2 knockout (KO) mice, the decrease in the insulin content and secretion correlated
with a decrease in β-cell DCV number. In the case of the double IA-2 plus IA-2β KO mice,
the decrease in β-cell DCV number was proportionally greater than the decrease in insulin
content and secretion. Interestingly, electron microscopy of islets from KO mice revealed a
marked increase in the number and size of lysosomes and an increase in LC3 protein,
suggesting that autophagy might be involved in the consumption of DCVs.

One might expect that secretion of insulin by granule exocytosis could increase the
presentation of HLA class II allele-specific IA2 and IA2β native epitopes on the β-cell
plasma membrane, where antigenicity could then be manifested. Naturally processed
epitopes of islet-cell autoantigens represent the targets of effector and regulatory T cells in
controlling β-cell-specific autoimmune responses (Di Lorenzo et al. 2007). In particular,
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naturally processed HLA class II allele-specific epitopes recognized by CD4+ T cells,
corresponding to the intracellular domain of IA2, were identified after native IA2 antigen
was delivered to Epstein-Barr virus (EBV)-transformed B cells and peptides eluted and
analyzed by mass spectrometry (Peakman et al. 1999). Dendritic cell subsets can facilitate
the processing and presentation of soluble IA-2 antigen to CD4+ T cells. Specifically, at
times near the onset of T1D, the plasmacytoid subset of dendritic cells is overrepresented in
the blood, and these cells show a distinctive ability to capture islet autoantigenic immune
complexes and enhance autoantigen-driven CD4+ T-cell activation in the presence of IA-2
autoantibody-positive patient serum (Allen et al. 2009). This may suggest a synergistic
proinflammatory role for plasmacytoid dendritic cells and IA-2 autoantibodies in T1D. The
field is therefore heading toward the ultimate identification of novel naturally processed
IA-2 epitopes recognized by CD4+ T cells that may represent potential therapeutic agents,
either in native form or as antagonistic altered peptide ligands, for the treatment of T1D.

ICA69 AND OTHER T1D-RELATED AUTOANTIGENS
Seminal studies by Atkinson et al. identified a subset of islet-cell antibodies (ICA)
associated with a more clinically significant pancreatic β-cell injury in a subgroup of first-
degree relatives of T1D probands. This subset of ICA was termed “non-GAD reactive”
because ICA reactivity could only be partially blocked by GAD65 (Atkinson et al. 1993),
implying that multiple additional islet autoantigens are recognized by T1D-specific humoral
responses. We too found that a subset of cytoplasmic ICA is associated to a more rapid
progression to insulin-requiring diabetes in GAD65 and IA2 antibody-positive relatives as
compared to relatives with GAD65 and IA2 antibodies without ICA—again suggesting
additional unidentified ICA-recognizing autoantigen(s) (Pietropaolo et al. 2005). This may
reflect “epitope spreading,” as solid observations indicate that islet autoantibody responses
against multiple islet autoantigens are associated with progression to overt disease (Verge et
al. 1996). With this in mind, a number of additional T1D-related autoantigens have been
identified, which include islet cell autoantigen 69 kDa (ICA69), the islet-specific glucose-6-
phosphatase catalytic subunit-related protein (IGRP), chromogranin A (ChgA) the insulin
receptor, heat shock proteins, the antigens jun-B,16, CD38 (Pietropaolo and Eisenbarth
2001), peripherin, and glial fibrillary acidic protein (GFAP) (Winer et al. 2003; Haskins and
Cooke 2011).

Islet-cell autoantigen 69 (ICA69), a protein product of human ICA1 or mouse Ica1, is
predominantly expressed in pancreatic islets and neuroendocrine organs (Pietropaolo et al.
1993; Karges et al. 1996). This protein and its Caenorhabditis elegans homolog ric-19 are
conserved regulators of neuroendocrine secretion (Pilon et al. 2000; Sumakovic et al. 2009).
ICA69 is involved in DCV signaling and maturation, and it is recruited to Golgi membranes
by activated Rab2 (Buffa et al. 2008). ICA69 is thought to be a T1D autoantigen based on
the following two observations. First, autoantibodies to ICA69 can be detected in both first-
degree relatives of T1D patients who are followed to overt diabetes and in newly diagnosed
diabetic patients (Pietropaolo et al. 1993; Martin et al. 1995; Roep et al. 1996; Dosch et al.
1999; Song et al. 2003). Second, T cells autoreactive to ICA69 can be detected in newly
diagnosed diabetic children and in NOD mice (Winer et al. 2000; Chen et al. 2001). We
have recently found that polymorphisms within the NOD Ica1 core promoter determines
AIRE-mediated down-regulation of ICA69 expression in medullary thymic epithelial cells,
thus providing a novel mechanistic explanation for the loss of immunologic tolerance to this
self-antigen in autoimmunity in the NOD mouse model (Bonner et al., pers. comm.).

IGRP is a member of the G6Pase family that is specifically expressed in pancreatic β cells,
as an ER resident protein (Arden et al. 1999). This molecule is a target of a significant
subset of islet-associated CD8+ T cells in NOD mice (Santamaria et al. 1995). These CD8+
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T cells express an invariant α chain characterized by Vα17–Jα42 recombination
(DiLorenzo et al. 1998) and undergo a process of avidity maturation during the progression
of islet inflammation to overt diabetes. IGRP has been shown to be a target of autoreactive
CD8+ T cells in human autoimmune diabetes (Mallone et al. 2007). Extrathymic Aire/IGRP-
expressing cells (eTACs) may help reinforce immune tolerance by preventing the maturation
of autoreactive T cells that escape thymic negative selection (Gardner et al. 2008).

Another component of insulin secretory granules, chromogranin A (ChgA), has been
recently proposed as an autoantigen of T1D (Stadinski et al. 2010). ChgA is a member of the
granin protein family and is found throughout neuroendocrine tissues including the adrenal
medulla, central nervous system, and pancreas (Taupenot et al. 2003). ChgA may also be
needed during the development of the endocrine pancreas, as evidenced by the fact that
ChgA knockout mice (ChgA−/−) have fewer islets and insulin-producing β cells (Porte
1991). Of autoantigenic significance, ChgA aids in the formation of secretory granules (Kim
et al. 2001) and is processed to form smaller peptides (Taupenot et al. 2003). In regards to
T1D in NOD mice, an antigen from β-cell secretory granules that activates the diabetic T-
cell clone BDC-2.5 and two other clones was identified as ChgA (Stadinski et al. 2010).
Stadinski et al. went on to identify a sequence in the carboxy-terminal region of ChgA,
encoding the peptide WE-14, which activated all three T-cell clones. The results indicated
that ChgA can trigger a T-cell-mediated immune response in NOD mice and that its WE-14
peptide is the antigenic epitope. In contrast, the role of ChgA as an autoantigen in human
autoimmune diabetes remains to be elucidated.

Thought-provoking findings led to the hypothesis that early autoimmunity in spontaneous
T1D can also target nervous system tissue elements in the pancreas, raising the concept that
pathogenetic immune responses in T1D may also be non-β-cell exclusive (Winer et al.
2003). One of these molecular targets appears to be peripherin (Boitard et al. 1992).
Peripherin is expressed in multiple endocrine tissues, including nerve fibers surrounding
islets of Langerhans in the pancreas, adrenal medulla, nerve fibers in interstitial tissue
between thyroid follicles, and nerve fibers adjacent to ovarian follicles (Chamberlain et al.
2010). Serologic responses to peripherin have been found in autonomic fibers in the
pancreas, thyroid, and ovary, supporting clinical observations suggesting that neuronal
elements may be a molecular target for immune-mediated injury in multiple forms of
endocrine autoimmunity, including T1D (Chamberlain et al. 2010). However, it remains to
be established as to whether or not the presence of peripherin antibodies, along with
serologic responses to other putative neuronal elements, are predictive for the development
of small fiber neuropathy (autonomic and/or somatic) and for the progression to overt
diabetes.

PROTEIN MISFOLDING AS A CONTRIBUTOR TO AUTOANTIGENICITY
In addition to the physiological events of exocytotic protein exposure at the cell surface, β
cells have additional opportunities for generating antigens from major islet secretory
pathway proteins. Conceivably, the misfolding of proinsulin and other secretory pathway
proteins, when linked to pathways of endoplasmic reticulum-associated degradation
(ERAD) (McCracken and Brodsky 2003), results in proteasomal processing of these
polypeptides that could increase major histocompatibility complex (MHC) class I loading
with availability of autoantigenic peptides to antigen-presenting cells (Eizirik et al. 2008).
Overexpression of class I molecules (HLA-A, B, and C) in pancreatic islets at the time of
onset of T1D has long been recognized, in association with pancreatic infiltration with
cytotoxic CD8+ T cells surrounding damaged islets (Bottazzo et al. 1985). Increased MHC
class I-related gene expression may be stimulated by cytokines but also under states of
protein misfolding and cell stress, because MICA and MICB (MHC class I-related) are both
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regulated by heat-shock promoter elements similar to those of HSP70 genes (Groh et al.
1996). Thus, β-cell stress can potentially contribute to increased proteasomally derived
antigen presentation, both by increasing ERAD and also by increasing expression of MHC
class I-related gene products (Fig. 3).

Proinsulin, like other members of the IGF superfamily (Hober et al. 1994, 1999; Guo et al.
2002), is a protein predisposed to mispair its disulfide bonds during folding either in vivo
(Liu et al. 2005) or in vitro (Hua et al. 1995, 2002; Qiao et al. 2003). Proinsulin misfolding
becomes a virtual certainty in the syndrome of mutant INS gene-induced diabetes of youth
(MIDY), in which heterozygotes bear one of 26 different mutations in the preproinsulin
coding sequence linked to autosomal-dominant diabetes, that presents often (but not
exclusively) in neonatal life (Liu et al. 2010b). These mutant proinsulins not only misfold
within the ER, but they also block in trans the folding and maturation of proinsulin
coexpressed from a wild-type allele (Hodish et al. 2010). Blockade of intracellular transport
appears to be coupled—at least in part—to the proteasomal degradation of the misfolded
mutant proinsulin as well as the coexpressed wild-type proinsulin (Liu et al. 2010a).
Although patients with MIDY are not autoantibody positive, the idea that proinsulin
misfolding leads to potential proteasomally generated proinsulin-derived peptides that could
be antigens, is plausible. Interestingly, of the preproinsulin domains (signal peptide, B chain,
C-peptide, and A chain) the majority of MIDY mutations fall within the B chain, including
seven such mutations within the S(B9)–G(B23) sequence. These data underscore the
importance of this structurally sensitive region during the folding of proinsulin. This region
is likely to remain structurally sensitive in mature insulin, because by X-ray crystallography,
mature insulin monomers are likely to exist in two distinct states: the T state, in which the
amino-terminal residues F(B1)–G(B8) lead into a β turn [C(B7)–H(B10)] thereby
“masking” the α helix beginning at residue S(B9); and the R state in which these same
amino-terminal residues are in an extended conformation, thereby “exposing” the S(B9)–
C(B19) α helix (Baker et al. 1988). Unanue and coworkers have suggested that in islet β
cells of NOD mice, the insulin B9–B23 peptide might be produced directly from processing
of insulin derived from secretory granules (Mohan et al. 2010). Thus, there are multiple
distinct changes in the conformational state of proinsulin and insulin—merely as one
example—that may initiate its antigenicity.

REGULATION OF SECRETORY GRANULE AUTOANTIGEN PRODUCTION IN
β CELLS

The biosynthesis of major secretory granule proteins is regulated by multiple nutrients,
hormones, and neurotransmitters, the most notable of which is glucose (Rhodes 2004).
Specifically, glucose coordinately regulates a subset of ~50 proteins in the β cell—most
destined for insulin secretory granules (Guest et al. 1989; Rhodes 2004)—such as proinsulin
and its processing endopeptidases proPC1/3 and proPC2 (Alarcón et al. 1993; Martin et al.
1994). This increase in granule protein biosynthesis is initiated rapidly, i.e., up to 10-fold
within 60 min (Alarcón et al. 1993; Rhodes 2004), and this early response is controlled
primarily at the translational level (Itoh and Okamoto 1980; Wicks-teed et al. 2003). For
prolonged periods of elevated glucose, there is a further effect on pre-proinsulin messenger
RNA (mRNA) stability (Welsh et al. 1985) and increasing insulin gene transcription
(Ohneda et al. 2000), which adds additional preproinsulin mRNA template potentially
available for translation (Wicksteed et al. 2003). The mechanism for the specific glucose-
induced increase in proinsulin translation is only partly understood, but it requires a highly
conserved element in a 5′-untranslated region cis-element of the preproinsulin mRNA,
called the preproinsulin glucose element (ppIGE) (Wicksteed et al. 2007). Interestingly, this
ppIGE is also highly conserved in the 5′-untranslated region of the mRNA of other insulin
secretory granule proteins whose biosynthesis is under the same specific glucose-induced
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translational control (Uchizono et al. 2007). In summary, the biosynthesis of insulin and
selective other proteins is strongly and selectively up-regulated by glucose (Guest et al.
1991) so that protein constituents are coordinately regulated during secretory granule
biogenesis.

In states of increased biosynthetic activity, proinsulin (and other protein) content in the ER
increases (Eizirik et al. 2009), and under such conditions, the amount of misfolded pro-
insulin also increases (Liu et al. 2005). The ER stress response (also known as UPR) can
initially protect β cells by expanding ER capacity to meet the challenge of processing a
physiological increase in proinsulin protein folding (Credle et al. 2005; Merksamer et al.
2008). However, in the face of sustained, high-level ER stress, chronic UPR activation may
become cytotoxic when protective mechanisms in β cells fail (Papa et al. 2003). Although
pancreatic β-cell-reactive T cells may initiate β-cell destruction in T1D, stress response
mechanisms (Akirav et al. 2008) in β cells may actually accelerate the extent of disease
progression. Specifically, not only can ER stress stimulate proteasomal generation of ERAD
peptides (Fig. 3) but it may also directly promote β-cell death (Fig. 4). Indeed pancreatic β
cells are highly susceptible to ER stress-induced cytotoxicity (Ron and Walter 2007) with a
potential direct contribution to several forms of human diabetes (Oslowski and Urano 2011).
With respect to T1D, dendritic cell interaction with, and processing of, dead or damaged β
cells could lead to presentation of β-cell antigens to pathogenic T cells (Fig. 4) (Fonseca et
al. 2009). However, autoimmune attack, by diminishing the β-cell population, may drive
excessive translational activity in remaining β cells as they are forced to synthesize larger
and larger amounts of proinsulin/insulin [with increased proinsulin misfolding (Liu et al.
2005)], thereby elevating ER stress levels in the remaining β cells (Todd et al. 2008). This in
turn may promote further rounds of β-cell cytotoxicity while making additional antigen
available for presentation to the immune system. Thus, both cytokine and secretory pathway
stress could contribute to a vicious cycle in which secretory pathway antigens are connected
to autoimmunity. For this reason, it is reasonable to postulate that cell compensatory
responses might be critical modifiers of disease onset and activity, and might also be used as
drug targets in T1D.

CONCLUDING REMARKS
There is still little understood about islet β-cell autoantigenicity. Are autoantigens the trigger
of autoimmune attack, or collateral damage as part of an ongoing and premeditated immune
destruction of a β cell? The β-cell homicide versus suicide debate is still not resolved
(Atkinson et al. 2011). But, with the possible exception of GAD65, it should be considered
that the other major T1D autoantigens (pro)-insulin, ZnT8, IA2, and IA2β, are coordinately
regulated at the biosynthetic level. When metabolic demand is increased there will be
increased production of these antigenic proteins, which in turn increases the chances of their
misfolding with production of antigenic peptides. Moreover, there will be increased insulin
secretory granule exocytosis, which will result in a greater frequency of antigen presentation
at the β-cell surface. So at least, during the pathogenesis of T1D, which includes increased
excursions of hyperglycemia, there would be more active β cells trying to produce and
secrete more insulin to meet the demand, but this could also trigger β-cell demise. We
conclude that in this particular situation, the β cell, in conjunction with autoimmune attack,
is undergoing an assisted suicide. However, this is mere conjecture, and what is really
needed is cooperative research between immunologists and β-cell biologists to get at the
root cause of T1D pathogenesis, and consequently to design new therapies that can help to
avert the disease.
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Figure 1.
Insulin residues B9–B23 contribute to the dimerization interface between insulin monomers.
(A) The crystal structure (Protein Data Bank code 2R34) of two insulin monomers is
displayed. Atoms underlying the molecular surface are colored blue for nitrogen, red for
oxygen, and green for carbon for monomer 1 A chain, cyan for carbon for monomer 1 B
chain, yellow for carbon for monomer 2 B chain, and magenta for carbon for monomer 2 A
chain. A chloride ion is depicted as a green sphere. A manganese (II) ion is depicted as a
purple sphere. (B) The relative contribution of insulin residues that contribute to the
dimerization interface is shown. PROTORP was used to analyze the interfaces between
insulin chains, which shows that B9–B23 residues participate in the dimerization interface.
B16 tyrosine is buried at the interface contributing more (% interface surface accessible
area) to the dimerization interface (21%) than other residues.
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Figure 2.
Predominant intracellular distribution of major T1D autoantigens in pancreatic β cells. Two
organelles of the β-cell secretory pathway are shown bearing autoantigens (in blue-green).
The secretory granule contains primarily insulin (shown in black, similar to the appearance
of the insulin crystal by transmission electron microscopy). A small fraction of unconverted
proinsulin is also contained within secretory granules. The “clear space” surrounding the
insulin granule core is thought to be enriched in the soluble C- peptide, which is not
specifically denoted in the figure. The secretory granule membrane is the primary site of
distribution of three additional β-cell autoantigens: ZnT8 is a polytopic membrane protein,
IA-2 is a single-spanning transmembrane protein with both extensive luminal and cytosolic
domains, and ICA69 is a type 1 transmembrane protein predominantly residing on the
lumenal side of the membrane. As noted in the text, GAD65 localizes away from these other
autoantigens, residing primarily on the cytosolic side of the membrane of secretory
microvesicles, also known as “synapticlike vesicles” (SNLVs).
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Figure 3.
Hypothesis: ERAD of misfolded secretory pathway proteins triggers MHC class I loading
and presentation of autoantigens. In the case of misfolded secretory pathway proteins,
retrotrans location from the ER to the cytosol triggers degradation via the ubiquitin-
proteasome system. The generation of small cleavage fragments and their transport back into
the ER lumen allows for peptide loading of MHC class I (via the TAP/tapasin complex).
Cell stress can promote ER misfolding of secretory and membrane proteins (Kuznetsov and
Nigam 1998) and also may promote expression of major histocompatibility complex class I-
related genes (Groh et al. 1996). Thus, it is a plausible hypothesis that the net result of these
two effects is enhanced β-cell autoantigen presentation.
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Figure 4.
Simplified model of β-cell damage leading to antigen presentation. T cells can directly kill β
cells through a cytotoxic process, but they can also influence β-cell destruction via release of
mediators such as cytokines, chemokines, or perforin. Cytokine activation of inducible nitric
oxide synthase can activate ER stress response signaling (Oyadomari et al. 2001)—
pathways collectively known as the unfolded protein response (UPR). It is therefore
conceivable that cell stress including UPR may be a potential contributor to β-cell toxicity in
T1D. Processing of autoantigens within β cells generates peptides that are then taken up by
antigen-presenting cells (APCs), either as whole dead β cells or β-cell fragments, for
eventual further processing/presentation of these islet peptides to self-reactive T cells.
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