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Abstract
Neural integration converts transient events into sustained neural activity. In the smooth pursuit
eye movement system, neural integration is required to convert cerebellar output into the sustained
discharge of extraocular motoneurons. We recorded the expression of integration in the time-
varying firing rates of cerebellar and brainstem neurons in the monkey during pursuit of step-ramp
target motion. Electrical stimulation with single shocks in the cerebellum identified brainstem
neurons that are monosynaptic targets of inhibition from the cerebellar floccular complex. They
discharge in relation to eye acceleration, eye velocity, and eye position, with a stronger
acceleration signal than found in most other brainstem neurons. The acceleration and velocity
signals can be accounted for by opponent contributions from the two sides of the cerebellum,
without integration; the position signal implies participation in the integrator. Other neurons in the
vestibular nucleus show a wide range of blends of signals related to eye velocity and eye position,
reflecting different stages of integration. Neurons in the Abducens nucleus discharge
homogeneously in relation mainly to eye position, and reflect almost perfect integration of the
cerebellar outputs. Average responses of neural populations and the diverse individual responses
of large samples of individual neurons are reproduced by a hierarchical neural circuit based on a
model suggested the anatomy and physiology of the larval zebrafish brainstem. The model uses a
combination of feed-forward and feedback connections to support a neural circuit basis for
integration in monkeys and other species.

Introduction
Neural integration converts a transient event into a sustained response. In addition to its
functions in oculomotor control (Skavenski and Robinson, 1973; Galiana and Outerbridge,
1984; Cannon and Robinson, 1985; Seung, 1996), integration maintains the memory of a
sensory event long after the physical stimulus has vanished (Romo et al., 1999) and is a key
factor in the accumulation of evidence for rendering complex perceptual decisions (Mazurek
et al., 2003). An understanding of the neural mechanisms of integration in the brainstem
oculomotor system may lead to understanding of the implementation of an essential neural
computation that is used in many brain circuits, for multiple purposes.
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We can understand the function of a neural circuit by studying the relation between its
inputs and outputs. To understand how a circuit works, however, we must investigate the
intermediate processing within the circuit. In smooth pursuit eye movements, we already
have some knowledge of the time-varying firing rates of Purkinje cells in the cerebellum
that provide the inputs to a brainstem circuit (Stone and Lisberger, 1990), and we can predict
the time-varying output of that circuit in the discharge of extraocular motoneurons.
Knowledge of these inputs and outputs reveals that integration in the mathematical sense is
the function of the brainstem circuit (Shidara et al., 1993; Krauzlis and Lisberger, 1994). A
number of prior papers have proposed neural circuit mechanisms for integration (Cannon et
al., 1983; Galiana and Outerbridge, 1984; Cannon and Robinson, 1985; Seung, 1996; Miri et
al., 2011), most based on recurrent connections within an integrating circuit. Missing,
however, is an understanding of the pattern of recurrent connections that would allow the
circuit to perform integration and would mimic the responses of real brainstem neurons
during eye movement behavior.

Our goal was to move beyond the previous understanding of how the integrator circuit
works through two approaches. First, by using electrical stimulation in the cerebellum to
identify brainstem neurons that are on the input side of the integrator circuit, we can start to
correlate different degrees of integration with the relative position of neurons within an
integrator circuit. Second, by treating the diversity of the time-varying firing rates in the
brainstem during the same, stereotyped smooth pursuit eye movement as meaningful, rather
than simply as noisy variation, we can ask about the internal workings of the integrator
circuit. Thus, we can address the key questions of whether substantial amount of integration
is performed at the cerebellum target neurons, and whether the diversity of time-varying
firing rates across the non-target neurons might arise within an integrator circuit (Miri et al.,
2011). Our data suggest that integration occurs progressively in brainstem neurons, and that
the diversity of time-varying neural responses is a natural consequence of a specific
architecture in the connections of integrator circuits.

Our computational analysis takes off from a suggestion of Miri et al. (2011), who provided a
major advance toward understanding the neural mechanisms of integration. Through
calcium imaging during fixation eye movements in larval zebrafish, they suggested an
integrating circuit in which the connections are stronger among nearer neighbors, and
integration proceeds progressively. Remarkably, the integrating circuits suggested by their
calcium imaging in zebrafish have explanatory power for our single neuron recordings from
behaving monkeys. A minor modification of their hierarchical model of integration both
performs neural integration and reproduces the diversity of time-varying neural responses in
our dataset, suggesting a possible neural circuit basis for integration.

Materials and methods
Two male rhesus monkeys (Macaca mulatta) served as subjects. To instrument them for
experiments, we anesthetized each monkey with isofluorane and implanted a coil of wire on
one eye (Ramachandran and Lisberger, 2005) to measure eye position using the magnetic
search coil technique. We also used 6 mm long screws to attach custom-cut orthopedic
stainless steel strips to the skull. The strips served as the foundation for dental acrylic to
secure a receptacle that was used to fix the head to the primate chair. Appropriate analgesic
and antibiotic treatments were administered postoperatively. After they had recovered from
surgery, we trained the monkeys to sit in a primate chair with the head restrained and to
fixate and track spots of light that moved across a video monitor placed in front of them.

To measure and quantify eye movements, we scaled the signals from the eye coil monitor to
obtain signals related to horizontal and vertical eye position. We then passed the position
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voltages through an analog circuit to create signals proportional to horizontal and vertical
eye velocity. The circuit differentiated frequency content from 0 to 25 Hz and filtered higher
frequencies with a roll-off of 20 db/decade. Signals related to eye position, eye velocity, and
turntable angular velocity were digitized at 1000 samples/s on each channel. We calculated
eye acceleration by differentiating the velocity signals and applying digital filtering using a
4-pole filter with a cutoff at 25 Hz. Saccades had been removed from the velocity traces
prior to filtering.

In a later surgery, we used a trephine to make a hole in the skull, and we used 8-mm
titanium orthopedic screws and dental acrylic to secure a recording cylinder aimed at the
brainstem (Lisberger et al., 1994a). During experiments, we lowered glass-coated platinum–
iridium electrodes into the brainstem to record from neurons in the vestibular and Abducens
nucleus. Voltage waveforms from the electrodes were amplified conventionally and band-
pass filtered, usually between 500 Hz and 5 kHz. We also sampled the voltage waveforms
from the electrode continuously at 25 kHz to allow off-line spike sorting. We identified the
relevant portion of the vestibular nucleus in relation to the location of the right Abducens
nucleus, which was distinguished by the characteristic singing activity associated with eye
movements toward the right (Fuchs and Luschei, 1970).

To identify the “floccular target neurons” or “FTNs” that received monosynaptic inhibition
from the floccular complex of the cerebellum, we implanted a bipolar stimulating electrode
(Rhodes Medical Instruments, Woodland Hills, CA) chronically at a site in the floccular
complex where stimulation with single pulses or brief trains caused smooth eye velocity
toward the side of stimulation with a latency of about 10 ms (Lisberger et al., 1994a).
Floccular stimulation was provided by biphasic, bipolar stimuli where each phase of the
pulse had duration of 100 μs and amplitude of 200 μA. We delivered single shocks to the
floccular complex while recording from neurons in the vestibular nucleus to identify them
according to whether they showed a clear inhibition at monosynaptic latencies. All
procedures involving the monkeys had been approved in advance by the Institutional
Animal Care and Use Committee at UCSF, and followed the NIH Guide for the Care and
Use of Laboratory Animals. All experiments were conducted at UCSF.

Experimental design
Visual stimuli appeared on a Barco monitor at a distance of 30 cm from the monkey’s eye.
Targets were bright 0.6° circles on a dark background. All experiments were carried out in a
dimly lit room. To classify each neuron according to its responses during eye and head
movement, we characterized its responses under several different tracking conditions. To
determine the relationship between neuronal firing rate and eye position, the target moved in
5° steps to a variety of different positions over a range of ±20° while the monkeys fixated
within a 3° square window for an interval of 1 or 1.5 s for monkeys P and I. To determine
the relationship between neuronal firing rate and smooth pursuit with the head stationary, we
provided sinusoidal target motion along the horizontal or vertical axis. To determine the
contribution of vestibular inputs, the target either moved exactly with the monkey during
sinusoidal vestibular rotation (VOR cancellation) or remained stationary in space during the
same rotation (VOR in the light). Sinusoidal stimuli were at 0.5 Hz, ±10 degrees.

After classifying each neuron, we recorded its responses during pursuit of step-ramp target
motions (Rashbass, 1961) presented in discrete trials. At the start of each trial, a stationary
target appeared and monkeys were required to fixate within a 2-3° square window for an
interval that was randomized between 500 and 700 ms. The target then displaced
horizontally to a location eccentric to the position of gaze (step), and immediately began
moving toward the fixation point (ramp). The size of the displacement was chosen to
minimize the presence of initial saccades and hence varied slightly between monkeys,
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recording days, and target speeds. For brainstem neurons, target speed was 30 deg/s; we
used a step of about 5 degrees, and the duration of target motion was 600 ms. For Purkinje
cells (PCs), target speeds were 20 and 30 deg/s in the on direction and 20 deg/s in the off
direction; we used a step of about 4 or 6 degrees, and the duration of target motion was 750
ms. After the target stopped moving, it remained stationary for 500 and 700 ms for monkeys
P and I. Due to the differences in the target speed and movement duration in the comparison
between PC and FTNs we used the “inverse” model (Shidara et al., 1993; Medina and
Lisberger, 2007; 2009, see Equation 5 in Results) to compare the response profiles of FTNs
and PCs. We verified that fitting the data with the inverse model yielded the same
sensitivities to the parameters of eye movements for target speeds of 20 or the 30 deg/s in
the on direction for all PCs in the on direction and in the off direction for the three PCs that
provided appropriate data.

Neural database
We recorded from 113 Abducens neurons (44 and 68 from monkey I and P), and 243
neurons in the region of the vestibular nucleus (206 and 37 from monkey I and P). For the
analysis of smooth pursuit during step-ramp target motion, we used cells that were well
isolated for more than 3 trials of pursuit: 75 Abducens neurons and 175 vestibular neurons
passed these criteria. Of the 175 vestibular neurons, 39 were identified as floccular target
neurons, or FTNs, because they were inhibited at monosynaptic latencies by stimulation in
the floccular complex. An additional 6 neurons were excited by floccular stimulation. Of the
vestibular neurons that did not respond to stimulation, 53 responded to eye and head
movement in the same direction during pursuit with the head stationary and cancellation of
the VOR, and were classified as “eye-head velocity” (EHV) neurons. Thirty-five neurons
responded to eye and head motion in the opposite direction during pursuit with the head
stationary and cancellation of the VOR and were classified as “position-vestibular-pause”
(PVP) neurons, and 30 neurons responded only to eye movement and were classified as “eye
movement” (EM) neurons. The remaining 12 neurons did not fall in either of these
categories or we did not have enough data to fully characterize. The six neurons that were
excited orthodromically were grouped with FTNs for the population analysis because they
had similar response properties. Eight of the neurons that were classified as vestibular
neurons according to their response properties also responded antidromically to floccular
stimulation. Repeating the analysis without the neurons that were excited antidromically or
orthodromically did not change any of the conclusions in the paper. We did not study
neurons that lacked response modulation during smooth eye movements, leading us to
exclude the “vestibular-only” neurons.

Data analysis
We used threshold-based methods to detect saccades automatically as deviations of more
than 25 deg/s from the average eye velocity across a pursuit trial and as eye velocities of
more than 10 deg/s during fixations. We then verified the automatic decisions by visual
inspection of the traces from each trial. Behavioral or neural data were treated as missing in
the interval from 20 ms before to 20 ms after the rapid deflections of eye velocity associated
with each saccade. More restricted criteria such as ignoring data within 100 ms of a saccade
or using only trials without saccades did not alter our conclusions.

We used the reciprocal of the interspike interval (ISI) to convert the spike train for each
individual pursuit trial to a continuous firing rate variable and average across repetitions.
The reciprocal of the ISI, the modified reciprocal ISI algorithm developed by Lisberger and
Pavelko (1986), and Gaussian smoothing of the spike train all gave similar results. For each
neuron we accumulated the average rate and behavior in 20-ms-wide bins.
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We estimated the sensitivity to eye position during fixation as the slope obtained by linear
regression of average firing rate with eye position. To enable comparison of position
sensitivities during pursuit and fixation and to insure that the sensitivity is in the linear range
of the relation between position and rate (Lisberger et al., 1994a) we limited the range of eye
position for calculating the position sensitivity during fixation to match the eye position
change during pursuit (typically 0-15°). Using larger ranges changed the sensitivities
slightly, but did not alter any of the conclusions of the study.

Simulation
We created an integrating neural circuit that consisted of 18 or 105 model neurons and
computed the activity of each model neuron in the circuit as:

(1)

Here, xi represents the firing rate of neuron i, wij represents the weight of the connection
from neuron j to neuron i, Ii represents the external input to neuron i, and τ represents the
intrinsic time constant of each model neuron. As detailed in the Results, we used the known
time-varying output from the floccular complex (Medina and Lisberger, 2007) as Ii for the
model neurons intended to simulate FTNs, and we set Ii to zero for the other model neurons.
The weight matrix was set to decrease exponentially with the difference between the
neurons’ indices: wi,j = exp(−σ·|i−j|) when i ≠ j, and wi,j = 0 when i=j. To make the
connections stronger for feed-forward connections, the values of wi,j then were multiplied
by 0.35 for i<j. We set σ equal to 2/3 and 1/10 for the small and large networks, which was
an intermediate value between a network in which all neurons are connected and a network
that performs only very local computations. After applying the equations outlined above,
each entry in the weight matrix was divided by the sum of the weights in its column,
resulting in a matrix with a sum of 1 in all columns. As pointed out by Seung (1996), a
matrix with all positive entries and a sum of 1 in all columns is a sufficient condition for
perfect integration of inputs, because the vector [1, 1, …, 1] is a left eigenvector with an
eigenvalue equal to 1 and the absolute values of all other eigenvalues are smaller than 1
(Perron–Frobenius theorem). The normalization procedure does create important feedback at
the end of the hierarchy of model neurons. Neurons at the end of the hierarchy have fewer
feed-forward connections so that column normalization increases the size weights, leading
to stronger feedback at the end of the hierarchy.

We ran the simulations using the matlab routine ode45solver (Runge-Kutta 4,5) with time
steps of 1 ms; reducing the time steps to 0.1 ms did not alter the simulation results. We set τ
equal to 5 ms in all model neurons for the simulations of our data, so that different degrees
of integration in the responses of different model neurons to a stimulus of duration 1 second
had to be a consequence of network architecture. Large time constants in the individual
model neurons also had the disadvantage of preventing the model from reproducing the
time-varying neural responses in our data (details in Results).

The model represented by Equation (1) integrates and mimics the diversity and range of the
dynamic behavior of the neurons in our sample, but has the disadvantage that it does not
include any gain factors that allow it to reproduce the actual firing rate magnitudes of the
real neurons. To fit the model network to actual firing rate while maintaining the diversity
and range of the temporal pattern of responses, we applied a different scaling factor to each
entry in the weight matrix. To do so, we define yi ≡ gi · xi and replace xi by yi/gi in Equation
(1), where yi represents the firing rate of neuron i.
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(2)

Multiplying both sides of Equation (2) by gi yields:

(3)

Equation (3) is the network equation for yi with a redefined matrix of weights: 

and a redefined input function: . For each cell i, gi is the same for external (I) and
all internal input connections. Therefore, we interpret gi as a gain factor for transforming the
inputs to outputs, wi,j/gj as the synaptic weights between neurons and Ii as the input to the ith

model neuron. I* is non-zero only for FTNs because I was non-zero only for FTNs. Because
the model is linear, of course, any other assignment of overall gain to weights versus internal
transformations would work as well. We used the same temporal pattern for the inputs to all
model FTNs; hence scaling the inputs does not change the temporal pattern of the output.
We use W to denote the connectivity matrix used to create the theoretically simplest model
network, W* to denote the effective connectivity matrix of the network after applying the
internal gains of the model neurons, and Wsynapse as the matrix of synaptic weights in the
network after we separated the internal gain from W*.

To model the responses of Abducens neurons, we summed the values xi:

(4)

The model described by Equation (3) integrates its inputs I* because the model is equivalent
to that described by Equation (2). A different way to prove that the network created by
Equation (3) is an integrator is to recognize that the vector [1/g1 1/g2 … 1/gn] is an
eigenvector with eigenvalue of 1 (Seung, 1996): to properly decode the output we divide the
activity of the neuron yi by gi in Equation (4).

To simulate the model, we applied an input waveform derived from the responses of
floccular Purkinje cells (Medina and Lisberger, 2007, 2009) simultaneously to the first 1/3
of the neurons in our model network, defining them as FTNs. The second 1/3 of neurons
was intended to represent vestibular neurons and the last 1/3 to represent neuron in the
nucleus prepositus hypoglossi (NPH). We optimized the integrating model in two steps.
First, we ran the network described by Equation (1) and computed average responses of the
model neurons intended to represent FTNs, vestibular neurons, and NPH neurons. Next, we
computed scaling factors gFTN, gVST, and gNPH that provided the best match between the
average responses of the model neurons and the real neurons. We then assigned the values
of the gi in Equations (2) and (3) as g1-6 = gFTN, g7-12 = gVST, and g13-18 = gNPH, simulated
the model described by Equation (3) and reported the results. We selected a gain factor G in
Equation (4) so that the output of the model had the same amplitude as the average
responses of Abducens neurons.

To “lesion” the network we reduced the synaptic weights at the outputs and inputs of
individual model neurons to 95% of the weights that lead to perfect integration. The time
constant of the decay in the output of the lesioned network was calculated by fitting the
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output with an exponential function. We verified that the fitting procedure yielded a time

constant of decay equal to , where τ is the time constant of the model neurons and λ is
the largest eigenvalue of the connectivity matrix. The decay in the output of the lesioned
networks with connectivity W and W* is the same because the connectivity matrices are
“similar” and hence have the same eigenvalues and the same rate of decay in output activity.

To work with a larger and more realistic group of model neurons, we choose 35 FTNs and
35 vestibular neurons randomly, and computed the predicted responses of 35 identical
prepositus neurons based on data from McFarland and Fuchs (1992). We then optimized the
weight matrix in Equation (1) to provide a match between the responses of the brainstem
neuron and the responses of a network with the 105 model neurons. For each neuron we
defined the similarity in the temporal pattern between the data neuron and responses of the
simulated neuron as the correlation coefficient between responses:

where r is the response of a real neuron, and m is the activity of a simulated neuron. We then
assigned each real neuron to a model neuron using Munkres (Hungarian) assignment
algorithm with a cost function equal to -CC(r,m). The Munkres algorithms creates a unique
correspondence between real neurons and simulated neurons while minimizing the over all
cost function between the data and the assigned neurons. As result, it maximizes the fit
between the temporal patterns of real and model neurons. Finally, after creating the best
correspondence between real and model neurons, we calculated the gain separately for each
model neuron.

Results
We recorded neural responses and eye movements as monkeys tracked a target that was
initially stationary, then moved at constant speed on a display in front of them, and finally
stopped for 500-700 ms. The traces in Figure 1A illustrate the target motion and average eye
movement during one recording session. A “step-ramp” of target position evokes smooth
pursuit eye movements without saccades (Rashbass, 1961). About 100 ms after the onset of
target motion, rapid eye acceleration brings eye velocity up to target velocity. Eye velocity
is maintained throughout the remaining target motion and ends with eye deceleration after
the target stops moving.

We recorded from areas of the brainstem that contain neurons responding in relation to eye
movement and vestibular stimulation (Ramachandran and Lisberger, 2006, 2008). Floccular
target neurons, or “FTNs”, were identified by the clear pause in firing at monosynaptic
latencies after application of single shocks through an electrode implanted in the cerebellar
floccular complex (raster above Figure 1C). Other eye-movement related neurons in the
vestibular nucleus and the Abducens nucleus failed to show the same pause after stimulation
of the floccular complex with single shocks (rasters above Figures 1D, E), but were
categorized according the their distinctive firing patterns and their recording locations
relative to the Abducens nucleus.

Components of time-varying responses of identified brainstem neurons
Neurons in the different populations had different temporal response properties. The firing
rate of the example FTN in Figure 1C (continuous black trace) shows a clear transient at
movement onset followed by sustained activity: this pattern reflects a relationship to eye
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acceleration and eye velocity. The firing rate of the non-FTN vestibular neuron in Figure 1D
also shows sustained activity but lacks a transient at pursuit initiation, indicating a
relationship to eye velocity but not eye acceleration. For both the FTN and the non-FTN
vestibular neuron, firing rate drops rapidly when the eye stops moving at the end of the trial,
but to a level that is higher than the initial rate because of a relationship between firing rate
and the change in eye position during the trial. The firing rate of the Abducens neuron in
Figure 1E increases gradually during the eye movement with no sign of a transient at pursuit
initiation and only a small decrease when the eye stops moving and settles at its final
position at the end of the trial. Thus, Abducens neurons discharge mainly in relation to eye
position, with smaller components related to eye velocity and eye acceleration (see Keller,
1973). The average firing rates across all neurons in each of the three categories (Figures
1F-H) agreed well with the individual examples (Figures 1C-E).

To follow the traditional approach of separating each neuron’s response into terms that
represent the contributions of average eye acceleration, eye velocity and eye position, we
fitted the time-varying average firing rate of each neuron with a linear model that represents
firing rate as a weighted linear sum of instantaneous eye position, velocity, and acceleration:

(5)

Here, rr is firing rate during fixation at straight ahead; Δt indicates the time shift of the eye
movement averages need to optimize the fit to the average firing rate; a, r, and k represent
the sensitivity of the neuron to eye acceleration, velocity, and position; and aË(t), rĖ(t), and
kE(t) represent the contributions of average eye acceleration, eye velocity and eye position
to firing rate (colored traces in Figure 1C-H).

As shown by others (Keller, 1973; Fuchs et al., 1988; Scudder and Fuchs, 1992; Shidara et
al., 1993; Sylvestre and Cullen, 1999; Medina and Lisberger, 2007), fitting the average
responses with Equation (5) provides a reliable account of the neural responses. The
percentage of the variance accounted by the fit was 88%, 99.1%, and 99.9% for the neurons
illustrated in Figure 1C, D, and E, and averaged 88%, 89%, and 99.5% across our full
samples of FTNs, vestibular, and Abducens neurons. Comparison of the actual and predicted
firing rate in Figure 1C (black continuous and dashed curves) provides a sense of the quality
of a fit that accounts for 88% of variance. We inspected all fits to ensure that there were no
major systematic errors for any of the individual neurons in our sample.

The transient increase in the FTN response at the initiation of movement and the transient
decrease at movement offset reflect a large contribution of the eye acceleration component
(red trace in Figure 1C and F). Typically FTNs showed a brisk initial rise in firing rate at the
onset of pursuit, and most showed a transient response with sustained responses that varied
in magnitude across the sample. Only one FTN (Figure 1I, purple trace) showed a large
ramp increase in firing rate during pursuit, as might be expected from a relationship to eye
position that would result from neural integration.

The steady response of non-FTN vestibular neurons across the duration of the eye motion
reflects the large eye velocity component (green trace in Figures 1D and G). Very few
vestibular neurons (Figure 1J) showed the early transient typical of FTNs, but many showed
some degree of ramp increase in firing across the duration of the response to step-ramp
target motion. Thus, there was impressive diversity in the magnitude of the integrated
response in vestibular neurons. Later in the paper, the diversity of the responses of non-FTN
vestibular neurons will help constrain possible neural circuit mechanisms of integration.

The ramp increase in firing rate of Abducens neurons, with little decrement when eye
motion stops, reflects the dominance of the eye position component of firing rate (blue trace
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in Figure 1E and H). The population of Abducens responses (Figure 1K) was impressively
uniform, and all neurons showed a large ramp of firing rate throughout the ramp change in
eye position for step-ramp target motion. Thus, Abducens neurons uniformly emit an
integrated response. Abducens and non-FTN vestibular neurons showed response
components related to both eye position and eye velocity, but the ratio of the maximal
contribution of the position versus velocity signals was higher in Abducens neurons (2.82)
than in vestibular neurons (1.05) (see also Scudder and Fuchs, 1992).

The differences in the contributions of the different components of eye movement to the
firing of different classes of neurons appeared clearly in the resulting values of the
sensitivity to eye acceleration, velocity, and position (scatter plots of Figures 2A and B). For
example, Abducens neurons (blue symbols) had quite large sensitivity to eye position shown
by the wide spread on the x-axis, but very little sensitivity to eye acceleration shown by the
horizontal relationship in Figure 2A. In contrast, FTNs (red symbols in Figures 2A and B)
had large sensitivity to eye acceleration and smaller sensitivity to eye position, shown by the
nearly vertical relationship in Figure 2A. Vestibular neurons (green symbols) also had little
sensitivity to eye acceleration and plotted in a mostly horizontal clump with sensitivities to
eye position that were smaller than those of Abducens neurons. Comparison of sensitivity to
eye velocity and position (Figure 2B) revealed a steeper slope in FTNs and vestibular
neurons versus Abducens neurons, indicating more of an emphasis on eye velocity signals
outside the Abducens nucleus and more emphasis on eye position in Abducens neurons.

We found a relatively small sensitivity to eye acceleration in the “EHV” vestibular neurons
that lacked inhibition by floccular stimulation but had the same responses in relation to
sinusoidal eye and head movements as did identified FTNs (Scudder and Fuchs, 1992).
Sensitivity to eye acceleration was almost 6 times larger for FTNs than for EHV neurons
(0.095 versus 0.016 spikes/s per deg/s2, p < 0.001, t-test on absolute values). Thus, we
suggest that their cerebellar inputs cause the sensitivity of FTNs to eye acceleration;
previous studies that did not find an acceleration signal in EHV neurons probably sampled
few or no FTNs (Roy and Cullen, 2003). We will elaborate about this difference between
FTNs and EHV neurons later.

Eye position sensitivity during pursuit
We observed two manifestations of a relationship between eye position and firing rate in
brainstem neurons. 1) Regression analysis with Equation (5) quantified the size of an eye
position component during pursuit that also was responsible for the change in steady-firing
rate that persisted at the end of pursuit. 2) Steady fixation for durations of 1 second or more
revealed a relationship between steady firing and eye position (Figure 1B). Here, the large
and small slopes of the relationships for the Abducens neuron (open symbols) and FTN
(filled gray symbols) are correlated with the large versus small difference in steady firing
rate between the start and end of pursuit of step-ramp target motion (Figures 1F versus H).

To test quantitatively the similarity in the sensitivity of the cells in the different conditions,
we plotted the slope of the relationship between firing rate and eye position during steady
fixation (Figure 1B) as a function of the value of the position sensitivity during pursuit,
obtained from Equation (5). For all three classes of neurons, the sensitivity to eye position
was only slightly larger during pursuit than during fixation (see also Fuchs et al., 1988), as
indicated by the tendency of cells to plot slightly above and below the equality line in the
first and third quadrants in Figures 2C and D. The consistent position sensitivity of the cells
across conditions suggests that there is a single common source of the eye position
component of firing of brainstem neurons.
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We showed that the position signal during pursuit is not subsequent to a fast decay of firing
rate after saccades by comparing the sensitivity to eye position from Equation (5) between
averages from trials with versus without saccades. The estimates of sensitivity to eye
position were effectively equal (r> 0.995). We also quantified the persistent change in firing
rate at the end of pursuit trials for a subset of neurons where we obtained up to 650 ms of
fixation after target motion offset. We observed little decay in firing rate over 650 ms of
fixation, implying that the time constant of decay must be very large, if there is decay at all.
The sensitivities to eye position from Equation (5) again were almost equal whether we used
300 or 650 ms of post-pursuit steady fixation (r>0.992). Thus, we find it difficult to attribute
the eye position component of the time-varying firing rate during pursuit to other sources,
such as a rebound from a saccade, or components related to eye velocity or eye acceleration.

Diversity of time-varying firing rate profiles
The time-varying firing rates of the neurons in our sample aligned with the traditional
definition of different classes of brainstem neurons to some degree, but incompletely. In
Figure 3, we have broken our sample of neurons into FTNs, EHV neurons, PVP neurons,
eye-only neurons, and Abducens neurons, and we have plotted the normalized firing rate on
a color scale as a function of time on the x-axis; each individual neuron is shown as one
horizontal line. Ordering the cells from bottom to top according to the time of the peak firing
rate allows clear visualization of the diversity (or not) of time varying firing rate within each
group, and the differences across groups. FTNs show strong transients in many neurons, and
the peak firing rate almost always occurred at the start of the pursuit response. At the other
extreme, Abducens neurons show uniform responses that reflect integration; they ramp up
gradually to peaks that occur near the end of the pursuit response. Non-FTNs recorded in the
region of the vestibular nucleus had quite diverse time-varying firing rates. Some EHV
neurons had transient responses at the onset of pursuit, but the majority reached peak firing
in the second half of the pursuit response. PVP neurons showed a wide range of responses
with peak firing reached at times that were uniformly distributed across the second half of
the pursuit response. The eye-only neurons tended to reach peak firing rate quite late in the
response.

The distributions of the time of peak firing in different classes of neurons (Figure 3, bottom
right), and statistical analysis with ANOVA and the Tukey post hoc test, support the
statements made above. FTNs were the first to reach peak firing rate at 278 ms (p<0.05).
The second to peak were EHV neurons at 486 ms (p < 0.05). The last three populations
tended to reach peak firing towards the end of the trial and the difference between the
populations did not reach significance (600, 648, 692 for EM, PVP and Abducens neurons).
Thus the sharpest difference was between FTNs and other cells in the vestibular nucleus but
with a progressive transformation from FTNs to EHV cells and then to PVP and EM cells.

Transformations of cerebellar outputs into motoneuron responses
Our ultimate goal is to determine how neural circuits transform from the time-varying firing
rates of Purkinje cells (PC) in the floccular complex of the cerebellum to the time-varying
firing rates of Abducens neurons. Two questions need to be answered as the next step
towards our goal: 1) How must the outputs of floccular Purkinje cells be modified to create
the time-varying firing rates of FTNs? 2) How are the outputs of FTNs and other vestibular
neurons combined and transformed to create the time-varying firing rates of Abducens
neurons?

We ask how Purkinje cell outputs are transformed to create the activity of FTNs by
comparing our recordings from the brainstem with those from a previous study of the
activity of Purkinje cells in the floccular complex during pursuit of step-ramp target motion
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(Medina and Lisberger, 2007, 2009). To take into account the facts that Purkinje cells inhibit
FTNs and all neurons have high spontaneous firing rates, we examined the activity during
pursuit in both the on- and off-directions for 38 FTNs with horizontal preferred directions
and 36 PCs that preferred pursuit toward the side of the recording; we presume most of the
PCs were “HGVPs” (Lisberger and Fuchs, 1978a). Both groups of neurons showed strong
asymmetries, both for individual neurons (not shown) and for averages across the full
samples (Figures 4A, B). Increases in firing rate for pursuit in the on-direction were
generally larger than decreases in firing rate for pursuit in the opposite, off-direction (see
also Krauzlis and Lisberger, 1994; Lisberger et al., 1994c).

PCs and FTNs acquired asymmetries from different sources. Based on the values obtained
by the regression fits using Equation (5), the asymmetry in the simple-spike firing rate
responses of PCs arose from a pronounced asymmetry favoring the on-direction for eye
acceleration (Figure 4C); in contrast, FTNs showed nearly symmetrical sensitivities to eye
acceleration (Figure 4D). The asymmetry in the firing rate responses of FTNs arose mainly
from an asymmetry in position sensitivity, at least for the predominant population of FTNs
that showed increased responses for eye movement away from the side of recording (Figure
4F). These showed the expected negative sensitivities to eye position for on-direction pursuit
and much smaller negative sensitivities or even wrong-way positive sensitivities for off-
direction pursuit (Lisberger et al., 1994a). Unlike the FTNs the PCs did not have a consistent
position signal in the on- or off-direction, as indicated by the scatter of the cells around the
origin in Figure 4E. Both groups of neurons showed slightly larger velocity sensitivity in the
on- versus the off-direction (not shown).

To understand the neural circuit mechanisms that could create the discharge of FTNs from
that of floccular PCs during pursuit, we explored the three schematic models in Figure 4G.
From top to bottom, the models create FTN firing through:

i. unilateral inhibition from the ipsilateral floccular complex (blue model):

(6)

ii. opponent inhibition and excitation from the ipsilateral and contralateral floccular
complex (purple model):

(7)

iii. the opponent mechanism plus position signals that are not present in the average
outputs from the floccular complex of the cerebellum (red model):

(8)

where FTN(t) is the figuring rate of FTNs as a function of time, Cbi(t) and Cbc(t)
are the average firing rates of the floccular Purkinje cells on the same and opposite
side relation to the FTNs, and E(t) is eye position as a function of time applied only
in on direction of FTNs. We tested each model with the time-varying average firing
of PCs as the input to the model and the time-varying average firing rate of FTNs
as the output, by using linear regression to obtain the values of the scalar weights
W and k that provided the best fits. For pursuit toward the side of one floccular
complex, we assumed that PCs in the contralateral floccular complex would
discharge with the same time-varying firing rates as ipsilateral PCs during pursuit
in the off-direction (and vice versa).
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As illustrated in Figure 4H, the model with the opponent mechanism and eye position signal
(red traces) provided the best account of the actual responses of FTNs (gray traces) for
pursuit in the on-direction and the off-direction, while the model without position signal
(purple traces) predicted the data slightly more poorly. The unilateral model (blue traces)
was unsuccessful. Figure 4H shows the results of simulations where the magnitudes of the
weights were equal for the inputs from the two sides of the cerebellum. The outcome of the
simulations was the same when we allowed the two weights to vary independently.

We think that PCs acquire an eye acceleration asymmetry from their visual mossy fiber
inputs (Miles and Fuller, 1975; Noda, 1981; Stone and Lisberger, 1990), and that FTNs
acquire their eye acceleration sensitivity from PCs. We suggest that FTNs have symmetric
sensitivities to eye acceleration because of an opponent organization that compensates for
the asymmetry in their direct floccular inhibition. We are not suggesting that FTNs receive
monosynaptic inhibition from Purkinje cells on both sides of the brain, but rather that
multisynaptic pathways might transmit signals from the contralateral floccular complex (or
from other pursuit-related areas). The contralateral signal could arise from pathways that
include the frontal eye field (Ono and Mustari, 2009), the reticular formation (Ono et al.,
2004), the cerebellar vermis (Dash et al., 2012), or the caudal fastigial nucleus (Noda et al.,
1990; Fuchs et al., 1994; Omori et al., 1997). We suggest that FTNs acquire an asymmetry
in eye position sensitivity through asymmetric inputs from bilateral neural integrators
(Aksay et al., 2007).

We turn next to the question of how the time-varying firing rates of Abducens neurons can
be created from the time varying firing-rates of FTNs and other vestibular neurons. Prior
work has emphasized the concepts that FTNs and other vestibular neurons project to
motoneurons in parallel (Scudder and Fuchs, 1992; Lisberger et al., 1994b) and that
cerebellar output must be subjected to neural integration for smooth pursuit eye movements
(Shidara et al., 1993; Krauzlis and Lisberger, 1994). Figure 5 verifies the need for
integration using three schematic models that, from top to bottom:

i. uses a single weight from both FTNs and vestibular neurons to Abducens neurons
without integration (blue model):

(9)

ii. uses different weights from FTNs and vestibular neurons to Abducens neurons
without integration (purple model):

(10)

iii. inserts a mathematical integrator between FTNs and Abducens neurons (red
model):

(11)

where Ab(t), VN(t), and FTN(t) are the average firing rates of Abducens neurons,
non-FTN vestibular neurons, and FTNs, respectively. Again, we used the time-
varying average firing rates of FTNs and non-FTN vestibular neurons as the input
to the models and the time-varying average firing rates of Abducens neurons as the
output from the models. We used linear regression to find the values of the scalar
constants W, W1, and W2 that provide the best fits of each model.
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The model that inserts a mathematical integrator between FTNs and Abducens neurons
(Figure 5A, red model and Figure 5B, red trace) predicts firing that mimics the Abducens
data (gray trace) well (r2=0.98). In contrast, neither the model that uses a single weight for
the signals from both FTNs and vestibular neurons (blue model and traces) nor the model
that uses separate weights without integration (purple model and traces) predicts Abducens
firing rates that mimic the average from our data (gray trace, Figure 5B). We fitted these
models with the weights as free parameters: the best fit for the integration model used
weights of 2.14 and 1.03 for the vestibular and FTN pathways, indicating that both pathways
are needed for the best performance of the model. Close inspection of Figure 5B reveals a
minor transgression of the integrating model: because it integrates the eye position
relationship of FTNs, it predicts (red curve) a small increase in Abducens firing rate that
does not occur in the data (gray curve) when eye position is stable after the end of target
motion.

The results presented in Figure 4 imply that FTNs provide inputs to, and are therefore
upstream from, integration. On the other hand the results presented in Figure 5 imply that
the large position signal in the FTNs must arise from the integrator, because the position
signal is not available in the floccular complex. Therefore, FTNs seem to be downstream
from the integrator. A group of neurons that both feeds into the integrator and receives
feedback from the integrator is effectively a part of the integrator. We next study models
that include FTNs as part of the integrator.

A neural model for brainstem computations
Our final goal was to understand how the diversity of time-varying firing rates of brainstem
neurons, as well as the differences between different groups of neurons, constrain the
implementation of neural integration by a neural circuit in the primate brainstem. Prior
models have used a recurrent structure like the one we have explored (e.g. Cannon et al.,
1983; Galiana and Outerbridge, 1984; Seung, 1996; Miri et al., 2011) and our goal was to go
a step further and constrain the details of the recurrent connections. As detailed below, we
find that the architecture of the recurrent connections suggested by Miri et al. (2011) has
considerable explanatory power for the diverse time-varying responses of FTNs, vestibular
neurons, and Abducens neurons of monkeys.

The most successful network had the general structure illustrated in the cartoon of neural
connections in Figure 6A, chosen to follow the connections of the primate brainstem
oculomotor structures as best they are known. We will revisit the degree of realism of the
model in the Discussion. The model has a “soft” feed-forward architecture (Figure 6B): self-
connections do not exist (Figure 6C, black pixels on the diagonal), and forward connections
(above the diagonal) are stronger than feedback connections for all model neurons except
those at the end of the hierarchy.

Model neurons #1-6 are intended to represent FTNs; they receive an external input equal to
the average time-varying opponent firing rate we recorded in PCs. To calculate the input to
the network we obtained the average sensitivities of floccular PCs to eye acceleration,
velocity, and position (e.g. Medina and Lisberger, 2009), and used Equation (5) to generate
the predicted firing rate of the cerebellar output for the actual behavior of the monkeys
during recordings from brainstem neurons. We subtracted the predicted firing rate of PCs for
movement in the off-direction from that for movement in the on-direction to create the
opponent firing that served as the input to the network. Units #7-12 and #13-18 are intended
to represent vestibular neurons and neurons in the nucleus prepositus (McFarland and Fuchs,
1992), and do not receive direct cerebellar inputs.
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The model represented by the connectivity matrix in Figure 6C could reproduce the time
course, but not the magnitude of the firing rates of the different neurons in the monkey’s
brainstem. We achieved excellent agreement with both the amplitude and time course of the
average responses of all 4 neuron types by using a procedure described in the Materials and
Methods to adjust the internal gain of each population. Figure 7B shows the effective
connectivity matrix resulting from this procedure. The connectivity matrix can be factored to
show internal gain and synaptic connectivity separately while maintaining stronger feed-
forward synaptic connectivity (Figure 7C). The resulting internal gain function is consistent
with the biological finding that the gain of FTNs to injection of depolarizing current is larger
than the gain for other vestibular neurons (Sekirnjak et al., 2003; Shin et al., 2011). In our
model, the weight of a model neuron’s connection to the Abducens neurons is inversely
proportional to its internal gain (Equation 4). Model FTNs are connected to the output to
comply with anatomical findings (Shin et al., 2011), but have weak connections because
they have large internal gains. As a result, the Abducens neurons do not follow the transient
responses of FTNs at the onset of pursuit eye movement (Figure 4).

The properly-tuned simulation reproduced the average time-varying responses of the
brainstem populations, including the early transient of FTNs, the sustained response of
vestibular neurons, and the ramp increase in firing of prepositus and Abducens neurons
(compare continuous and dashed traces in Figure 7A). Because we did not record in the
nucleus prepositus, we used the data from McFarland and Fuchs (1992) to compute the time-
varying firing rate the model was required to match. Note that the network model of Figure
7, unlike the lumped integrator model of Figure 5A, did not integrate the position
component of FTN firing and, as a result, did not predict an increase in the firing of
Abducens neurons during fixation at the end of the step-ramp target motion.

The models represented by the connectivity matrices in Figure 6C and 7B integrate perfectly
because they satisfy the requirement that the largest eigenvalue of the connectivity matrix is
one (Seung, 1996). Because many other connectivity matrices also would lead to integration,
our next important step is to show that the diversity of time-varying firing rates in our data
constrain the workable connectivity matrix to have the soft feed-forward configuration.

The model represented by Figures 7B and C reproduces the diversity of time-varying
responses of different brainstem neurons. Of the 18 model units, units #1-6 (Figure 8B, red
traces) show rapid rises and early transients during the initiation of pursuit, much as we
found in FTNs (Figure 8A, red traces). Units #7-12 (green traces) show a diversity of rise
times and sustained responses much as we found in many vestibular neurons. Units #13-18
(purple traces) showed responses very similar to those of Abducens neurons, and resembled
neurons recorded in the nucleus prepositus and adjacent areas (Escudero et al., 1992;
McFarland and Fuchs, 1992), as well as some neurons we found in the vestibular nucleus.
The “integrated” nature of the responses of the model prepositus neurons also agrees with
finding of integrated signals during saccadic eye movements in prepositus neurons that
project to the Abducens nucleus (Delgado-Garcia et al., 1989; Escudero et al., 1992).

Many recurrent network architectures can perform neural integration, and our data provide
constraints to narrow the range of possibilities. Our use of stimulation in the floccular
complex to identify FTNs dictates a specific set of the connections to the input neurons of
the integrator. Further constraints come from the need to simulate the diversity of the firing
patterns in the vestibular neurons. If we allowed uniform but random connection weights
between units, for example, the diversity of neural responses was lost and all model neurons
showed the same, integrated, time-varying firing rate (Figure 8C). Increasing or decreasing
the mean value of the random weights caused the output of the model to increase or decrease
exponentially when it was supposed to be steady, but did not create more diversity in the
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time-varying responses of the model neurons. If we created symmetry in the feed-forward
and feedback connection weights, then much of the diversity of time-varying neural firing
rates was lost, and early transient response in the responses of FTNs did not appear in the
simulations (Figure 8D).

A number of alternate models have the same performance as the soft feed-forward
architecture we have used, in the sense that they produce an integrated output and reproduce
the diversity of time-varying firing rate found in brainstem neurons. For example, very
similar results emerge from a network with feed-forward connections from unit to unit and a
single feedback connection from one unit to the whole network. Also, it is possible to
reproduce the model’s performance with a set of internal weights that are uniformly random
and a progression of time constants in the model neurons, from very short for the model
FTNs to longer for other neurons in the integrator. The model with diverse time constants is
equivalent to a model with uniform time constants and self-inhibitory connections. Thus,
inhibition might also be important for generating diverse responses.

Finally, we scale-up our small model network and show that a larger network can reproduce
the time-varying responses of a larger number of individual neurons from our recording
sample. Now, we use a network with 105 model neurons, increasing the width of the
connection matrix accordingly (see Methods), and we adjust the synaptic weights and the
internal gains so that our model units match the responses of 35 FTNs and 35 vestibular
neurons selected randomly from our sample (Figures 9A, B). The successful model used a
weight matrix and internal gains (Figure 9C) that are noisier, but follow the same patterns as
those in the smaller network model we used to establish proof of principle (Figure 7C). All
35 model prepositus neurons in this version of the model had the same synaptic weights and
internal gains, because we modeled them all to match a single average firing rate calculated
using the parameters of Equation (5) from McFarland and Fuchs (1992).

Effects of selective lesions of hierarchical integrator models
To study how different cells contribute to integration in our model network, we reduced the
synaptic weights at individual model neurons to 95% of the weights that lead to perfect
integrations thereby “lesioning” the hierarchical network at different stages of processing.
Even a lesion of a single model neuron causes the network to integrate imperfectly, so that it
will decay from any initial state to zero. We tested the network by setting the state of all the
neurons to the same, non-zero value and running the simulation with no further input.
Lesions of model neurons at the top of the hierarchy cause a slow decay in the output of the
network (Figure 10A, red curves). Lesions of model neurons that are closer to the end of the
hierarchy (green and purple curves) cause faster decays in activity. Thus, the entire network
contributes to integration with a larger proportion of the integration done in the bottom of
the hierarchy. The hierarchical network is more robust to perturbation at the top of the
hierarchy.

We quantified the contribution of each model neuron to integration and compared
contributions in different models by calculating the time constant of the exponential decay
for lesions as a function of the location of the model neuron in the integrator circuit. In the
hierarchical soft feed-forward model, the decay in the output decreased with the number of
the lesioned cell (Figure 10B, open circles). In the networks with random, uniform
connections between model neurons, the time constant of the decay was independent of the
location of the model neuron (Figure 10B, open squares), indicating that all neurons
contribute equally to the integration. In the hierarchical network with symmetrical feed-
forward and feedback connection weights, the time constants of the neurons in the middle of
the network were slightly smaller indicating that they made a slightly larger contribution to
integration.
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The pattern of feedback connections, but not the gain factors, determine the relationship
between the time constant of the decay after lesions of single model neurons and the location
of the lesioned neuron in the hierarchy. In the hierarchical model, the strongest feedback
weights accrue at the end of the hierarchy and lesions in these model neurons lead to leakier
integrators, which is consistent with previous studies that emphasized the role of prepositus
in integration (Fukushima et al., 1992). Reducing the asymmetry between feedforward and
feedback, thereby increasing the strength of the feedback in the top of the hierarchy, leads to
smaller differences in the time constants of decay. On the other hand, changes in the internal
gains of the model neurons does not change the time constant of the network decay: lesions
to the same model neuron in networks with weights W or W* leads to the same time
constant in the decay of the network output. The similarity occurs because the lesioned
networks have the same eigenvalues and hence same decays in output activity.

Figures 8 and 10 provide an intuition about why the pattern of connections affects the
predictions for the time-varying responses of different neurons. When the connection matrix
is random and uniform, all model neurons operate as equals, and they are effectively
clamped together so that they all show the same time-varying response patterns. When
lesions reduce the integrating capability of the network, the responses of all model neurons
decay at the same rate. If the feed-forward and feedback weights are symmetrical, then the
integrated output of the network is fed back strongly to the input layers and it overwrites the
time-varying pattern in the inputs to the integrating network. Only if the feed-forward
weights are stronger than the feedback weights can the inputs dominate the integrated
feedback at the top of the network. In a similar fashion, the inputs from higher in the
hierarchy have a stronger influence on each model neuron than do the feedback connections,
so that integration occurs progressively as the signals pass through the hierarchy.

One model can reproduce the responses of integrator neurons in zebrafish and monkey
The structure of our most successful model is derived from one of the models used by Miri
et al. (2011) to account for their data on the responses of neurons in the brainstem of larval
zebrafish during eye fixations. There are two main differences between our model and
theirs. First, Miri et al. (2011) used a model that did not integrate perfectly so that they could
reproduce the decays in eccentric eye position in their data; we set the recurrent weights in
the model to act as a perfect integrator because the time constant of the decay of eye
fixations is very long in primates (Becker and Klein, 1973). Second, Miri et al. (2011) used
model neurons with time constants of 1 second; we used a short neural time constant of 5 ms
because using a single long time constant prevented model FTNs from displaying the
transient response seen in the real FTNs.

We explored the operation of both models by setting the activity of all model neurons to
have a value of one at the start of a simulation, and then exploring how the activity of the
model neurons evolved to a stable state. In Figures 11A and B, the models for both species
were set to achieve perfect integration and their net outputs were steady throughout the
simulations (not shown). In both models, the model neurons reached diverse, but steady
values before the end of the simulation. The model neurons in the “zebrafish” network
required several seconds and followed diverse trajectories to final states, because of the long
time constant of the individual model units. The model neurons in the “monkey” network
reached a final, sustained value almost immediately, because of the short time constants of
the individual model units. Even though the activity of the different neurons evolved over
different time courses in the two models, the overall output of both models was constant
because both were tuned to integrate perfectly.

Next we reduced the size of the connection weights uniformly so that the overall output
from both models showed leaky integration with decay time constants of 20 seconds. Now,
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the model neurons in the “zebrafish” network (Figure 11C) showed a complex and diverse
time-varying activity early in the simulation and more uniform decay later in the simulation;
the progression of the two decays can be appreciated better in the log plots (Figure 11E),
which show that the decay is linear and has the same time constant in all model neurons late
in the simulation. In contrast, the model neurons in the “monkey” network (Figure 11D),
snap quickly to an initial state and then decay at a constant rate that is the same in all model
neurons, a feature that again is most visible in the log plots (Figure 11F).

In the simulations presented by Miri et al. (2011), the time constant of the model neurons
and the architecture of the weight matrix together are responsible for the early part of each
model neuron’s time-varying trajectory. Both are constrained by the need to account for the
diversity of the time constants of decay in the calcium imaging data from the zebrafish. In
our simulations of the data from the monkey brainstem, the diversity of the time-varying
firing rates does not require the long time constants of the model neurons, and appears solely
because of the soft feed-forward architecture of the weight matrix. Thus, the long time
constant of 1-second used in the model neurons by Miri et al. (2011) is essential for the
diversity in the decay of the calcium signals in the zebrafish, but not for the diversity in the
time-varying responses in monkeys. Even with long time constants, however, the later parts
of all model neurons’ responses decay at a uniform rate that depends on the time constants
of the neurons. Thus, decay in the individual neurons in zebrafish would have collapsed to
the single, uniform time constant expected of a line attractor if they had extended their
recordings to longer fixations.

In simulations of the monkey data, we are able to see the consequences of the network
architecture even with a movement of duration only 1 second because the behavior endures
200-fold longer than the 5-ms time constant of our model neurons. Miri et al (2011)
observed diverse time constants of decay that are the consequences of the time constants of
the model neurons because their behavior endured 5 seconds, only 5-fold longer than the
time constant of their model neurons. A model with only short time constants cannot easily
reproduce the zebrafish data, while a model with only long time constants cannot reproduce
the monkey data. Still, the model network with short time constants in the model neurons is
pertinent across a wide range of time scales. It allows gaze holding over a period of tens of
seconds, and controls the eyes during one second of dynamic tracking behavior.

Discussion
The architecture of a neural integrator

The need for a circuit that implements a neural integration in the brainstem was recognized
by analyzing gaze holding in primates (Robinson, 1964) and by comparing the activity in
vestibular afferents and extraocular motoneurons of the monkey (Skavenski and Robinson,
1973). Yet, recordings from the brainstem of monkeys have largely failed to lead to
conclusive evidence for any particular neural circuit implementation of integration. The
responses of neurons are diverse, and seemingly without a “topography”. Thus, the
localization (or not) of the neural integrator was driven by lesion studies showing that large
areas in the brainstem that are essential for an intact neural integration (Cannon and
Robinson, 1987; Cheron and Godaux, 1987).

The precision of its neural integrator makes the primate oculomotor system into the “acid-
test” for integrator models. Yet, the monkey may not be the ideal preparation for the kinds
of measurements needed to determine the exact architecture of a neural circuit that
integrates. The detailed neural mechanism of integration may be demonstrated in
preparations that afford large technical advantages for analyzing the relationship between
circuits and behavior, but less impressive behavioral repertoires. But, to show its relevance
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to more complicated neural networks and rich behavior, any model will have to work across
species so that it may reproduce the mean and variety of the time-varying responses of
neurons in the monkey’s brainstem.

In the present paper, we propose a circuit mechanism for neural integration that links the
pioneering recent advances of Miri et al. (2011) in understanding the architecture of a neural
integrator with the traditional question of neural integration for control of eye movements in
the brainstem of the monkey. Their study used modern microscopy to estimate neural
activity in a putative integrating circuit in the brainstem of larval zebrafish. They were able
to infer an important relationship between physical separation and connection strength of
pairs of neurons in the circuit. Our study uses traditional single unit recording methods
during a highly-repeatable specific behavior to show that a circuit proposed for the zebrafish
reproduces a large body of neural responses in the oculomotor brainstem of the monkey.

The key principles of our model are: 1) the strong driving inputs from model Purkinje cells
to FTNs effectively clamp the responses of the model FTNs in spite of their organization as
part of a hierarchical integrator; 2) a hierarchical organization creates the diversity of neural
responses we recorded in non-FTN vestibular neurons; and 3) weak feedback of the
integrated signal creates diverse time-varying firing rates across the integrator while
allowing some neurons (i.e. FTNs) to be part of the integrating circuit, show discharge in
relation to eye position, and retain their time-varying firing in relation to the inputs to the
neural integrator.

The convergence of the models from the two studies supports a plausible neural circuit
implementation of neural integration that may be the same across a wide range of
phylogeny, and across multiple brain areas and functions in primates. Neural integration
performs the broader function of converting a transient signal into a sustained one, or
converting a steady signal into a ramp increase in firing. It is possible, but not guaranteed,
that the brain might use similar neural circuits to implement integration in the oculomotor
brainstem, to create delay activity in the cerebral cortex (Romo et al., 1999), and to
accumulate evidence leading up to a perceptual decision (Mazurek et al., 2003).

Relation to other models and data
Many investigators have suggested a recurrently connected neural circuit for integration
(Cannon et al., 1983; Douglas et al., 1995) and recent work has suggested mechanisms for
robustness of an integrator based on long time constants or thresholds in individual neurons
(Seung, 1996; Seung et al., 2000; Koulakov et al., 2002; Goldman et al., 2003). Our work
extends and refines these concepts in important ways. For example, it limits the utility of
integration solely with intrinsic cellular time constants (Loewenstein and Sompolinsky,
2003) or purely feed-forward connections (Goldman, 2009) because these mechanisms
would not allow neurons like the FTNs to show sensitivity to both eye position and
acceleration. It mitigates in favor of a particular architecture of synaptic connections and
strengths within the model integrator network, and suggests that much of integration is
based on the properties of the network rather than the elements within the network.

Many elements of our model have parallels in the oculomotor circuitry. The floccular
complex makes monosynaptic inhibitory synapses on a particular group of vestibular
neurons know as FTNs (Langer et al., 1985; Lisberger et al., 1994a; Shin et al., 2011). The
brainstem populations are interconnected (Belknap and McCrea, 1988) and both FTNs and
non-FTN vestibular neurons connect to Abducens neurons (Scudder and Fuchs, 1992). Still,
important aspects of our model have not been proven. Connections from FTNs and non-FTN
vestibular neurons to the nucleus prepositus seem likely (Baker and Berthoz, 1975; Belknap
and McCrea, 1988) but are not proven. Feedback connections from the nucleus prepositus to
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FTNs and non-FTN vestibular neurons seem plausible (Belknap and McCrea, 1988) but the
specific connections proposed here have not been demonstrated. Most importantly, it is not
known whether the connections have the proposed hierarchical architecture and soft feed-
forward synaptic strengths. Finally, some features of brainstem anatomy are not included in
the model, for example feedback from the brainstem to the floccular complex (Lisberger and
Fuchs, 1978b; Miles et al., 1980; Belknap and McCrea, 1988) We think that these
projections serve mainly to provide head and eye velocity signals to Purkinje cells
(Lisberger and Fuchs, 1978b, a; Lisberger, 2010), but they also may provide the weak eye
position signals found in some Purkinje cells and could have a role in neural integration.

An alternative explanation for our data suggests that brainstem neurons are not part of a
distributed, hierarchical integrator. Instead, the diversity of time-varying responses in
brainstem neurons could result from different weightings of eye velocity and eye position
signals onto the different neurons. We think that this explanation is difficult to defend for
FTNs and PVP neurons. These two groups of neurons relay signals that must be integrated
to drive eye movement for smooth pursuit eye movements and the vestibulo-ocular reflex.
Therefore, FTNs and PVP neurons almost certainly provide inputs to the integrator circuit.
Because they have signals related to eye position, FTNs and PVP neurons also receive
feedback from the integrator. Neurons that have feed-forward and feedback connections to
the integrator, such as FTNs and PVP neurons, will operate as part of the integrator and their
reciprocal connections with other integrator neurons will play a big role in determining the
time-varying firing rates of FTNs and PVP neurons, as in our model. The same argument
does not necessarily hold with the other neurons in our sample. For example, non-FTN
vestibular neurons could receive velocity signals from FTNs and PVP neurons and position
signals from the integrator, and project directly to motoneurons without sending outputs to
the integrator. Thus, these non-FTN vestibular neurons could show a diversity of response
properties simply because of different weightings of their eye velocity and eye position
inputs, and not because they are part of an hierarchical integrator circuit.

Studies of the saccadic part of the brainstem provide some data that would support a model
of integration similar to the one we have used. Prepositus neurons that project to the
Abducens nucleus tend to discharge only in relation to eye position, while other neurons in
the prepositus and vestibular nucleus discharge in relation to different combinations of
saccadic eye velocity and position (Delgado-Garcia et al., 1989; Escudero et al., 1992). So
far, the data on saccades has not been integrated into a computational neural model like ours.
An interesting next step in monkeys would be to accumulate data on the discharge of
individual neurons during saccades, pursuit, and the vestibulo-ocular reflex and determine
whether a single integrator model like ours can account for the responses of brainstem
neurons during all kinds of eye movements.

Our model has a number of limitations that we see as areas for future research. First, it does
not include inhibition, which has an important role in brainstem computations (Shimazu and
Precht, 1966; Gittis and du Lac, 2007) and might be an essential part of integration (Cannon
et al., 1983). Second, the data we acquire on the monkey cannot test for the network
organization proposed by Miri et al (2011), where connection strengths between neurons are
related to the physical distances between them. Third, we did not separate Abducens neurons
into motoneurons and internuclear neurons (Baker and Highstein, 1975; Fuchs et al., 1988;
Sylvestre and Cullen, 1999); the uniformity of the Abducens responses implies that this is
not a major issue. Fourth, we did not study neurons for long fixations at the end of pursuit,
although they maintained their steady final firing rate for as long as we required the monkey
to fixate. The model itself was tuned to integrate and it therefore was able both to reproduce
the dynamic responses during pursuit and to maintain steady firing rate and support
eccentric fixation indefinitely. Fifth, the model does not reproduce the diversity of the
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transient responses in FTNs, probably because we provided exactly the same input from the
cerebellum to all model FTNs. Finally, we obtained data mainly for target motion at 30 deg/
s; the linearity of the relationship between firing rate and eye movement in brainstem eye
movement neurons (e.g. Fuchs and Kimm, 1975; Scudder and Fuchs, 1992) implies that the
entire analysis will hold for other speeds of target motion as well.

Conclusions
The success of the integrator model suggests that the seemingly diverse collection of time-
varying neural responses in the monkey’s brainstem would be expected of a distributed,
locally-connected circuit like that suggested by analysis of the zebrafish brainstem. Still,
confirmation of the exact neural mechanisms of integration is likely to come from a
preparation that allows the kind of modern measurements already accomplished in the larval
zebrafish. Thus, the contribution of our paper is the important step of illustrating that the
neural models suggested by calcium imaging data in zebrafish provide a common solution to
the same neural computation for both species. We also emphasize the possibility and
necessity of finding ways to leverage the unique advantages of very different preparations
such as the larval zebrafish and the awake monkey, to fully answer questions of the neural
circuit mechanisms of complex behaviors.
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Figure 1. Firing properties of brainstem neurons during smooth pursuit eye movements and
fixation
A: Eye movement behavior during step ramp target motion. Solid and dashed lines show eye
and target motion. B: Relationship between firing rate and eye position during 1 second of
fixation. Each symbols shows one fixation trial; lines were obtained by regression. The data
are plotted using positive values to indicate steady eye position in the preferred direction,
which was ipsiversive for Abducens neurons, contraversive for most FTNs (see also
Lisberger et al., 1994a), and about equally ipsiversive and contraversive for non-FTN
vestibular neurons. C-E: The average response of an example FTN (C), vestibular (D) and
Abducens (E) neuron during smooth pursuit. The black line illustrates the average firing rate
across trials; the dashed line illustrates the best linear fit from Equation (5). The blue, green,
and red lines represent the contributions of eye position, velocity, and acceleration to
average firing rate. The rasters above each neuron show the response to 100 electrical
stimulations in the floccular complex at the time marked by the vertical arrow. F-G: The
average responses of the populations of neurons (black) and the average contributions of the
different kinematic parameters to the total firing rate. I-K: Time-varying firing rate of
individual neurons normalized for the peak. The purple trace in I is the only FTN dominated
by eye position sensitivity. Only neurons with responses larger than 50 spikes/s are shown.
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Figure 2. Sensitivity of different groups of neurons to the parameters of eye movement
Each symbol shows the response of an individual neuron; red, green, and blue dots represent
FTNs, vestibular neurons, and Abducens neurons A: Eye acceleration versus position
sensitivity. B: Eye velocity versus position sensitivity. All values of sensitivity from
Equation (5). C-D: The slope of the regression line relating firing rate to steady eye position
during fixation versus position sensitivity during smooth pursuit trials, from Equation (5).
Dashed diagonal line illustrates the unity line. Positive values of sensitivity correspond to
increases in firing rate for eye movements toward the side of the recording.
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Figure 3. Time-varying responses of neurons separated according to standard classification into
different functional response patterns
In each color image, a horizontal line plots the response of one neuron as a function of time,
different neurons are stacked vertically, and color shows the normalized firing rate. Neurons
with responses larger than 25 spikes/s were included. The histograms at the lower right plot
the time when peak firing rate was reached. Different colors indicate neurons categorized
according to their functional firing patterns during eye movement and vestibular stimulation.
Histograms were calculated with all neurons and smoothed with a moving average of 2 bins
(40 ms).

Joshua et al. Page 26

J Neurosci. Author manuscript; available in PMC 2013 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Transformation from floccular output to FTN responses
A-B: Average population activity of floccular Purkinje cells (PCs) and FTNs during smooth
pursuit. Black and gray lines illustrate activity in the on and off directions and gray bands
around the lines show the standard error of the mean (SEM). C-F: Sensitivity to eye position
and acceleration in the off- versus on-direction for PCs (C, E) and FTNs (D, F). Each dot
represents the sensitivity of one neuron and the dashed line illustrates the unity line. G:
Schematic representation of three different models for creating the time-varying FTNs rate.
Boxes represent cerebellar activity from the same (CBi) and opposite side (CBc) relative to
FTN location, the weighing of the signal from the cerebellum (+W or −W), and the response
of the FTN. H: The colored traces show the best fit for the three different models and the
gray trace illustrates the average firing rates of FTNs. Top and bottom sets of traces are for
the on- and off-directions.
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Figure 5. Transformation from FTN and vestibular firing to Abducens responses
A: Three models for brainstem processing. The boxes represent the responses of FTNs and
vestibular neurons (VST), weighting (W, W1, W2) or integration (Idt) of signals, and the
responses of Abducens neurons (ABD). B: The colored traces show the best fit for the three
different models and the gray trace illustrates the average firing rates of Abducens neurons.
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Figure 6. Hierarchical model of the brainstem neural integrator
A: Schematic representation of the network. Each ellipse represents a population of neurons,
arrows are excitatory connections, and lines ending with a circle represent inhibitory
connections. The width of the arrows represents the strength of the connections. B: The
architecture of a neural integrator suggested by Miri et al. (2011). Each open circle
represents a single neuron or group of neurons, and the arrows represent connections. Each
neuron is connected strongly the next neuron and weakly to the previous neuron. C: The
colors indicate the connection weights in the connection matrix (W) between neurons for a
network with soft feed-forward connections.
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Figure 7. Comparison of average responses of real and model neurons
Dashed black and continuous curves illustrate the output from the model and the average
firing rate of the data A: Continuous traces show average responses from our data and
dashed traces show the output of an optimized model. From top to bottom the traces are: the
input to model neurons #1-6 (FTNs), the average responses of FTNs, non-FTN vestibular
neurons (model neurons #7-12), NPH neurons (model neurons #13-18), and Abducens
neurons. We generated the activity of prepositus neurons according to their average
sensitivity to eye kinematics in McFarland and Fuchs (1992). B: The colors show the
effective connection strengths (W*) in the connection matrix between model neurons for a
network that matches both temporal pattern and response amplitude. C: The colors in the
image show the synaptic weights (referred to as Wsynapse in the Methods) and the graph at
the bottom shows the internal gain of each model neuron. The gain values are: gFTN = 0.62;
gVST = 0.14 gNPH = 0.05.
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Figure 8. Responses of model neurons for different connection matrices
Each trace shows the time-varying firing rate of an individual neuron and different colors
denote different groups of neurons. A: Data B: Model with strong feedforward and weak
feedback connections. C: Model with connection strengths drawn randomly from a positive
uniform distribution. D: Model with equal strengths of feedforward and feedback
connections.

Joshua et al. Page 31

J Neurosci. Author manuscript; available in PMC 2013 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9. A network model that integrates and reproduces the time-varying firing rates of a
large sample of brainstem neurons during smooth pursuit
A: data. B: model neurons. Red, green and purple thin lines show deviation from baseline
firing rate of FTNs, vestibular neurons, and prepositus (model only) neurons. C-D: The
color images show the effective connection matrix (W*) and the synaptic connectivity
(referred to as Wsynapse in the Methods) for all 105 model neurons in the network. The graph
at the bottom shows the internal gain of the different model neurons.
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Figure 10. The effect of lesions on the model output
A: Each trace shows the output of a hierarchical network when the weights of one of the
cells are decreased to 95% from perfect integrations. Colors denote the group of the cell
with the reduced weight: red indicates model units #1-6, green indicates model units #7-12,
purple indicates model units #13-18. B: The time constant of the decay in activity as a
function of the number within the hierarchical network of the cell that was lesioned. Open
circles, open squares, and filled circles show results for the networks with stronger
feedforward connections, uniformly random connections, and symmetric connections.
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Figure 11. Comparison of the responses of different model neurons in networks that used short
and long time constants in the model neurons
Each trace shows the time-varying firing rate of an individual neuron and different colors
denote different groups of neurons: red indicates model units #1-6, green indicates model
units #7-12, purple indicates model units #13-18. The left and right column show results
from simulations with neural time constants of 1 and 0.005 seconds. A-B: Networks are
tuned to produce perfect integration. C-D: Networks are tuned to have a decay time constant
of 20 seconds in their overall output. E-F: Same as C-D, but the responses of the model
neurons are plotted on a log scale.
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