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Abstract
Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics therein are
significantly conditioned by the nature of the tidal motion of alveolar duct geometry. At least two
components of the ductal structure are known to exhibit stress-strain hysteresis: smooth muscle
within the alveolar entrance rings, and surfactant at the air-tissue interface. We hypothesize that
the geometric hysteresis of alveolar duct is largely determined by the interaction of the amount of
smooth muscle & connective tissue in ductal rings, septal tissue properties, and surface tension-
surface area characteristics of surfactant. To test this hypothesis, we have extended the well-
known structural model of the alveolar duct by Wilson and Bachofen (J. Appl. Physiol. 52(4):
1064–1070, 1982) by adding realistic elastic and hysteretic properties of 1) the alveolar entrance
ring, 2) septal tissue, and 3) surfactant. With realistic values for tissue and surface properties, we
conclude that: 1) there is a significant, and underappreciated, amount of geometric hysteresis in
alveolar ductal architecture; and 2) the contribution of smooth muscle and surfactant to geometric
hysteresis are of opposite senses, tending toward cancellation. Quantitatively, the geometric
hysteresis found experimentally by Miki et al. (J. Appl. Physiol. 75(4): 1630–1636, 1993) is
consistent with little or no smooth muscle tone in anesthetized rabbits in control conditions, and
with substantial smooth muscle activation following methacholine challenge. The observed local
hysteretic boundary motion of the acinar duct would result in irreversible acinar flow fields, which
might be important mechanistic contributors to aerosol mixing and deposition deep in the lung.
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INTRODUCTION
The airflow patterns of low Reynolds number acinar gas flow and the fate of inhaled
particles suspended therein are largely determined by acinar wall motion. Because of the
characteristic structure of acinar duct, namely a thoroughfare channel surrounded by
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numerous dead-end air pockets, a central channel flow passing by alveoli induces a slowly
rotating flow in a rhythmically expanding/contracting alveolus. The alveolar flow with
recirculation can be chaotic under the effect of small disturbances (54). Perturbation
includes 1) the effects of small nonzero Reynolds numbers (inertial effects) studied in e.g.,
Tsuda et al. (1995) and Henry et al. (2002, 2009), and 2) the effects of a small asynchrony
between ductal flow oscillation and cyclic alveolar wall motion studied in e.g., Haber et al.
(2000, 2003) and Haber & Tsuda (2006). The focus of this study is on the latter case.

Whereas the principal mode of lung expansion approximately satisfies geometric similarity
(1,18,19,38,56,57), it is known that during tidal ventilation geometric hysteresis does exist,
albeit small in magnitude (38). We have both experimentally and theoretically demonstrated
that the presence of such wall motion irreversibility (i.e. temporal asynchrony), even if small
in magnitude, can cause significant acinar flow kinematic irreversibility and consequently
enhance aerosol mixing and deposition in the pulmonary acinus (8,21–25,50–55). The
motivation for this study, therefore, was to identify and quantify the mechanical origins of
acinar geometric hysteresis.

Wilson and Bachofen’s seminal work (1982) showed that acinar airway architecture is
maintained by a balance between forces pulling the alveolar duct radially inward (hoop
stresses associated with tension borne in the connective tissue and smooth muscle in the
alveolar entrance ring), and forces retracting the duct radially outward (primarily associated
with alveolar septal surface tension at the air-liquid interface, but which may also include
septal tissue tension). Because under cyclic expansion and contraction, these forces behave
hysteretically, (e.g., 27,43), the resulting acinar geometry will display geometric hysteresis
depending upon the balance of stress hysteresis of these mechanical elements in series. For
example, if all elements mechanically in series display the same time dependence of their
stress relaxation or adaptation, then in spite of even large stress hysteresis, there will be no
geometric hysteresis. By contrast, to the extent that the time courses of stress adaptation
between the ductal connective tissue, surface tension, and septal tissue tension are not
strictly proportional, then there will be geometric hysteresis, in the sense of a different
fractionation of acinar volume between duct and alveoli on inspiration and expiration, at the
same overall lung volume.

We quantified these ideas in the context of a simple geometric model of a rhythmically
expanding/contracting alveolated duct, whose alveolar septa are in mechanical equilibrium
as described above. We extended Wilson and Bachofen’s analytical model, using finite
element computational techniques, to incorporate realistic, experimentally based,
nonlinearly elastic and hysteretic behaviors of all stress bearing elements.

The analyses showed several patterns of geometric hysteresis (including loop sense reversals
as found by Miki et al. 1993), depending on the magnitude of hysteretic characteristics of
force bearing elements. In particular, smooth muscle tone in the alveolar entrance ring plays
an important role in the geometrically hysteretic behavior of acinar architecture.

MATERIAL AND METHODS
Model geometry

Our simplified geometric model of acinar architecture consists of three components (Fig.
1a). (1) The outer boundary of the acinus is represented by a long expandable closed-end
cylindrical pipe whose kinematic motion is prescribed. The outer boundary corresponds to
what is described as primary alveolar septa in development, here referred to as outer wall
septa. (2) The septa connecting the outer wall with the alveolar duct (secondary septa
developmentally) are represented by annular disks, here referred to as simply radial septa.
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(3) The duct proper is represented by stress bearing rings at the inner openings. In Fig. 1b,
the manner in which this model represents actual parenchymal architecture is shown by the
overlay of the model on a photomicrograph showing the morphology of the alveolar space.
The model is axisymmetric, composed of repeated unit cells with outer (acinar) and inner
(ductal) radii of Ra and Rd, respectively, and axial length L. Thus, the volume of the unit
cell, bounded by the outer wall and two neighboring radial septa (extended to closed disks),
is πRa

2L; the surface S of the radial septa is 2π(Ra
2− Rd

2) (the factor of 2 arises from two
radial septa facing the interior of each unit cell). The thickness of the radial septa is denoted
by δ.

Material models
The material properties of each model component are as follows. First, the major material
constituents of the alveolar entrance ring are connective tissue and smooth muscle (39–41).
The connective tissue exhibit a nonlinear constitutive law, and is hysteretic with a weak
power law dependence on frequency (49,60). But at breathing frequencies, its hysteresis is
low, which we neglect in comparison with that of the smooth muscle. In short, we take the
connective tissue to be essentially elastic (i.e. history independent). By contrast, the smooth
muscle response is both nonlinear and displays significant hysteresis (20,43,46). A typical
uniaxial stress/stretch curve for entrance ring connective tissue of cat lung parenchyma is
shown in Fig. 2a (16). Connective tissue within the radial and outer wall septa is described
by representative uniaxial and biaxial stress/stretch curves in Fig. 2b (16,26); this is
described in more detail below. Stress/stretch behavior of smooth muscle is shown in Fig.
2c, taken from Sasaki and Hoppin (1979); note the hysteresis present. The fractionation of
the stress born in parallel within the ductal ring between muscle and connective tissue is
quantified by a fraction m approximated by the ductal ring volume density of muscle),
where 0 < m < 1. This is a functional fractionation, related to both the morphometric volume
fraction and to the degree of activation of the smooth muscle.

The radial septum is modeled as a membrane made of a nonlinear elastic material with
hardening characteristics. The constitutive law for the mechanical behavior of homogeneous
isotropic membranes can be deduced from uniaxial or biaxial loading experiments (e.g.,
26,35). First, we adopted the uniaxial curve of Fukaya et al. (1968) (Figs. 2a and 2b (right
curve)). Because the biaxial curve for alveolar septa has never been measured, we estimated
it from the material characteristics of a similar biological membrane, cat mesentery,
obtained by Hildebrandt et al. (1969). Assuming that the ratio between the biaxial and
uniaxial stresses at a given stretch is similar in both tissues, we estimated the biaxial curve
of alveolar septa (Fig. 2b (left curve)) based on the uniaxial curve measured by Fukaya et al.
(1968). For general loading, the stress/stretch states lie between the biaxial and uniaxial
curves. Our algorithm (see Appendix) computes stresses for in-plane stretches in the
principal strain directions; in our case these are circumferential (or hoop) and radial
directions.

The surface of the model is covered by surfactant (Fig. 1a). The air-liquid interface
generates surface tension γ, which is an external load on the tissue surface. We assume a no-
slip condition between the surfactant layer and the underlying tissue; this implies that the
surface tension may vary locally as it follows potentially nonuniform strain in the radial
septa. The surface tension-surface area relationship exhibits hysteretic behavior during
cyclic motion. It has been measured surfactometrically from bronchoalveolar lavage (BAL)
fluid extracts (27), by models and inferences from pressure-volume (PV) curves and
morphometry in excised and intact lungs (34,45,47,58), and by direct observation of the
spread of liquid droplets (5,45). The constitutive relationship (Fig. 2d), calculated by Wilson
(1982) based on PV curves and morphometry in rabbits (4,19) is used in this study. Note
that all material models shown in Fig. 2 rely on data obtained under quasi-static conditions.
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The above is a simplification; indeed, the hysteretic behavior of surfactant during quiet
breathing remains controversial (42, 44). Nevertheless, to the extent that we choose to lump
all the septal hysteresis in the surfactant layer, given that it is mechanically in parallel with
septal tissue with a no-slip condition, this artificial compartmentalization is likely to give
rise to only minor differences in behavior.

Boundary conditions
The outer wall septa of the model expand and contract in a geometrically similar fashion,
representing the principal mode of lung expansion (1,18,19,38,56,57). We take the time
dependence to be sinusoidal, although the temporal evolution in this work is entirely a
sequence of quasi-steady states; there are no dynamics per se, and time plays only a role of a
parameter which labels the volume. We write the radial and axial motions of the outer acinar
boundary, Ra(t) and L(t), as

(1)

where Rmean and ΔRa are the mean radius and the peak-to-peak amplitude of the outer
boundary radial displacement, which we take numerically to be 328 µm and 176 µm
respectively. Note that the peak-to-peak amplitude of radial displacement corresponds to the
volume change from minimal volume to total lung capacity, similar to simulations by Denny
and Schroter (2000). We take the aspect ratio of alveoli to approximate spherical symmetry,
and set L(0) = Ra(0) − Rd(0). The initial radius of the duct Rd(0) is taken as 120 µm. The
initial thicknesses of both the radial and outer wall septa are taken to be 5 µm, and the initial
cross-sectional area of the alveolar entrance ring to be 25 µm 2 (34,39). As noted above, time
is only a parameter in this model, for convenience we take the period as 2π. Minimal
volume occurs at time zero, at which point all elements (including surfactant) of the
microstructure are assumed to be stress free. This corresponds to the zero transpulmonary
state in an excised preparation.

Note that we are taking displacements as boundary conditions. From the whole organ point
of view, lung displacements are driven by variations in pleural pressure, and therefore
pressure boundary conditions would be most appropriate. On the other hand, at this level of
modeling the geometric characteristics of the acinus, and in particular its geometric
hysteresis, there is necessarily a unique relationship, albeit history dependent, between
volume displacements and pressure. In that sense, dealing with volume displacements as
boundary conditions as in Eq. 1 and computing the resulting pressures, is equivalent to
setting pressure variations as the independent variable and computing the resulting volume
displacements.

The governing equations for the radial septa
The quasi-static deformations of the radial septum and entrance ring can be determined by
solving the two equilibrium equations for stresses σxx, σyy, σxy, in local Cartesian
coordinates x and y in the septal plane:

(2)

The task in our analysis is to calculate, for a given radial displacement and history of the
outer wall (the independent variable), the radial displacements of the alveolar entrance ring
and septum in a way that satisfy these equilibrium equations together with the stresses and
strains within the tissue and surfactant obeying the (hysteretic) constitutive laws.
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Numerical model
The magnitude of strains that we simulate is too large for use of a linear approximation
schemes. We use a displacement based finite element numerical method (6,30,32) and
implement the features of nonlinear, hysteretic materials into the finite element program
PAK (29). One quarter of the septum is considered with imposed symmetric boundary
conditions along the x and y axes (Fig. 3). Note that by virtue of circumferential symmetry
of the radial boundary conditions at Rd and Ra, the solution inherits this same symmetry. We
specify the radial displacement at the outer septum radius as shown in Fig 3 as arrows
indicating displacements of Ra at the boundary.

Briefly, the alveolar entrance ring is modeled by line finite elements connecting the finite
element nodes on the internal rim. In calculating the nodal forces resulting from the alveolar
ring deformation, we use the material characteristics of each constituent, shown in Fig. 2c
for muscle and in Fig. 2a for connective tissue. The alveolar septal membrane is modeled by
isoparametric shell/membrane finite elements, with a biaxial material model (Fig. 2b).
Surfactant is modeled by calculation of stresses in tissue due to surfactant, and then the
nodal forces of the line and shell finite elements generated by surface tension (Fig. 2d) are
evaluated. The stresses in tissue at a given point, caused by surface tension, depend on the
history dependent local surfactant area strain of the surfactant surface at that point (see
Appendix for details).

Our model consisted of 70 membrane elements and 10 line elements for the entrance ring
with 88 nodal points. Number of steps in the incremental analysis was 250 (125 for
inspiration and 125 for the expiration regime). Implicit incremental procedure (6,32) and
implicit stress integration scheme of the constitutive relations (30,31) where implemented as
the methods which provide the best solution accuracy; details are given in Appendix. We
used tight equilibrium iteration tolerance of 10−6 in order to secure solution accuracy at each
load step.

Quantifying geometric hysteresis
We define a coefficient of geometric hysteresis ηgeom by the ratio of the loop area on the
surface area-volume plot to the area of the bounding rectangle enclosing the loop. This
definition is an exact analogy to the shape factor for pressure-volume hysteresis introduced
by Bachofen and Hildebrandt (1971) and extended to non-elliptical curves by Fredberg and
Stamenovic (1989). (This construction is shown graphically as a cartoon in Fig. 5).
Trajectories of material points on the internal architecture display hysteretic character over
breathing cycles (Fig. 7) and we have introduced a measure of hysteresis in displacements,
the displacement hysteresis coefficient Shyster (Fig. 8), in an analogous way as for the area-
volume hysteresis.

RESULTS
Geometric hysteresis represented by a septal surface – duct volume relationship is shown in
Fig. 4. When surfactant is absent (Fig. 4a), the degree of geometric hysteresis in the S-V
loop depends entirely on the amount of muscle constituent in the alveolar entrance ring; no
S-V geometric hysteresis occurs with m = 0. As the amount of muscle fraction increases, the
magnitude of geometric hysteresis increases (see m = 0.5, 1 in Fig. 4a). Note that the S-V
hysteresis associated with muscle is clockwise in the S-V loop. By contrast, the S-V
hysteresis associated with surfactant (in the absence of muscle, m = 0) is counterclockwise
in the S-V loop (see m = 0 in Fig. 4b). A mechanism responsible for these opposing loop
directions is described in the Discussion. With surfactant, the extent of geometric hysteresis
decreases as the amount of muscle increases (e.g., m = 0.5), but is still dominated by the
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hysteretic characteristics of surfactant seen because the overall S-V loop remains
counterclockwise (see m = 0.5 in Fig. 4b). With further increase in the amount of muscle
(the limit m = 1), however, the S-V loop changes its direction to largely clockwise, showing
a dominant role of muscle-driven hysteresis over surfactant-driven hysteresis (see m = 1 in
Fig. 4b). Finally, it should be noted that these directional changes of geometric hysteresis
due to the relative contribution of muscle-driven hysteresis to surfactant-driven hysteresis
have indeed been observed in the lungs of live rabbits by Miki et al. (1993); see the
Discussion.

In Fig. 5, the coefficient of geometric hysteresis ηgeom is plotted with respect to muscle
fraction in alveolar duct, m, for cases with and without surfactant. Note that our sign
convention is to take Ahyster and hence ηgeom positive or negative as the S-V loop is
counterclockwise or clockwise, respectively. Without surfactant, ηgeom is negative, and
quantifies the clockwise S-V hysteresis entirely due to the hysteretic characteristics of
muscle in the alveolar entrance ring. With surfactant present, on the other hand, ηgeom is
positive for lower m values, consistent with the counterclockwise S-V hysteresis being
dominated by surfactant; however, ηgeom becomes negative for higher m values, showing a
progressive domination by muscle. These two effects are balanced at a muscle fraction of m
≈ 0.72, at which no net geometric hysteresis is observed.

Geometric hysteresis observed in the S-V loop (Figs. 4 and 5) are indeed originated from the
hysteresis (or asynchrony) in radial septal displacements. This will be shown next in detail.
We present change of the septal radii over one cycle, trajectories of material points of the
septum, and radial displacement hysteresis, in Figs. 6–8, respectively. The results are
obtained assuming that the septum is covered by surfactant, and that the alveolar entrance
ring consists of two extreme cases of the muscle content: m=0 (no muscle) and m=1 (purely
muscle).

Considering hysteresis In displacements, we first show radial displacements of the alveolar
entrance ring (radius Rd), the model outer boundary (radius Ra), and a point close to the
middle radius (initial radius R0 = 190 µm) during a breathing cycle (Fig. 6 ). While the time
course of the outer boundary (Ra) is exactly symmetric with respect to the middle line (T =
0.5), which is dividing inspiration-expiration regimes, representing the imposed condition
(see Equation (1) and Fig. 3), the time course of other material points at any radial position
R (Ra ≤ R < Rd) on the septum exhibits asymmetry. The maximum asymmetry occurs at the
inertial rim (Rd) and the extent of asymmetry monotonically decreases as R approaches Ra.
The cases of no muscle content at the entrance ring, m = 0, are shown by solid lines, while
the cases of m = 1 (totally muscle) are represented by dashed lines. A comparison between
two cases shows that displacements and asymmetry are smaller for m = 1, indicating that
hysteresis driven by smooth muscle acts in the opposite sense with respect to the surfactant
hysteretic action.

Trajectories of septal material points in a radial x-y plane are shown in Fig. 7. Radial
displacements of selected points (shown in the y-direction in the figure) are obtained from
the FE model, while axial displacements (in the x-direction in the figure) are calculated
using equation (1). Trajectories in Fig. 7a (no muscle content, m = 0) have hysteretic
character of surfactant (except for the outer boundary with prescribed displacements), with
the clockwise hysteretic loop. This clockwise loop characteristic is in agreement with the
counterclockwise S-V hysteresis in Fig. 4a since smaller septal surface corresponds to larger
radial displacements. Similarly to the phenomenon shown in Fig. 6, the hysteresis becomes
smaller when the material points approach the outer boundary.
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In Fig. 7b are shown trajectories of septal material points assuming m = 1. With the presence
of both surfactant and muscle, the hysteretic effects of surfactant and muscle are
superimposed. We have hysteretic trajectories with loops which change sign over the cycle.
The loop of the inner rim is clockwise at the start of inspiration since the surfactant effects
are dominant; contrary, toward the end of expiration, the muscle effect dominates and the
loop becomes counterclockwise. As in case m = 0, the loops become smaller when
approaching the duct boundary because the harmonic radial displacements are prescribed at
the outer boundary.

An insight into a distribution of hysteresis in displacements along the septum radius can be
seen from Fig. 8. In analogy to the definition of the coefficient of geometric hysteresis ηgeom
(see Fig. 5), we introduce the displacement hysteresis coefficient Shyster as the ratio of the
loop area on the displacement-time curve to the area of the bounding rectangle enclosing the
loop. Here we have plotted values of the Shyster over the septum radius. In case of hysteresis
due to surfactant only [with no muscle content (m = 0)], Shyster approximately linearly
increases from no hysteresis (Shyster =0) at the external boundary to the maximum hysteresis
at the internal radius; Shyster is positive showing that hysteresis loops are clockwise (graph
on the right). Conversely, when with m = 1, Shyster is negative (graph on the left), indicating
that the hysteresis due to the muscle dominates over to that due to the surfactant, Shyster is
negative and nonlinearly increases (in value) from Shyster =0 at the outer boundary to the
internal rim.

DISCUSSION
The principal findings of this study are: 1) the alveolar architecture exhibits geometric
hysteresis due to the stress hysteretic characteristics of smooth muscle and surfactant. The
hystereses of smooth muscle and surfactant act in opposing senses in terms of inducing
geometric hysteresis, and tend toward quantitative cancellation. 2) The hysteretic
characteristics of smooth muscle and/or surfactant produce asynchrony and hysteresis in
radial septum displacements.

Methodology – a brief overview of past models & our basic computational approach and
model limitation

In the past, a number of acinar microstructural models have been reported. Traditionally, it
was first considered that the major load-carrying structural elements were the alveolar walls
and the alveolar air-liquid interface covering the septal wall membranes. These types of
“membrane” models with various configurations of space-filling polyhedrons were widely
discussed [see a review by Fung (1990)]. In the early 80’s, the importance of the cables of
fibers weaving through the alveolar ducts, especially through the alveolar entrance rings,
was stressed as the other major load-carrying elements maintaining the alveolar
microstructure (59). Since then, several “line” (or “line-membrane”) models have been
proposed (e.g., 7,9–13,28,33). Among them, there are a few analytical models reported
[exceptions include Budiansky and Kimmel (1987); Kimmel and Budiansky (1990)], chiefly
due to analytic limitations associated with the nonlinearity of material characteristics. An
alternative computational approach, especially in terms of incorporating experimentally
obtained material properties (through constitutive laws) of microstructural elements into the
structural model, has become more popular. For instance, one of the most complete
computational models currently available in the literature includes the finite element model
of Denny and Schroter (2000, 2006). The model consists of 36 truncated octahedra, with line
elements (composed of elastin and collagen) located at septal borders and within the septal
walls. Surfactant with hysteretic characteristics is also included, as well as geometric
hysteresis (a main difference between these and our model, besides that our model includes
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smooth muscle with hysteretic characteristics in the alveolar entrance ring, is discussed
below).

In the present study, the fundamental model design is based on the idea of Wilson and
Bachofen (1982) that there are competing force-bearing structures in acinar microstructural
architecture. Four dominant force bearing elements of acinar architecture were stretched into
their nonlinear regime and the quasi-static motion of the model alveolar microstructure was
solved numerically using state-of-the-art custom built finite element (FE) computational
techniques (see e.g. 31,32). In particular, our model, unlike others (including the model by
Denny and Schroter), is designed to probe the following specific characteristic: Because a
force balance between the alveolar entrance ring inward force and alveolar septal outward
surface force is demanded by equilibrium and because the hysteretic constitutive laws of the
ductal tissue and radial septa (including surfactant) are different, the alveolar entrance ring
and septum expand and contract asynchronously with respect to the motion of the ductal
outer boundary. The consequence of this asynchrony is that the acinar architecture at the
microstructural level does not deform in a geometrically similar fashion to the boundary
deformation. This is likely to have a significant effects on aerosol mixing and deposition in
the pulmonary acinus (8, 21–25, 50–55).

The model limitations rely on several simplifications, which might be classified into two
groups – geometrical and material. It is assumed that the duct is an ideal circular cylinder,
with the septum and internal ring also being axisymmetric and circular. It is taken that the
material of septum and ring is isotropic with hardening and hysteretic characteristics,
described by idealized constitutive curves; representation of surfactant mechanical response
is also taken using idealized hysteretic constitutive curves.

Geometric hysteresis
The principal contribution of our model is in the quantitative fractionation of geometric
hysteresis among the stress hysteretic behavior of smooth muscle and surfactant.

Mechanical response of the alveolar duct internal architecture during duct expansion and
relaxation cycles is determined as a result of the superposition effects between: a) hardening
character – nonlinear increase of stiffness with deformation - of the septal tissue (Fig. 2a);
hardening and hysteretic characteristic of the ring two-component material (Figs. 2b,c); and
hysteretic character of the surfactant (Fig. 2d).

During breathing cycles the ducts harmonically expand & extend and then come back to the
initial (undeformed) configuration, producing deformation of internal architecture. The
membrane and ring, used in our model as the structural elements of the duct interior, deform
over cycles. Surfactant, which covers the tissue, changes its surface area (as the septal area
changes) and produces a distributed loading on the tissue due to surface tension at the liquid-
tissue interface. The surface tension has a hysteretic character and therefore the loading
within a cycle is hysteretic: The surface tension is higher during inspiration than during
expiration (Fig. 2d), thus it tends to produce larger deformation, hence larger radial
displacements during inspiration. Therefore, an amount of surface area change due to
surfactant force tends to be more pronounced in inspiration than in expiration.

On the other hand, the muscle is tensed during inflation and relaxing during deflation. The
stresses within the alveolar entrance ring are larger during inspiration (Fig. 2c) so that the
alveolar ring muscle produces larger resistance for the septum to deform, and therefore its
hysteresis acts in the opposite sense with respect to the surfactant hysteresis. The resulting
hysteretic response of the internal duct elements depends on which hysteretic action is
dominant at a certain moment within the breathing cycle.
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Septal surface – duct volume (S-V) hysteresis
The observation that hysteresis induced by smooth muscle is manifested as a clockwise S-V
loop (Fig. 4a) is consistent with the fact that muscle tension is increased during inflation
compared with expiration. The structural stiffness is larger during radial expansion of the
duct during inflation, promoting an increased area of the radial septa relative to that at the
same volume during expiration. Thus, the net effect results in a clockwise rotation in the S-
V loop. By contrast, surface tension hysteresis has the opposite effect. Septal surface tension
at the air-liquid interface acts to retract the duct radially outward. Therefore, the sharply
increased surface tension of surfactant during its areal expansion phase of inspiration
compared with the low surface tension during areal compression in expiration implies an
increased septal radial expansion associated with decreased area during inspiration
compared with expiration. This results in a counterclockwise rotation in the S-V loop.

We express the overall geometric hysteresis by the index ηgeomgiven by the ratio of (signed)
geometric loop area to the bounding rectangle area of the surface area - volume relationship
(Fig 5, cartoon). Under the physiologically realistic conditions when both muscle and
surfactant effects are present, the S-V loop exhibits a combination of the two extreme cases
described above, sometimes resulting in a complex pattern, such as a figure “8” (Fig. 4b)
depending on the different histories/combinations of muscle and surfactant contributions.
Interestingly, the S-V hysteresis due to these competing elements are counterbalanced at a
muscle fraction of approximately 0.72; resulting in no overall geometric hysteresis (ηgeom =
0). In addition to the global index of hysteresis given by ηgeom through the area history), we
note that our technique here also gives unambiguous predictions about the history of local
material points as well, in particular, the irreversible trajectories of the boundary surfaces of
the alveolar duct (Fig. 7).

Finally, it is important to note that the complex interplay between the two hysteretic
components described above was observed in experiments. Miki et al. (1993) found that
geometric hysteresis does exist, albeit small in magnitude, in live adult rabbits.
Quantitatively, they found that, at isovolume points during tidal breathing, the fractional
change in optical mean free path for diffuse light scattering was roughly −.16 (using the
opposite sign convention from here). Using the approximate inverse quadratic dependence
of mean free path on surface to volume ratio, and using the relationship between hysteresis
measured as fractional differences at isovolume points and the loop area ratios, their results
translate into a geometric hysteresis index of ηgeom ≈ + 0.06. This value is strikingly close
to the limiting value that we compute for essentially complete domination of geometric
hysteresis by surface tension behavior of surfactant, with little role for smooth muscle. By
contrast, Miki et al. (1993) also found loop reversals when the animals were challenged with
the contractile agonist methacholine. In that circumstance, their results translate to a
geometric hysteresis index of ηgeom ≈ − 0.05, indicating that in this case there is a
substantial contribution from activated smooth muscle, of a comparable but larger
magnitude (the loop is reversed) compared with the contribution from surfactant.

The role of smooth muscle at the alveolar level
The role of smooth muscle in lung mechanics has been extensively studied at the level of
airways in the bronchial tree, especially in the context of asthma. Less is known, however,
about the quantification and role of smooth muscle in the alveolated duct (but see 14,41,56).
Statically, it is believed to play a role in maintaining alveolar microarchitecture (e.g., Smith
and Stamenovic 1986, Stamenovic and Smith 1986), but its contribution to geometric
hysteresis in compensating for that associated with surfactant has not been probed. Here we
have made a first attempt to address this question. On the other hand, while we are confident
of the extremes we have computed for the displacements and surface-volume relationship,
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we note that serious caution must be exercised with respect to the quantification in terms of
muscle fraction m. (Note that the value of m appears to be species dependent; for instance,
guinea pigs apparently have more muscle than other small animals (41).) Not only is the
morphometric distribution of m given by a limited database, but it is largely unknown how
to translate such morphometric measurements directly into stress bearing implications. We
thus suggest interpreting numerical values of m as a functional index of the contribution to
mechanical equilibrium in the duct.

Hysteresis in Radial Displacements
The asymmetry in radial displacements with respect to inspiration vs. expiration (Fig. 6),
and the hysteretic trajectories (Fig. 7) found in this study result in asynchronous motion of
the surfaces of the acinar structure. This has an important consequence. Because the surfaces
of the acinar structural element represent the boundaries of the air domain in the alveolar
microstructure, its motion is directly coupled to air flow. Especially, its asynchronous
motion induces aerosol mixing and deposition deep in the lung.

These asynchronous motion of the acinar structure are results of the effects of hystereses of
surfactant and muscle. We present results for the two extreme conditions corresponding to m
= 0 (no muscle constituent within the alveolar entrance ring) and m = 1 (only muscle
constituent, with no connective tissue); all other cases will fall between these two extremes.
It is interesting to note that the hysteretic effects of the surfactant and muscle content tend to
cancellation.

The effects of geometric hysteresis on acinar flow
The effects of geometric hysteresis on acinar fluid mechanics, consequently aerosol mixing
and deposition are substantial; such a phenomenon has been demonstrated previously (8,
21–25, 50–55). In particular, the presence of geometric hysteresis is crucial in the case when
an alveolar flow exhibits recirculation because it can break alveolar flow into chaos (e.g.,
50,54). In this regard, the occurrence, rather than its extent, of geometric hysteresis is
important as a source of perturbation (54). The detailed discussion regarding the onset of
chaos in the pulmonary acinus is beyond the scope of this paper; such a discussion can be
found elsewhere (Tsuda et al., 2011a,b).

Summary
In this study, we probed the origins of geometric hysteresis at the level of the pulmonary
acinus. We used realistic experimental relationships for the constitutive laws of parenchymal
tissue, smooth muscle, and surfactant in a Wilson-Bachofen type model of the alveolar duct.
With finite element techniques, we solved for the resulting behavior during vital capacity
maneuvers, focusing especially on the displacement hysteresis and the surface area – volume
history dependence. We found striking agreement between our results in the area - volume
hysteresis and the magnitude of geometric hysteresis observed by Miki et al. (1993),
including hysteretic loop reversal phenomena with smooth muscle stimulation by contractile
agonist. These results, including quantified hysteresis in displacements and local
irreversibility of the boundary surfaces of the duct, are important not only for elucidating
acinar micromechanics but also for forming the foundation for coupling local hysteretic
boundary motion with irreversible acinar flow fields, which in turn are important
mechanistic contributors to aerosol mixing and deposition deep in the lung.
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APPENDIX

Finite Element Model of Duct and Computational Procedure
Basic Equations

The basic steps of the numerical procedure are as follows. By applying the principle of
virtual work, the equilibrium equations are derived for a finite element at some current state
of deformation, with appropriate linearizations due to geometric and material nonlinearities
(6,30,32). These equations are combined to obtain the equilibrium equations for the whole
FE model. The matrix form of equilibrium equation for a finite element in an incremental-
iterative solution procedure is, at fixed volume (indexed by time),

(A1)

where Κ(i−1) is the element stiffness matrix, ΔU(i) is the change in nodal point displacements

at the ith iteration, Fext is the vector of external forces, and  is the internal element
nodal force vector. Note that ΔU(i) is determined by the stiffness and internal forces at
iteration i-1. Iterations continue until the differences of external and internal forces are
smaller than a selected error tolerance (at which the displacement increments become
correspondingly small).

The solution accuracy depends on the accuracy of the calculation of internal forces (30,32).
These are given, for each i, by

(A2)

where  is the matrix relating the strain increments and increments of nodal displacements,
and T denotes matrix transpose. σ(i) is the stress tensor, and the integration is performed
over the FE volume V(i). The stresses are calculated at material points of tissue and
surfactant, following the corresponding constitutive law which is represented by a material
model (Fig. 2). Values of the stresses at any time step (equivalently, any volume step)
depend on the current state of deformation (Fig. A1).

Stress Calculation
The stress calculation at a material point of septum is graphically shown in Fig. A1a and
corresponds to the previous iteration’s configuration. The septum is biaxially stretched
during duct deformation, and the circumferential and radial stresses are evaluated using the
biaxial material model shown in Fig. 2b. Besides the stresses due to material deformation we
have the stress due to surfactant. This is expressed by surface tension γ (as a force per unit
length), but it also can be represented by the stress σγ (=2γ / δ, where δ is the septum
thickness) acting at each material point of tissue. It is assumed that the stress tensor σγ is
isotropic, and hence has the same value σγ in all directions within the surfactant surface.
Therefore, the total radial and circumferential stresses used for calculation of nodal forces
are represented by sum of stress due to material deformation (σrad and σcircular) and the
stress σγ.

For the entrance ring modeling we follow experimental results which show that the ring
consists of connective tissue and smooth muscle, with material characteristics and hysteretic
constitutive law shown in Figs. 2a and 2c. If the volumetric ratio of muscle, or the relative
muscle volume, is m = Vm / Vring, where Vm and Vring are the volumes of muscle and ring,
then the stress σring in the direction normal to the ring cross-section is
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(A3)

where σmuscle and σtissue are stresses within the muscle and connective tissue, respectively.
For any given stretch of ring, the stresses σmuscle and σtissue are evaluated from the
constitutive laws as schematically shown in Fig. A1b and A1c. The stress σγ is added to
stress σring to calculate the nodal forces according to equation (A2).

Computational details for stress evaluation for all material models and surfactant are given
in Kojic et al. (2006, 2008).

Finite Element Model Verification
Although finite element methodology is well established and confirmed, even for very
complex nonlinear problems, for the sake of completeness we give here a comparison of
analytical solutions (37) and our numerical solutions obtained with the FE package PAK
(29). Figure A2 shows agreement between analytical and FE solutions for distributions of
radial displacements in case of linear elastic material models for ring and septum, for several
values of Young’s modulus ratios.
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Figure 1.
(a) Schematic of the model of alveolar duct: left panel – cross-section in the plane
orthogonal to the duct longitudinal axis, right panel – axial cross-section of duct; and (b)
representative geometric location of the model in the acinus, with morphology of alveolar
space in lung (19).
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Figure 2.
Material models used in the analysis. a) Uniaxial model for connective tissue of alveolar
ring (16); b) Biaxial model for septum tissue (16,26); c) Hysteretic model of muscle
constituent of ring material (43); d) Hysteretic characteristic of surfactant (58).
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Figure 3.
Finite element model of alveolar duct. Septum is modeled by membrane (shell) finite
elements and ring is modeled by line finite elements. Deformations of ring and septum are
calculated for prescribed radial displacement of the outer (acinar) boundary ΔRa = ΔRa,max
sin t. Time is a parameter controlling volume history; no dynamics are associated with it.
Solution is obtained incrementally using 250 steps over the breathing cycle.
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Figure 4.
Geometric hysteresis within the alveolar duct. a) Case without surfactant. Geometric
hystersesis is due to hysteresis of muscle constituent within the alveolar entrance ring and it
increases with increasing m. The S-V hysteresis loop has a clockwise direction for one
breathing cycle. b) Case with surfactant. The S-V hysteresis loop due to surfactant has
counterclockwise direction (condition with no muscle constituent, m = 0). Since S-V
hysteresis loops corresponding to muscle and surfactant have the opposite senses, the
resulting hysteresis is smaller when m = 0.5 with respect to m=0 and the loop changes the
direction for m = 1.
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Figure 5.
Coefficient of geometric hysteresis ηgeom plotted against m; its geometric construction is
shown in the cartoon. In the absence of muscle contribution, the hysteresis loop is entirely
controlled by surfactant, and the loop is counterclockwise with positive ηgeom. Its value
progressively decreases with muscle activation, crossing zero into a regime dominated by
muscle, where the loops are clockwise and ηgeom is negative. Also shown is the hysteretic
behavior in the absence of surfactant, showing the uniformly negative ηgeom.
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Figure 6.
Radial displacements of internal rim (radius Rd), outer boundary (radius Ra), and points at
initial radius R0 = 190 µm during one cycle; for two extreme cases: condition with no
muscle constituent (m = 0), and with only muscle constituent within the ring (m = 1). Due to
hysteretic characteristic of surfactant, radial displacement curves are not symmetric with
respect to the middle line (end of inspiration), except for the outer boundary, with
asymmetry more pronounced for the domain closer to internal rim. Displacements and
asymmetry are smaller for m = 1.
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Figure 7.
Particle trajectories within radial plane (x-y) of material points at outer boundary, internal
rim and at two membrane radii. Axial maximum displacement is (ΔL)max = 0.5 (ΔRd)max
following form geometrical similarity during alveolar deformation (see equation 1). a) Case
with no muscle constituent (m = 0): the trajectories display clockwise hysteretic loops due to
dominant surfactant action during inspiration (see Fig. 2d), with loops diminishing from the
internal to the external membrane boundary; b) Case m = 1: The muscle hysteresis acts in
the opposite sense form the surfactant effects (see Fig. 2c), and hysteretic loops become
counterclockwise in the regime where muscle hysteretic effect is dominant (expiration
regime); the loops diminish when approaching to external boundary.
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Figure 8.
Distribution of displacement hysteresis coefficient Shyster. The ratio R(t) / R(0) displays a
hysteretic character over a breathing cycle, and a measure of this hysteresis is defined as the
ratio Shyster = Ahyster / Atotal. a) Case without muscle content within the ring (m = 0): the
hysteretic loops are clockwise (considered positive) since displacements are larger during
inspiration, and diminish toward the external boundary; b) Case m = 1: the overall hysteretic
muscle characteristic is dominant and the surface Ahyster is negative (see Fig. 7b).
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Figure A1.
Sketch of stress calculation. Stresses correspond to the previous iteration (indexed by i-1 in
equation A1). a) At each material point of the radial septum the stress is represented as a
sum of the stresses due to material deformation (radial stress σrad and circumferential stress
σcircular) and due to surfactant σγ. These stresses are evaluated from constitutive laws for
material (biaxial model) and surfactant (hysteretic model). The stresses produce the finite
element nodal forces Fint = Fmat + Fγ entering the equilibrium equations for the finite
element assemblage. b) and c) Stresses within the ring evaluated for nonlinear elastic and
hysteretic material models.
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Figure A2.
Validation of methodology: Comparison of analytic and finite element solutions for
distribution of radial displacements along the radius.
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