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Abstract

Studying how the timing and amplitude of visual evoked responses (VERs) vary between visual 

areas is important for understanding visual processing but is complicated by difficulties in reliably 

estimating VERs in individual visual areas using non-invasive brain measurements. Retinotopy 

constrained source estimation (RCSE) addresses this challenge by using multiple, retinotopically-

mapped stimulus locations to simultaneously constrain estimates of VERs in visual areas V1, V2, 

and V3, taking advantage of the spatial precision of fMRI retinotopy and the temporal resolution 

of magnetoencephalography (MEG) or electroencephalography (EEG). Nonlinear optimization of 

dipole locations, guided by a group-constrained RCSE solution as a prior, improved the robustness 

of RCSE. This approach facilitated the analysis of differences in timing and amplitude of VERs 

between V1, V2, and V3, elicited by stimuli with varying luminance contrast in a sample of eight 

adult humans. The V1 peak response was 37% larger than that of V2 and 74% larger than that of 

V3, and also ~10–20 msec earlier. Normalized contrast response functions were nearly identical 

for the three areas. Results without dipole optimization, or with other nonlinear methods not 

constrained by prior estimates were similar but suffered from greater between-subject variability. 

The increased reliability of estimates offered by this approach may be particularly valuable when 

using a smaller number of stimulus locations, enabling a greater variety of stimulus and task 

manipulations.

Introduction

Despite significant advances in non-invasive measurement of brain activity over the last two 

decades, it remains quite challenging to reliably measure, or even estimate, the time course 

of visual evoked responses (VERs) in individual visual cortical areas in humans. Functional 

magnetic resonance imaging (fMRI) has provided the means to study the response properties 

of individual visual areas with relatively good spatial resolution, but the sluggish 

hemodynamic response severely limits the temporal resolution of fMRI, such that it cannot 

offer meaningful information about the relative latency of responses in visual areas or the 

timing of response modulation caused by various stimulus or task-related parameters. 

Magnetoencephalography (MEG) and electroencephalography (EEG) have excellent 

temporal resolution, on the order of a millisecond, but the ill-posedness of the inverse 
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problem presents a challenge for accurate localization of current sources and makes it 

extremely difficult to confidently estimate the time course of activity for a given visual area.

The use of additional constraints derived from structural or functional magnetic resonance 

imaging (MRI) provides a way to specify which, of all possible combinations of dipoles, are 

most relevant to the experiment at hand (Dale and Halgren, 2001; Dale et al., 2000; Dale and 

Sereno, 1993; Hamalainen et al., 1993; Scherg and Berg, 1991). Cortical surface 

reconstructions from structural MRI are used to restrict potential sources to cortical gray 

matter and the orientation of each current dipole can be assumed to be perpendicular to the 

cortical sheet (Dale et al., 2000; Dale and Sereno, 1993). To further constrain source 

locations for visual evoked responses, fMRI data has been used as either an initial estimate 

or fixed localization constraint in equivalent current dipole (ECD) modeling (Di Russo et al., 

2005; Vanni et al., 2004), or as a Bayesian prior for distributed source estimation (Auranen 

et al., 2009; Dale et al., 2000; Yoshioka et al., 2008). The assumption of self-similarity of 

the responses within visual areas is another promising approach for improving source 

localization and separation of responses (Cottereau et al., 2011).

Despite these advances in multimodal integration, limitations related to crosstalk and 

separation of sources remain for visual areas such as V2 and V3 (Auranen et al., 2009; 

Cottereau et al., 2012; Di Russo et al., 2005; Vanni et al., 2004; Yoshioka et al., 2008). 

Source estimation with a few ECDs is problematic, usually requiring that multiple visual 

areas be modeled by a single dipole, even when fMRI and MRI data are used to determine 

dipole locations or orientations (Di Russo et al., 2005; Vanni et al., 2004). Distributed 

source estimation methods in which thousands of ECDs are spread evenly across the cortical 

surface have limited spatial precision as well, so that despite apparently excellent 

localization accuracy (Moradi et al., 2003; Sharon et al., 2007), the estimated waveform for 

a given location contains a mixture of activity from neighboring locations within ~20 mm, 

making it impossible to generate reliably independent source estimates for areas such as V1, 

V2, and V3 (Bonmassar et al., 2001; Dale et al., 2000; Hagler et al., 2009; Kajihara et al., 

2004; Liu et al., 2002; Moradi et al., 2003).

A fundamental limitation is that the occipital cortex contains several visual areas in close 

proximity that become active with near simultaneity (Schmolesky et al., 1998; Schroeder et 

al., 1998). When the current dipole generated by an active patch of cortex produces a similar 

spatial distribution of MEG and EEG sensor amplitudes as another, nearby patch of cortex, 

there is inherent ambiguity between them, resulting in crosstalk between the estimated 

source waveforms for the two dipoles (Liu et al., 1998). Depending on cortical folding, the 

predicted dipole orientations for two areas may be nearly parallel for particular stimulus 

locations, making it impossible to separate their actual time courses. Even if the dipoles for 

two areas happen to be orthogonal, small inaccuracies in specifying dipole orientations 

result in blending of the two time courses.

In two previous studies in which fMRI retinotopy and cortical surface reconstructions were 

used to precisely determine the predicted location and orientation of current dipoles in V1, 

V2, and V3 for various stimulus locations, the estimated source waveforms exhibited 

implausible variation within a given visual area if calculated independently for each location 
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(Hagler and Dale, 2011; Hagler et al., 2009). If responses to multiple stimulus locations 

were instead used to simultaneously constrain the inverse solution, crosstalk between areas – 

and the effect of small, random errors in specifying dipole orientations – was greatly 

reduced (Hagler et al., 2009). This method, which we have called retinotopy constrained 

source estimation (RCSE), provides more independent source estimates than can be obtained 

with conventional equivalent current dipole or distributed source estimation methods. It is 

not limited by the proximity of these visual areas because it relies upon the distinct pattern 

of dipole orientation as a function of multiple stimulus locations for each visual area, which 

is determined by an individual subject’s retinotopy and cortical folding pattern (Ales et al., 

2010a; Hagler and Dale, 2011; Hagler et al., 2009; Slotnick et al., 1999).

RCSE is limited, however, in that it requires accurate representations of the cortical 

generators for each stimulus location. This can be affected by a number of factors (Hagler 

and Dale, 2011), including spatial and intensity distortion in MRI and fMRI images that 

require special corrections (Holland et al., 2010; Jovicich et al., 2006). The quality of fMRI 

retinotopy data is also important, but even subjects with superior retinotopy data can present 

difficulties in obtaining sensible RCSE waveforms. Subjects with highly folded cortex could 

make it more likely that a small displacement along the cortical surface would result in a 

large change in dipole orientation from reality, thus contaminating the resulting source 

estimates. This possibility is mitigated by the use of a large number of stimulus locations. 

Ales and colleagues attempted to further reduce the influence of such errors through an 

exhaustive neighborhood search, in which a single cortical surface mesh vertex was chosen 

from a defined cortical neighborhood for each stimulus location and visual area to obtain the 

best possible fit to their EEG data (Ales et al., 2010a). In another recent study, Hagler and 

Dale used a robust estimation technique known as iteratively reweighted least squares 

(IRLS) to reduce the contribution of outliers (Holland and Welsch, 1977; Huber, 1981); that 

is, stimulus locations with particularly high residual error (Hagler and Dale, 2011).

In the current study, this same robust estimation approach was used with a group of subjects, 

in order to find the consensus estimate of the visual evoked responses for V1, V2, and V3; 

the group-constrained solutions can be viewed as a probabilistic atlas of visual area time 

courses. To improve the reliability of individual subject RCSE waveforms, a probabilistic 

atlas-based, nonlinear search for better fitting dipole locations was developed for this study. 

In this method, small displacements along the cortical surface are tested for each stimulus 

location to find the one that provides a better fit to both the data and the time course atlas. 

The atlas serves as an a priori estimate to guide the dipole optimization for individual 

subjects and avoid implausible results that can result from less constrained nonlinear 

optimization. This method may be particularly valuable when using a small number of 

stimulus locations.

Methods

Participants

Eight healthy adults were included in this study (6 females, mean age: 25.2 ± 3.0 SD, age 

range: 22–30). One additional subject (female) was excluded because fMRI retinotopy data 

were extremely noisy and therefore unusable. Subjects were right handed, had normal 
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vision, with no history of neurological disorders. The experimental protocol was approved 

by the UCSD institutional review board, and informed consent was obtained from all 

participants.

Data collection

MEG signals were measured with an Elekta/Neuromag Vectorview 306 channel whole head 

neuromagnetometer (Elekta, Stockholm, Sweden), with two planar gradiometers and one 

magnetometer at each of 102 locations. Electrooculogram electrodes were used to monitor 

eye blinks and movements. The sampling frequency for the MEG recording was 601 Hz 

with an anti-aliasing low-pass filter of 200 Hz. The locations of the nasion, preauricular 

points, and additional locations on the scalp were measured using a FastTrack 3-D digitizer 

(Polhemus, Colchester, VT). Head position indicator (HPI) coils were used to establish the 

position of the head relative to the MEG device. Visual stimuli were presented with a three-

mirror DLP projector and the maximum visual angle (top to bottom of displayable area) was 

fixed at 25°. For recording behavioral responses, a finger lift device was used with a laser 

and light sensor (Elekta/Neuromag).

Magnetic resonance images of brain were collected using a GE 3T scanner with a GE 8-

channel phased array head coil (General Electric). High-resolution T1-weighted images were 

acquired to generate cortical surface models (TR = 10.5 ms, flip angle = 15°, bandwidth = 

20.83 kHz, 256×256 matrix, 180 sagittal slices, 1×1×1 mm voxels). Echo-planar imaging 

(EPI) was used to obtain T2*-weighted functional images in the axial plane with 2.5 mm 

isotropic resolution (TR=2500 ms, TE=30 ms, flip angle = 90 degrees, bandwidth = 62.5 

kHz, 32 axial slices, 96×96 matrix, FOV=240 mm, fractional k-space acquisition, with fat 

saturation pulse). For each of the gradient-echo EPI scans, a pair of spin-echo EPI images 

with opposing phase-encode polarities was collected for estimating the B0 distortion field 

(TR=10000 ms, TE=90 ms, identical slice prescription as gradient-echo images). Dental 

impression bitebars were used to reduce head motion. Stimuli were presented via a mirror 

reflection of a plastic screen placed inside the bore of the magnet, and a standard video 

projector with a custom zoom lens was used to project images onto this screen from a 

distance. The maximum visual angle was measured for each session and ranged from 26° to 

29° due to practical limitations in our ability to adjust the visual distance for fMRI 

experiments. The individualized maximum visual angle measurements were used as input 

parameters in fMRI retinotopic map fitting and MEG dipole modeling, allowing for 

consistent mapping between MEG stimuli and the cortical surface for each subject. An MRI-

compatible fiber-optical button box was used to record behavioral responses (Current 

Designs, Philadelphia, PA).

Data processing

MEG and MRI/fMRI data were processed using an automated processing stream written 

with MATLAB (The Mathworks, Natick, MA) and C++ by D. Hagler, A. Dale, and other 

members of the UCSD Multimodal Imaging Laboratory, which also uses software from 

AFNI (Cox, 1996), FreeSurfer (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 2001; 

Fischl et al., 2002; Fischl et al., 1999; Segonne et al., 2004; Segonne et al., 2007), and Fiff 

Access (Eleckta/Neuromag, Stockholm Sweden). Very noisy or flat channels were excluded 
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from analysis. Magnetometers were excluded because they are often noisy, depending on 

environmental noise, and have less focal spatial sensitivity profiles (i.e. lead fields). After 

rejecting trials containing artifacts such as eye blinks and movements, data from remaining 

trials for a given stimulus location were used to calculate average time series time-locked to 

stimulus onset, with a 100 msec pre-stimulus baseline and 350 msec post-stimulus response. 

Before averaging, individual trials were band-pass filtered between 0.2 and 120 Hz with a 

60 Hz notch filter, using buffer periods of at least 450 msec duration before and after each 

trial to reduce filter artifacts. In addition, the periods from −100 to 350 msec relative to each 

stimulus were linearly detrended, and the average of the baseline period, from −100 to 0 

msec, was subtracted to correct for baseline shifts.

fMRI data were corrected for slice timing differences and head motion with AFNI’s 

3dvolreg. B0-inhomogeneity distortions in fMRI data were corrected using the reversing 

gradient method (Chang and Fitzpatrick, 1992; Holland et al., 2010; Morgan et al., 2004). 

Displacement fields estimated from paired spin-echo test images with opposite phase-

encode polarity were applied to each frame of the motion-corrected gradient-echo EPI fMRI 

images (Holland et al., 2010). In-plane and through-plane gradient warping in structural and 

functional MRI images was corrected by applying a predefined, scanner specific nonlinear 

transformation (Jovicich et al., 2006). Two or more T1-weighted structural MRI volumes for 

each subject were coregistered, averaged, and rigidly resampled into alignment with an atlas 

brain. Automated registration between T2-weighted (fMRI and dMRI) and T1-weighted 

structural images was performed using mutual information (Wells et al., 1996) with coarse 

pre-alignment based on within-modality registration to atlas brains. The FreeSurfer software 

package version 4.5.0 (http://surfer.nmr.mgh.harvard.edu) was used to create cortical surface 

models from T1-weighted MRI images (Dale et al., 1999; Dale and Sereno, 1993; Fischl et 

al., 2001; Fischl et al., 2002; Fischl et al., 1999; Segonne et al., 2004; Segonne et al., 2007). 

The resulting surfaces were thoroughly checked for errors in occipital cortex, and manual 

editing of the white matter segmentation was performed to correct local defects.

Stimuli for MEG sessions

Visual stimuli were portions of a black and white dartboard pattern presented for 100 msec 

at three levels of luminance contrast on a gray background (15%, 71%, and 95% Michelson 

contrast). There were 36 total stimulus locations, divided between 3 eccentricities (3.6, 5.3, 

8.2° visual angle, with sizes 1.2, 2.2, 3.6° visual angle, respectively) and 12 polar angles 

(22° polar angle wide, contiguous, non-overlapping portions of the visual field, excluding 24 

degrees polar angle centered on each horizontal or vertical meridian) (Fig. 1A). The spatial 

frequency of the stimuli was varied with eccentricity, according to a log scale, with spatial 

frequency decreasing from ~2.5 to ~1 cycles per degree, although such square wave stimuli 

contain a broad range of spatial frequencies. To ensure that subjects maintained a stable 

level of alertness and maintained central fixation, subjects performed a simple task in which 

they made a finger lift response upon rare dimming of the central fixation cross 

(approximately once every 5–10 seconds). Trials within 700 msec before or after a button 

press were excluded. The interval between successive stimulus onsets was fixed at 117 

msec. Ten percent of trials were “null” events in which no stimulus was presented. The 

average of these null events reflects the average, ongoing activity that overlaps with the 
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response to stimulus trials. This overlap was removed by subtracting the averaged null event 

from the other stimulus condition averages. In a single MEG session with up to 45 minutes 

of stimulus presentation (separated into 2.5 minute blocks with rest periods of 30 seconds or 

more), up to ~16,000 total trials were acquired, divided approximately equally across all 

stimulus locations and contrast levels.

Retinotopic mapping and map fitting

Procedures for the acquisition and analysis of phase-encoded fMRI data were similar to 

previous, detailed descriptions (DeYoe et al., 1996; Engel et al., 1994; Hagler et al., 2009; 

Hagler et al., 2007; Hagler and Sereno, 2006; Sereno et al., 1995). Retinotopic maps of polar 

angle were measured using a black and white dartboard wedge revolving around a central 

fixation cross (12 degrees polar angle wide). Eccentricity was mapped using an expanding 

or contracting ring. To ensure a stable level of alertness, and maximize attention, subjects 

performed a peripheral detection task, in which they pressed a button upon rare (~5–10 

second inter-stimulus interval) presentation of a gray circle at pseudo-random locations 

occluding the flickering dartboard pattern (Bressler and Silver, 2010). For each subject, 

there were equal numbers of scans with counterclockwise or clockwise stimulus revolutions. 

Similarly for eccentricity mapping, expansion and contraction scans were counterbalanced. 

fMRI time series data were normalized by mean intensity for each voxel. Linear regression 

was used with the motion estimates from 3dvolreg and a quadratic polynomial to remove 

drift and head motion artifacts. Fourier transforms of the fMRI time series were computed to 

estimate the amplitude and phase of periodic signals at the stimulus frequency, with phase 

corresponding to the preferred stimulus location for a given voxel. For 5 subjects, a 32 

second cycle was used, with 10 cycles/scan, and for 3 subjects, a 64 second cycles was used 

with 5 cycles/scan. Real and imaginary components were averaged across scans, with phases 

for clockwise polar angle and contracting eccentricity scans reversed before averaging. 

Phase delays of ~3 seconds were subtracted from the Fourier components before averaging 

to account for hemodynamic delays, and the combination of opposite direction scans 

removes residual bias due to spatially varying hemodynamic delays (Hagler et al., 2007; 

Hagler and Sereno, 2006; Warnking et al., 2002). For each subject, four polar angle scans 

(two clockwise and two counterclockwise) and two eccentricity scans (one outward, one 

inward) were collected in a single MRI session.

Nonlinear optimization methods were used to fit a template map including V1, V2, and V3 

to polar angle and eccentricity mapping data derived from fMRI (Dougherty et al., 2003; 

Hagler and Dale, 2011). The template maps were initialized as rectangular grids, and each 

grid node was assigned a preferred polar angle and eccentricity and a unique area code, 

corresponding to the lower or upper field portions of V1, V2, and V3 (Fig. 1C). V3 is often 

treated as two separate areas, V3 and VP, but for simplicity, these will be referred to as the 

lower and upper field portions of V3. To align the template map with the cortical surface, 

regions of interest (ROIs) were first manually drawn for each cortical hemisphere of each 

subject to encompass all of V1, V2, and V3, up to the maximum eccentricity measured with 

fMRI; a buffer zone was included, extending to the middle field representations of V3A and 

V4 (Fig. 1C). A two part fitting procedure was then performed. First, a coarse fitting step 

with 21 parameters determined the overall shape and location of the template map that best 
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fit the data. Second, a fine-scale fitting step smoothly deformed the template to better match 

the data. Unlike the previous description of this map fitting method (Hagler and Dale, 2011), 

additional free parameters were added to allow for greater flexibility in the fitting, including 

5 to model a polynomial curve and 6 to vary the length of each upper and lower field sub-

area.

Retinotopy constrained source estimation (RCSE)

Retinotopy constrained forward and inverse matrices were calculated as described 

previously (Hagler et al., 2009), with cortical patch models derived from retinotopic map fits 

(Hagler and Dale, 2011) (Fig. 1). Lead fields were calculated using the boundary element 

method (BEM) (Mosher et al., 1999; Oostendorp and van Oosterom, 1989). Unlike EEG, 

MEG signals are relatively insensitive to the conductivity profile of the head because of the 

low conductivity of the skull that confines almost all the current within it, and so only the 

inner skull boundary was used for the MEG forward solution, which was approximated by 

filling and dilating FreeSurfer’s automated brain segmentation (Fischl et al., 2002). Brain 

conductivity was assumed to be 0.3 S/m. Gain matrices, specifying the predicted sensor 

amplitudes for a set of cortical surface locations, were calculated for dipoles oriented 

perpendicular to the cortical surface. To determine the rigid body transformation between 

MRI and MEG reference frames, 100 or more digitized locations on the scalp were manually 

aligned to a surface representation of the outer scalp surface (obtained with the FreeSurfer 

watershed program) using a graphical interface written with MATLAB.

Models of the cortical sources of evoked visual responses, limited to visual areas V1, V2, 

and V3, were generated for each subject by selecting weighted cortical surface patches 

based on the retinotopic map fit, as described in detail previously (Hagler and Dale, 2011). 

For each stimulus presented during an MEG session, weighting factors for each cortical 

surface vertex (~0.8 mm inter-vertex distance) in V1, V2, and V3 were calculated based on 

the preferred stimulus location derived from the fMRI retinotopy template fit. Realistic 

receptive field size estimates were used to define the extent of cortical activation for each 

stimulus. Values of 0.66, 1.03, and 1.88 (degrees visual angle) were used for V1, V2, and 

V3, respectively, with slopes as a function of eccentricity of 0.06, 0.10, and 0.15 (degrees 

visual angle/eccentricity degrees visual angle), derived from published group averages of 

receptive field sizes estimated from fMRI data (Dumoulin and Wandell, 2008). The vertex 

weights were normalized so that the sum across visual field locations equaled one, and 

values less than 0.01 times the maximum for each cortical location were set to zero. Vertices 

in ipsilateral cortex were allowed (e.g. near vertical meridians) as was crossover between the 

upper and lower field sub-areas (e.g. near horizontal meridians). Each vertex was treated as 

a separate dipole, with orientation assumed to be perpendicular to the cortical surface.

Retinotopy constrained forward matrices were constructed from the gain matrices described 

above and the cortical patch weighting factors for each stimulus location. The gain vectors 

for all 36 stimulus locations – or alternatively a subset of 4 locations – were arranged into a 

single column, assuming that a given visual area has the same evoked response regardless of 

stimulus location (Ales et al., 2010a; Hagler and Dale, 2011; Hagler et al., 2009; Slotnick et 

al., 1999). The size of the forward matrix was the number of measurements (# of sensors X 
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# of stimulus locations) by the number of sources (visual areas). An inverse matrix was 

calculated from the forward matrix using a regularized pseudo-inverse with an identity 

matrix as the sensor noise covariance matrix. Separate source estimates were calculated for 

each contrast level using the same, time invariant inverse matrix. Normalized residual error 

was calculated as the ratio between the across-sensor variance of the residual error and the 

maximum variance of the data over time. To exclude potential interactions with the other 

nonlinear dipole optimization methods used in the current study, IRLS was not used for 

individual subject RCSE solutions.

Group-constrained RCSE

RCSE waveforms were calculated using MEG data and retinotopy constrained forward 

solutions from multiple subjects to simultaneously constrain the solution. To construct a 

group retinotopy constrained forward matrix, the retinotopy constrained forward solutions 

for multiple subjects were concatenated into a single matrix with a column for each the three 

visual areas and ~58,000 rows for ~204 gradiometers (excluding bad channels), 36 stimulus 

locations, and 8 subjects. An inverse matrix was then calculated and applied to the event-

related MEG data concatenated across sensors, stimulus locations, and subjects.

IRLS was used to reduce the contribution of individual subject responses to particular 

stimulus locations with large residual error relative to other locations and subjects (Hagler 

and Dale, 2011; Holland and Welsch, 1977; Huber, 1981). The absolute value of residual 

error was summed across all time points, contrast levels, and sensors, to provide absolute 

residual error (ARE) values for each subject and stimulus location combination. The 

minimum ARE value across all subjects and stimulus locations was subtracted from each 

ARE value, and these offset values were then normalized by their median absolute deviation 

(MAD), a robust estimator of the standard deviation (Hampel, 1974). Weighting factors 

were calculated from the normalized residual using Tukey’s bisquare function (Tukey, 

1960). These weights were used to scale both the sensor data and retinotopy constrained 

forward matrix before calculating the inverse operator and source estimates. Predicted 

sensor waveforms were calculated using the revised source estimates and the unweighted 

forward matrix. This process was repeated for at most 100 iterations or until the solution 

converged (i.e. source estimates change less than 10−7), which typically occurred within 10 

iterations.

Optimization of cortical patch locations constrained by prior

An iterative, random search procedure was used to find optimal cortical patch locations. At 

each of 1000 iterations, cortical patches were slightly displaced across the cortical surface 

using a 2-dimensional grid defined to encompass the occipital ROI used for the retinotopy 

map fit. In units relative to the width of the grid, the step size for each optimization step was 

0.002 and the maximum displacement was 0.02. This corresponded to a maximum 

displacement of ~5mm across the cortical surface and a mean displacement of 2.4 ± 0.2 mm 

(see Supp. Table 1). With patches in four visual field quadrants of three visual areas and 

either 4 or 36 stimulus locations, there were a total of 96 or 864 parameters, respectively. 

The optimization procedure required 10–20 minutes to complete with 4 stimulus locations 

and 1–2 hours with 36 locations. The optimized solution was constrained to be similar to a 
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group-constrained RCSE solution, which served as an a priori estimate of the shapes of V1, 

V2, and V3 waveforms. The cost function to be minimized is described by Equation 1:

(1)

where c is the cost function, λ is a weighting factor between 0 and 1, eprior is the normalized 

difference between the source estimates and the prior waveform, and edata is the normalized 

residual error, or the difference between the data and fit. A weighting factor of 0.5 would 

represent equal weighting between correspondence to the atlas prior and goodness of fit to 

the data, whereas a value of 1.0 would rely solely on the atlas prior. In this study, the prior 

weighting factor was chosen to be 0.8, a value that was large enough to prevent clearly 

wrong source estimates, such as can happen with no atlas prior, particularly with few 

stimulus locations (Fig. 2B and 5B), but less than 1 so that the individual’s data still 

contributed to the solution.

In order to use only the shape of the prior to constrain the solution and allow the optimized 

waveform amplitudes to vary between subjects, for each iteration of the optimization 

procedure, the amplitude of the prior was linearly scaled to optimally match the source 

estimate amplitude. To avoid making any assumptions about the relative amplitudes of V1, 

V2, or V3, the prior was scaled independently for each visual area. To avoid circularity 

issues related to self-bias, the prior estimate for each subject was the group-constrained 

RCSE solution calculated from the other seven subjects. Similarly, to avoid the possibility of 

biasing the contrast response functions, only the responses to high contrast stimuli and the 

group-constrained RCSE solutions computed from them were used to determine the optimal 

dipole locations; these locations were then used to estimate waveforms for each contrast 

level.

Exhaustive neighborhood search

A related nonlinear optimization method, previously introduced by Ales and colleagues 

(Ales et al., 2010a), was also implemented for comparison. That method, herein referred to 

as a neighborhood search, performs an exhaustive search for the single cortical surface mesh 

vertex within a defined cortical neighborhood for each stimulus location and visual area that 

minimizes residual error. In the current study, the cortical neighborhood was defined based 

on the weighted cortical patches determined by the fMRI retinotopic map fit used for the 

non-optimized RCSE solution (Hagler and Dale, 2011). To make the problem tractable, the 

search is performed in serial for each cortical neighborhood, during which the dipoles for all 

other stimulus locations are held constant (Ales et al., 2010a). Only the primary cortical 

patch was used, excluding the additional patches for ipsilateral and opposing upper/lower 

hemifields. To reduce the size of the neighborhood to be similar to the allowed range for the 

patch displacement search described above (see Supp. Table 1), vertices with weights less 

than 70% of the maximum weight for a given patch were excluded. The neighborhood 

search optimization required 2–3 hours to complete with 36 stimulus locations.
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Waveform analysis

Peak latency and amplitude were derived from group average RCSE waveforms. This 

approach, rather than finding peaks in individual subject waveforms, was chosen because 

some subjects exhibited responses with double peaks, particularly at lower contrast, 

resulting in elevated variance of peak latency. Peaks were detected using Eli Billauer’s 

peakdet (http://www.billauer.co.il/peakdet.html), which finds minima and maxima that are a 

minimum difference from surrounding extrema (0.5 nA·m). The peak with the largest 

amplitude between 50 and 150 msec post-stimulus was chosen for analysis. Bootstrap 

resampling was used to calculate 95% confidence intervals for average waveforms and peak 

latencies and amplitudes (Efron, 1979; Efron, 1987). For each of 2000 iterations, a sample 

of 8 subjects was selected with replacement, average waveforms were calculated, and peak 

latencies and amplitudes were determined. Confidence intervals and p-value upper bounds 

were then derived from the distribution of observed values, using the bias correction and 

acceleration method to correct for bias due to finite sampling (Efron, 1987). To control for 

multiple comparisons involved in the latency and amplitude comparisons between V1, V2, 

and V3 at low, medium and high contrast, a p-value threshold of 0.0175 or less was 

determined to result in a 0.05 false discovery rate (Benjamini and Hochberg, 1995).

Results

Between subject variability of RCSE waveforms

In previous descriptions of RCSE, the V1, V2, and V3 waveforms have shown similarities 

across studies and between subjects, although only two subjects were included in each (Ales 

et al., 2010a; Hagler and Dale, 2011; Hagler et al., 2009). The typical V1 response to high 

contrast pattern stimuli was dominated by a large negative peak at ~80 msec post-stimulus, 

which reflects a current dipole pointing from gray matter toward the underlying white matter 

(Hagler et al., 2009). For V2 and V3, the initial negative peaks were delayed by several 

milliseconds (Fig. 1D). In the current study, with a larger sample of 8 subjects, there were 

again similarities common to all subjects, but substantial variation was observed as well. 

Examples of this were differences in the relative peak amplitudes of each area, inverted or 

biphasic initial responses for one or more areas in some subjects, and simultaneous 

responses in V1 and V2 or V3 in some subjects (Fig. 2).

The source of this variation is presumably at least partly artifactual, due to slight errors in 

the specification of dipole locations and orientations (Hagler and Dale, 2011; Hagler et al., 

2009); these unusual waveform features occurred more often when fewer stimulus locations 

were used to constrain the solutions (Fig. 2B). That waveforms estimated with a small 

number of stimulus locations exhibit greater sensitivity to dipole specification errors was 

confirmed through additional simulations (Supp. Fig. 1). If dipole locations were shifted 

across the cortical surface, a variety of waveform shapes resulted (Fig. 3). For individual 

subjects, the use of many stimulus locations reduces the sensitivity to errors specific to one 

or a few stimulus locations (Hagler and Dale, 2011; Hagler et al., 2009), and robust 

estimation with IRLS can further reduce the contribution of outliers (Hagler and Dale, 2011; 

Holland and Welsch, 1977; Huber, 1981). Similarly, the larger group of subjects in the 

current study provided the opportunity to obtain multi-subject consensus estimates of the 
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V1, V2, and V3 VER time courses, using IRLS to reduce the contribution of outliers (Fig. 2; 

see Group-constrained RCSE in Methods).

Optimization of RCSE constrained by prior

To improve the reliability of RCSE for individual subjects, particularly when using a smaller 

number of stimulus locations, an optimization method was developed to correct for 

inaccurately specified dipole locations and orientations (Supp. Fig. 2). This method works 

by nonlinearly searching for displacements along the cortical surface of the cortical patches 

for each stimulus location, in order to provide a better fit to the sensor data (Fig. 3A–C). An 

exhaustive neighborhood search was also tested for comparison (Ales et al., 2010a). Because 

of the introduction of many free parameters, it is possible to obtain solutions with reduced 

residual error (Supp. Fig. 3) that are nonetheless quite implausible (Fig. 4A–B), particularly 

with a small number of stimulus locations (Fig. 5A–B). To prevent this, the group-

constrained RCSE solution was used as a priori information about the timing and shape of 

the response of each area – essentially a probabilistic atlas of visual area time courses – in 

order to constrain the individual subject solution (Fig. 3D). To avoid circularity issues, a 

leave-one-out approach was used for computing the group-constrained RCSE solutions, so 

that an individual’s own initial RCSE waveforms did not contribute to the prior used to 

constrain the optimization. Using this method, the types of waveform abnormalities 

described above were generally avoided, and the variance of RCSE waveforms across 

subjects was substantially reduced (Fig. 4C and Fig. 5C). These different optimization 

methods were constrained such that they resulted in dipole displacements no greater than 6 

mm that were less than 2.5 mm on average (Fig. 6, Supp. Table 1).

Differences between V1, V2, and V3 responses and the effects of luminance contrast

RCSE with prior-constrained dipole optimization was used to measure V1, V2, and V3 

responses as a function of luminance contrast (Fig. 7). Checkerboard stimuli at 36 locations 

were presented one at a time, using three different luminance contrast values (15%, 71%, 

95%; Fig. 7D). RCSE waveforms averaged across the 8 subjects show that both the 

amplitude and latency of the responses vary with luminance contrast in expected ways (Fig. 

7A–C). At low contrast, the responses were both smaller and later (Fig. 7E–F). The contrast 

latency functions were similarly shaped for V1, V2, and V3, but with significantly earlier 

peak responses in V1 for each contrast level, ranging from ~10 to ~20 msec (Fig. 7E, Tables 

1 and 2). Peak latencies of V2 and V3 were quite similar, although a small difference of ~4 

msec was found to be significant for 71% and 95% contrast stimuli (Fig. 7E, Tables 1 & 2). 

Peak amplitudes for V1 were larger than those of V2 by 37% –though significant only for 

71% and 95% contrast – and larger than those of V3 by 74% (Fig. 7F; Tables 1 & 2). Peak 

amplitudes for V2 were 27% larger than for V3, but these differences were not significant. 

Normalized contrast response functions were nearly indistinguishable for the three visual 

areas (Fig. 7G). The overall shape of the estimated response was similar for the three areas, 

but V1 displayed a second negative peak at ~190 ms – about the time expected for a 

response to the stimulus offset. A similarly prominent peak was not observed in the V2 or 

V3 waveforms.
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These results, obtained using the prior-constrained dipole optimization described above, 

were qualitatively compared to results without optimization, with neighborhood search, and 

with displacement search unconstrained by a prior, using either 36 or 4 stimulus locations 

(Figs. 8 and 9, Supp. Fig. 3). The average response amplitudes were generally larger when 

using 4 stimulus locations instead of 36, as was the proportion of explained variance. 

Response amplitudes increased after optimizing dipole location via displacement search. 

Explained variance was increased when the search was not constrained by a prior, but 

roughly unchanged when a prior was used. Curiously, response amplitudes were relatively 

small with neighborhood search, despite increases in the explained variance. This may be 

due to reduced cancellation when using single vertices to model dipoles rather than 

distributed cortical patches (Ahlfors et al., 2010). Aside from these differences, the functions 

of peak latency and amplitude relative to luminance contrast were similar for the different 

sets of results. There was, however, greater inter-subject variability for the non-optimized 

estimates and the estimates using neighborhood search or displacement search unconstrained 

by a prior. This resulted in larger 95% confidence intervals, particularly with only 4 stimulus 

locations (Fig. 9), thereby reducing power to detect differences between conditions or visual 

areas.

A potential explanation for the lack of substantial differences between V2 and V3 is that 

their sensor topographies are too similar to properly distinguish between them (Ales et al., 

2010b). The patterns of MEG sensor topography predicted by the retinotopy constrained 

forward solutions as functions of stimulus location were reviewed for each visual area 

(Supp. Fig 4–6). Although topography for several stimulus locations may in fact be similar 

for V2 and V3, such that the angular difference between their dipoles was consistently less 

than for V1 and V2 or V1 and V3 (Supp. Table 2), the collection of multiple stimulus 

locations appeared to allow for adequate separation between visual areas. This was 

quantified using the crosstalk measure (Hagler et al., 2009; Liu et al., 1998), which was 

quite low between V2 and V3, both before and after prior-constrained dipole optimization, 

even for only 4 stimulus locations (Supp. Table 3).

Discussion

Estimation of visual evoked responses in individual visual areas based on non-invasive 

recordings is a challenge for a number of reasons; chief among them, the close proximity of 

early visual areas and the convoluted cortical surface upon which retinotopic maps lie. 

RCSE accounts for the mapping of the visual field to the folded cortical surface, and through 

the use of multiple stimulus locations to constrain the solutions, resolves the proximity issue 

(Ales et al., 2010a; Hagler and Dale, 2011; Hagler et al., 2009). The primary limitation of 

RCSE is related to the inherent imprecision of mapping between the visual field and visual 

cortex. To compensate for small errors in the specification of dipole locations and improve 

the reliability of RCSE, a dipole optimization procedure was developed, constrained by prior 

information about the time courses of activity in V1, V2, and V3. This is the first study 

using RCSE to include results from more than two subjects, and while the sample size of 

eight subjects was not large, it was sufficient to answer some basic questions about 

differences between the responses of V1, V2, and V3. The V1 peak response was ~10–20 
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msec earlier than that of V2 and V3, as well as ~30–70% larger in amplitude. Normalized 

contrast response functions were, however, nearly identical for the three visual areas.

General limitations of RCSE

One of the key, simplifying assumptions of RCSE is that time courses within a visual area 

are identical for stimuli at different visual field locations. This is likely a reasonable 

approximation, and there is some evidence to suggest that estimated responses are quite 

similar within eccentricity bands (Slotnick et al., 1999) and across left and right hemifields 

(Ales et al., 2010a). There is, however, evidence that visual evoked potential peak latencies 

decrease with increasing eccentricity (Baseler and Sutter, 1997). Furthermore, differences 

between responses to stimuli in the upper and lower visual fields may be predicted based on 

previous demonstrations of a behavioral advantage for lower field stimuli (Levine and 

McAnany, 2005; McAnany and Levine, 2007; Previc, 1990; Skrandies, 1987), as well as 

much larger visual evoked fields (Portin et al., 1999). The potential for variation of the 

responses across the visual field is, therefore, a real concern, as discrepancies between visual 

field locations will contribute to greater residual error. Despite this, it seems appropriate to 

view the RCSE estimates as consensus solutions that, in the event of latency variations 

across the visual field, will have intermediate timing. In any case, future work should 

include a detailed analysis of the variation across the visual field by comparing the 

responses estimated from subsets of stimulus locations.

The ability of RCSE to correctly distinguish between one visual area and another depends 

on the accuracy of the forward model. For example, because of cortical curvature, small 

displacements along the cortical surface can result in large changes in the predicted dipole 

orientation (Hagler et al., 2009). If multiple stimulus locations are used, and the 

displacements are small and randomly distributed, the estimated waveforms may not be 

substantially altered, although residual error will be increased (Hagler et al., 2009). Larger 

or systematic discrepancies in the mapping between MEG stimulus locations and fMRI 

retinotopic maps could result in highly inaccurate source estimates, particularly when fewer 

stimulus locations are used (Fig. 3, Supp. Fig. 1).

There appears to be an inverse relationship between the estimated response amplitude and 

residual error, such that estimated waveforms with small amplitudes are accompanied by 

high residual error. Consistent with this, increased response amplitudes were observed for 

estimates using only four stimulus locations (Figs. 8 and 9) as well as a corresponding 

increase in the proportion of variance explained by the RCSE fit (Supp. Fig. 3). The use of 

many stimulus locations tends to reduce the amount of variance that can be explained, since 

noise that is independent for the different stimulus locations is excluded from the fitted 

solution (Hagler and Dale, 2011). For example, RCSE fit variance during the pre-stimulus 

baseline period was nearly zero, compared to substantial, non-zero variance of the data 

during this period (Supp. Fig. 3). Also, the cumulative effect of inaccurately specified 

cortical patch locations increases residual error more when using many stimulus locations 

(Supp. Fig. 7). In contrast, source estimation methods using a single stimulus location can 

account for a greater fraction of variance – even in baseline periods without actual neural 
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activity – although this does not imply a more accurate solution (Hagler and Dale, 2011; 

Hagler et al., 2009).

Another limitation of current and previous implementations of RCSE is that only the early 

visual areas V1, V2, and V3 were modeled. Using multiple stimulus locations does impose a 

strong constraint on the RCSE solution and reduces the likelihood of contamination between 

visual areas (Hagler et al., 2009), but to the extent that other visual areas are activated by 

these stimuli, the omission of such areas contributes to elevated residual error, presumably 

more so at later time points. If only to gain more comprehensive information about the 

properties of the visual system, it would be desirable to include additional visual areas. 

Creating retinotopy constrained dipole models for areas such as V3A, V4, or V5 would be 

relatively straightforward, but the results would require careful validation, particularly given 

the small size of these areas, their large receptive fields, and their close proximity to other, 

related visual areas.

Between subject variability of RCSE waveforms

Some degree of heterogeneity among human subjects in the latency of visual evoked 

responses is expected, for example, due to differences in axonal conduction speed (Berman 

et al., 2009). Other large variations in RCSE waveforms across subjects, such as polarity 

inversions, are more likely artifactual in origin. The quality of fMRI retinotopy data and 

map fits, cortical surface reconstructions, and the signal-to-noise-ratio (SNR) of MEG/EEG 

data each contribute to the variability of RCSE waveforms (Hagler and Dale, 2011). Also, 

variation in the complexity of cortical folding, which has been previously observed 

(Palaniyappan et al., 2011; Penttila et al., 2009; Rogers et al., 2010; Toro et al., 2008), may 

contribute to greater discrepancies in particular subjects. In the current sample, there were 

positive, but non-significant correlations between the variability of orientations within 

cortical patches and RCSE residual error (Supp. Table 4). Additional variability could arise 

from the mapping between the visual fields used for separate MEG and fMRI 

measurements. In this work, the maximum visual angle was held constant for MEG sessions 

and precisely measured for fMRI sessions so that they could be taken into account in 

retinotopic map fitting and RCSE dipole modeling, thus fully accounting for variation in the 

size of the stimulated visual field for fMRI sessions across subjects.

Another source of variability between subjects, particularly for a small number of stimulus 

locations, is the extent to which the collection of dipoles chosen for V1, V2, and V3 were 

orthogonal to each other. Also, because of dipole cancellation and the insensitivity of MEG 

to radial dipoles, some sources locations for particular subjects may result in smaller MEG 

signals, potentially making estimated responses noisier. Given knowledge of the predicted 

dipole locations and orientations for multiple visual areas and visual field locations, it 

should be possible to choose a small set of stimulus locations that provide superior 

separation between V1, V2, and V3, tailored to each subject. For example, one could choose 

locations where the differences in dipole orientation for V1 and V2 (or V1 and V3, or V2 

and V3) are closest to 90 degrees (see Supp. Table. 2). Similarly, one could choose the 

combination of locations that collectively result in the lowest cross-talk between V1, V2, 

and V3. In addition, locations with relatively weak, predicted sensor amplitudes could be 
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avoided. A caveat is that if the retinotopic maps used to calculate the forward models are 

slightly wrong, the stimulus locations chosen for a particular subject may not be truly 

optimal. Given that, it would be advisable to prefer stimulus locations corresponding to 

relatively smooth cortical locations, so that small inaccuracies in the modeled location 

would be less problematic. Even so, retinotopic map fitting errors would likely necessitate 

dipole optimization. Another concern is that if VERs vary as a function of visual field 

location, for example, reduced latency in the periphery (Baseler and Sutter, 1997), choosing 

different stimulus locations for each subject could introduce unnecessary variation.

The simultaneous constraint of many stimulus locations helps to reduce the influence of 

modeling imperfections (Hagler and Dale, 2011; Hagler et al., 2009). Similarly, RCSE 

constrained by multiple subjects yields a consensus solution, with IRLS to minimize the 

contribution of outliers. For hypothesis testing and describing the between-subject 

variability of source estimates, non-parametric resampling methods were used because they 

do not require the assumption of normal distributions, which could, in principle, be violated 

for RCSE waveforms and derived measures, particularly with a relatively small sample. 

Also, peak latencies and amplitudes were more reliably derived from group average 

waveforms rather than those of individual subjects, and bootstrap resampling allowed the 

estimation of confidence intervals for those measures.

Nonlinear optimization of dipole locations

Nonlinear optimization of dipole locations for RCSE is a way to relax the strong constraints 

provided by fMRI retinotopy, with the knowledge that those constraints could be slightly 

inaccurate. This general approach was used previously by Ales and colleagues, who 

performed a neighborhood search for the best fitting vertex, iterating through each stimulus 

location and visual area in turn, holding dipoles for all other stimulus locations constant 

(Ales et al., 2010a). A conceptually similar method would be to first linearly estimate source 

waveforms and then use those estimates to linearly estimate better fitting dipole orientations.

A limitation of both approaches is strong dependence on the initial waveform estimates. 

Also, the sequential nature of the neighborhood search reduces the likelihood of obtaining 

an optimal solution. Furthermore, using a single vertex, rather than weighted cortical 

patches, to model the source of visual evoked responses for a particular visual area and 

stimulus location fails to account for the extent of cortex activated or the fact that stimuli 

near the vertical and horizontal meridians evoke responses in each of the four sub-areas of 

V1, V2, and V3 (Hagler and Dale, 2011). In the current study, the vertical and horizontal 

meridians themselves were not were not stimulated, primarily to minimize cross-over 

contributions and avoid parts of V1 that are more sharply curved than others. It is likely, 

however, that the methods described here would be applicable to stimuli presented at the 

meridians because these cross-over contributions may be modeled explicitly with weighted 

cortical patches and dipole optimization can compensate for problems related to curvature.

A more general concern about nonlinear optimization, which also affects the cortical patch 

displacement search described in this paper, is that the introduction of many free parameters 

erodes the highly over-determined nature of the RCSE method. Although the goal is to 

obtain more accurate source estimates, reductions in residual error provided by multi-
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parameter nonlinear optimization do not guarantee this. While dipole optimization without 

the group-RCSE prior generally reduced residual error (Supp. Fig. 3), the resulting 

waveforms were sometimes implausible (Fig. 4 & 5). A potential explanation is that if some 

of the poorer fitting dipoles of V1, V2, or V3 were reoriented to align with other, un-

modeled visual areas, estimated time courses would be more inaccurate, even though 

residual error would be reduced. The use of prior estimates of visual area time courses to 

guide the optimization is a way to correct for incorrectly specified cortical patch locations 

while imposing constraints on the solution that may prevent contamination between visual 

areas that would otherwise result from dipole optimization. With the group-RCSE prior, 

results tended to be more sensible, but residual error was reduced to a lesser degree (Supp. 

Fig. 3). This might suggest that there were substantial differences between individual 

subjects and the group-RCSE solution, such that forcing the waveforms to be similar to the 

group-RCSE did not improve the goodness of fit for individuals. Alternatively, it may be 

that there is a limit to the proportion of variance that can be explained with the multi-

location V1, V2, and V3 cortical patch models, and that unconstrained optimization methods 

reduce the residual error artifactually; for example, by capturing the variance of additional, 

un-modeled visual areas.

The greatest potential benefit of prior-constrained dipole optimization is to improve the 

reliability of RCSE when using a small number of stimulus locations, such as one in each 

quadrant. With few locations, small inaccuracies in retinotopic mapping and fMRI to MEG 

registration become particularly influential (Supp. Fig. 1) (Hagler and Dale, 2011). Using a 

small number of locations, however, would make the use of RCSE more practical for a 

wider range of applications by allowing for parametric manipulation of stimulus or task 

conditions while maintaining a sufficiently large number of trials per condition within a 

feasible recording duration. Regardless of the number of stimulus locations, about 200 or 

more trials per condition are required for RCSE source waveforms with acceptable SNR.

Because the timing and waveform shape of VERs depend on stimulus properties, it is 

necessary to select an appropriately similar prior, considering luminance contrast, spatial 

frequency, and other factors. Assuming that the locations of the cortical dipole patches are 

invariant with respect to stimulus properties other than visual field location, optimized 

dipole locations obtained for a single stimulus condition – i.e. the one most similar to the 

prior – may be applied to other conditions with identical visual field locations but varied 

stimulus or task properties. The prior may be derived from group-constrained RCSE, as in 

the current study, or from a previous recording session for the same subject using a large 

number of stimulus locations. Using a subject-specific prior would allow for the possibility 

of greater, true variation between subjects in waveform shape or timing, although this 

approach would also be more vulnerable to inaccuracies in the original estimates. In the 

current study, a leave-one-out approach was used to avoid circularity issues, but in general it 

is likely preferable to use as a prior group-constrained RCSE waveforms derived from as 

many subjects as possible.

A characteristic of the optimization approach used for the current study was that the cortical 

patches corresponding to each stimulus location were simply displaced across the cortical 

surface, limiting the number of free parameters to two per patch. At the expense of greater 
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computation time, additional parameters could possibly be used to increase the goodness of 

fit. For example, the patches could be rotated, or the diameter varied. A more complex 

nonlinear estimation procedure could even allow for changes to the shape of the cortical 

patches, although it would require further study to establish the feasibility of such an 

approach. It is difficult to know whether additional parameters would make a substantial 

improvement, given that MEG or EEG sensors detect dipolar sources at a distance, such that 

subtle changes to the shape of the patches could be insignificant. On the other hand, if a 

patch is the wrong size or incorrectly oriented, this could increase residual error by under- or 

over-estimating the degree of cancellation. Also, the inclusion or omission of particular 

vertices from a patch could, because of cortical folding, dramatically change the equivalent 

dipole orientation. Not including additional parameters could, therefore, have precluded 

some dipole displacements that would otherwise have produced better fits to the data.

A finite search radius was used for both displacement search and neighborhood search 

(Supp. Table 1). For neighborhood search, this was implemented by only including vertices 

with high weighting factors (≥ 70% of the maximum for each patch). The size of the range 

allowed is a somewhat arbitrary choice, balancing the ability to correct for retinotopic 

mapping errors with the need to avoid artifactually large displacements. Dipole search with 

larger ranges produced similar results, but sometimes resulted in implausible patterns of 

patch displacements (not shown). For neighborhood search, including more vertices in the 

search neighborhoods – which increased computation time by as much as 10 times if using 

the full set of vertices in a patch – reduced residual error, but did not improve overall 

performance in terms to preventing implausible waveform abnormalities such as polarity 

inversions (not shown).

Differences between visual areas

Invasive recordings in monkeys have shown that the early visual areas first become active 

nearly simultaneously (Schmolesky et al., 1998; Schroeder et al., 1998), and whether there is 

a substantial difference in timing between V1, V2, and V3 in humans has been recently 

debated (Ales et al., 2010b; Kelly et al., 2012). In previous studies using the RCSE method 

(Ales et al., 2010a; Hagler and Dale, 2011; Hagler et al., 2009), the number of subjects 

tested has been too small to draw firm conclusions on this issue. In the current study, the 

peak responses of both V2 and V3 were found to be significantly delayed relative to V1, by 

~10–20 msec. Interestingly, the peak V3 response was nearly coincident with that of V2. 

This suggests that direct input from V1 plays an important role in the V3 response, 

bypassing V2. At the least, the short delay indicates that local processing in V2 is not 

required before signals are passed to V3 for further processing.

Peak amplitudes were significantly larger for V1 than for V2 and V3. These amplitude 

differences may reflect higher levels of activity within individual neurons or a greater 

number of active neurons, but other explanations are possible as well. For example, the 

strength of a current dipole depends on the geometry of neuronal populations in different 

layers of cortex (Einevoll et al., 2007; Gratiy et al., 2011). Also, systematic differences in 

the accuracy of the forward models for each visual area, which could contribute to under- or 

over-estimation of response amplitudes, cannot be ruled out. No apparent differences 
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between V1, V2, and V3 were found in the relative peak amplitudes as a function of 

luminance contrast. This finding is similar to the results of previous fMRI studies (Avidan et 

al., 2002; Buracas et al., 2005; Kastner et al., 2004), although it conflicts with one early 

fMRI study that found a large difference between the contrast response functions of V1 and 

V3 (Tootell et al., 1995). The discrepancy may reflect imprecise labeling of V3 or 

differences in stimulus properties such as spatial frequency.

In previous studies using RCSE, large, positive deflections were observed in the estimated 

V2 and V3 waveforms (Ales et al., 2010a; Hagler and Dale, 2011; Hagler et al., 2009), 

roughly coincident with the onset of the V1 response. Although this type of biphasic pattern 

is consistent with the shape of cortical surface electrode recordings in monkeys (Schroeder 

et al., 1991), and the positive peak can be potentially explained by depolarization of layer 

2/3 pyramidal neurons (Barth and Di, 1991; Einevoll et al., 2007; Hagler et al., 2009), such 

polarity inversions are also potentially explained by incorrectly specified dipole locations 

(Fig. 3, Supp. Fig. 1). In the current study, these peaks were sufficiently small and variably 

timed across subjects – they were not observed at all in some subjects – that they were 

barely noticeable in the group-constrained RCSE solutions (Figs. 2, 4, & 5). In group 

average V2 and V3 waveforms, they were quite small, particularly after prior-constrained 

dipole optimization (Figs. 7, 8, & 9). If, for some reason, a large, positive peak was present 

in an individual but not the group-constrained solution, the use of the group-RCSE prior can 

be expected to slightly reduce the amplitude of this peak but not eliminate it after 

optimization (Supp. Fig. 8). Thus, without ruling out early, small amplitude, positive 

currents, it seems that the large, positive peaks observed previously in V2 and V3 

waveforms were likely artifacts of displaced dipole locations.

Conclusion

RCSE allows for the separation of activity in individual visual areas despite their close 

proximity, but it is limited by the accuracy of the retinotopy-defined dipole locations. 

Group-constrained RCSE was developed to obtain consensus response waveforms for V1, 

V2, and V3. Using such group-constrained RCSE solutions as prior estimates for nonlinear 

optimization of dipole locations improved the robustness of RCSE for individual subjects, 

avoiding artifacts such as polarity inversions that were sometimes observed without 

optimization or with optimization methods unconstrained by a prior. This was particularly 

the case when using a small number of stimulus locations, which is desirable for 

applications involving the parametric manipulation of stimulus or task conditions. Using 

these methods and RCSE solutions obtained from a group of subjects, the V1 peak response 

was, not surprisingly, found to be significantly larger and earlier than V2 and V3, which 

were relatively similar in amplitude and latency. The relationship between luminance 

contrast and normalized peak amplitudes was nearly identical for the three areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Retinotopy constrained source estimation. A. Checkerboard stimuli were displayed at one of 

36 visual field locations. B. MEG was used to measure VERs in an individual subject, and 

time courses for each location are shown for a selected mid-line occipital gradiometer. C. A 

map template was fitted to fMRI retinotopy data to identify cortical patches for each 

stimulus location and construct retinotopy constrained forward models. D. Source estimates 

were generated for V1, V2, and V3, simultaneously constrained by all 36 stimulus locations.
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Figure 2. 
Group-constrained RCSE. RCSE time courses calculated from responses to high contrast 

(95%) stimuli for 8 subjects are shown in blue (V1), green (V2), or red (V3), with group-

RCSE solutions superimposed in black. A. RCSE solutions with 36 stimulus locations. B. 

RCSE with 4 stimulus locations. Locations of the 4 stimuli were at 5.3° visual angle and 45° 

from the horizontal and vertical meridians, as indicated by the inset image of stimulus 

locations.
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Figure 3. 
RCSE dipole optimization constrained by group-RCSE prior. A. Schematic depiction of the 

relationship between cortical folding, dipole location, and predicted dipole orientation. B. 

Dipole patches were displaced across the cortical surface in search of better fitting locations. 

C. For an individual subject, cortical displacement of dipole patches can result in a variety of 

V1, V2, and V3 RCSE waveforms, some of which provide a better fit to the measured MEG 

data. D. To constrain dipole optimization, waveform estimates (blue, green, or red traces) 

are compared to the prior estimate derived from group-constrained RCSE (black traces) that 

have been scaled in amplitude (gray traces) to best match the estimate at each iteration. 

RCSE waveforms shown were derived from responses to high contrast (95%) stimuli.
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Figure 4. 
Group-constrained RCSE after nonlinear optimization. RSCE time courses calculated from 

responses to high contrast (95%) stimuli at 36 locations for 8 subjects after three methods of 

nonlinear optimization shown in blue (V1), green (V2), or red (V3), with recalculated 

group-RCSE solutions superimposed in black. A. Neighborhood search. B. Displacement 

search without prior. C. Displacement search constrained by group-RCSE prior.
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Figure 5. 
Group-constrained RCSE after nonlinear optimization. RSCE time courses calculated from 

responses to high contrast (95%) stimuli at 4 locations for 8 subjects after three methods of 

nonlinear optimization shown in blue (V1), green (V2), or red (V3), with recalculated 

group-RCSE solutions superimposed in black. A. Neighborhood search. B. Displacement 

search without prior. C. Displacement search constrained by group-RCSE prior.
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Figure 6. 
Cortical patch dipoles before and after optimization constrained by prior for three 

representative subjects (A–C). Colors for each cortical patch (excluding those with weights 

< 0.2 relative to maximum) correspond to the central polar angle of the matching stimulus, 

using the same color scheme as in Fig. 1C. The small holes in the patches after optimization 

are related to how patches were displaced across the cortical surface. For each vertex in the 

original patch, a single vertex was chosen closest to the original location plus the 2-

dimensional displacement. Dashed, yellow lines represent approximate, manually-drawn 

borders between V1, V2, and V3. Solid white lines represent approximate, manually-drawn 

borders after optimization.
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Figure 7. 
Group averages of V1, V2, and V3 responses to stimuli with varying luminance contrast. A. 

V1, V2, and V3 RCSE waveforms after dipole optimization for low luminance contrast 

(15%) stimuli. B. Medium contrast (71%). C. High contrast (95%). D. Images of stimuli 

with three levels of luminance contrast. E. Peak latency as a function of luminance contrast 

for V1, V2, and V3. F. Peak amplitude relative to the pre-stimulus baseline. G. Normalized 

peak amplitude, relative to mean amplitude at high contrast. 95% confidence intervals 

derived from bootstrap resampling are shown as shaded regions (A–C) or error bars (E–G).
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Figure 8. 
Group average responses for 36 stimulus locations, with and without dipole optimization. A. 

Group average RCSE waveforms for high contrast (95%) stimuli (top), peak latency versus 

contrast (middle), and peak amplitude versus contrast (bottom) for initial RCSE estimates 

without optimization. B. Neighborhood search. C. Displacement search without prior. D. 

Displacement search constrained by group-RCSE prior.
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Figure 9. 
Group average responses for 4 stimulus locations, with and without dipole optimization. A. 

Group average RCSE waveforms for high contrast (95%) stimuli (top), peak latency versus 

contrast (middle), and peak amplitude versus contrast (bottom) for initial RCSE estimates 

without optimization. B. Neighborhood search. C. Displacement search without prior. D. 

Displacement search constrained by group-RCSE prior.
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