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Abstract
Objective—To provide a tutorial for using propensity score methods with complex survey data.
Data Sources—Simulated data and the 2008 Medical Expenditure Panel Survey (MEPS).

Study Desigh—Using simulation, we compared the following methods for estimating the
treatment effect: a naive estimate (ignoring both survey weights and propensity scores), survey
weighting, propensity score methods (nearest neighbor matching, weighting, and
subclassification), and propensity score methods in combination with survey weighting. Methods
are compared in terms of bias and 95% confidence interval coverage. In Example 2, we used these
methods to estimate the effect on health care spending of having a generalist versus a specialist as
a usual source of care.

Principal Findings—In general, combining a propensity score method and survey weighting is
necessary to achieve unbiased treatment effect estimates that are generalizable to the original
survey target population.

Conclusions—Propensity score methods are an essential tool for addressing confounding in
observational studies. Ignoring survey weights may lead to results that are not generalizable to the
survey target population. This paper clarifies the appropriate inferences for different propensity
score methods and suggests guidelines for selecting an appropriate propensity score method based
on a researcher’s goal.
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Introduction

Causal inference —answering questions about the effect of a particular exposure or
intervention—is elusive in many health services research studies. Administrative and survey
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data capture information on the standard course of treatment or experiences, which allows
researchers to measure the effects of treatments or programs that cannot feasibly be
evaluated with a randomized trial. In our motivating example, we cannot randomize the type
of physician (general practitioner or a specialist) from whom an individual receives primary
care, but we can use existing observational datasets to assess the effect of specialist versus
generalist care on health care spending. Furthermore, complex survey data frequently yield
nationally representative samples. The fundamental challenge in using these data for causal
inference is addressing potential confounding while still retaining the representativeness of
the data. Confounding occurs when there are variables that affect both whether an individual
receives the intervention of interest as well as the outcome.

Propensity score methods are statistical methods used to address potential confounding in
observational studies (Rosenbaum & Rubin, 1983). Broadly, the goal of propensity score
methods is to improve the comparability of treatment groups on observed characteristics, in
order to reduce bias in the effect estimates. Primary propensity score methods include
matching, weighting and subclassification (Stuart, 2010). Although propensity score
methods help reduce confounding, they cannot fully “recreate” a randomized experiment --
randomization ensures balance on both observed and unobserved variables whereas
propensity score methods only ensure balance on observed variables.

While propensity score methods for observational studies in general have been well
described, there are few guidelines regarding how to incorporate propensity score methods
with complex survey data. Few researchers, with the exception of Zanutto (2006) and
Zanutto, Lu, and Hornik (2005), have focused on the complexities of how to use propensity
score methods with complex survey data and appropriately interpret the results.

To assess current practice, we conducted a limited systematic review of the peer-reviewed
literature to identify studies that used propensity score analysis and complex survey data in
the health services field. For 2010 and 2011, we identified 28 articles in PubMed that
contained the key word “propensity score” and related to complex surveys in health services
research. These studies demonstrated a variety of methodological approaches and
interpretations of effect estimates. Of the 28 studies, 16 (57%) did not incorporate the survey
weights into the final analysis. Of these 16 papers, six incorrectly described their results as
“nationally representative” or reflective of a “population-based” sample. Only one of these
explicitly stated that not incorporating the survey weights “compromises external validity,
such that outcomes are not generalizable to national figures” (McCrae et al., 2010). Seven
(25%) of the 28 studies stated that they included the survey weights in the final outcome
regression model. Five (18%) studies performed propensity score weighting and multiplied
the propensity score weights and the survey weights, with varying approaches to interpreting
the final results. This heterogeneity in the recent literature suggests a variety of approaches
and some possible misunderstandings in how to appropriately apply and interpret results
from propensity score methods with complex survey data. More broadly, failure to properly
account for the complex survey design is a common analytic error. In a review of statistical
(but not propensity score) methods used in studies involving three youth surveys, Bell and
colleagues (2012) found that nearly 40% of reviewed studies did not adequately account for
the complex survey design.

Survey samples obtained using a complex survey design offer researchers the unique ability
to estimate effects that are generalizable to the target population (often, the national
population). Since this is a major advantage of survey data, we primarily focus on
propensity score methods that incorporate survey weights to retain the generalizability of the
final effect estimates using a design-based analysis. Statistical analyses that do not include
the survey weights will not necessarily be generalizable to the target population if the survey
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weights are correlated with the independent or dependent variables and may be biased for
estimating population effects (Pfeffermann, 1993). We provide an illustration of this
phenomenon in our simulation study below. Although formal statistical generalizability is
not always a goal, as we observed in our review of published studies, a common error is to
ignore survey weights when using propensity score methods yet describe results as
applicable to the original target population, which can lead to misleading conclusions.

When assessing the effect of a treatment on an outcome, there are two causal estimands
commonly of interest in observational studies: the average treatment effect on the treated
(ATT) and the average treatment effect (ATE). The ATT is the average effect for individuals
who actually received the treatment. The ATE is the average effect for all individuals,
treated and control. In our motivating example (Example 2 below) the ATT represents the
comparison of health care spending between individuals who had a specialist as a primary
provider (the “treatment” group) and spending for the same individuals, if instead they had a
generalist (the “control” group). In contrast, the ATE represents the difference in health care
spending if everyone in the sample had a specialist compared to if everyone had a generalist.
In a randomized experiment the ATT and ATE are equivalent because the treatment group is
a random sample of the full sample; in an observational study the ATT and ATE are not
necessarily the same.

When using survey data that represents a target population, there is a further distinction in
that it is possible to estimate both sample and population ATTs and ATEs. The Sample ATT
and ATE (denoted SATT and SATE, respectively) are the corresponding average treatment
effects in the unweighted survey sample. The Population ATT and ATE (denoted PATT and
PATE) are the corresponding average treatment effects for the survey’s target population,
accounting for the sampling design. See Imai, King, and Stuart (2008) for a more technical
discussion of these estimands.

The objective of this paper is to provide a tutorial for appropriate use of propensity score
methods with complex survey data. We first assess the performance of various methods for
combining propensity score methods and survey weights using a simple simulation. We then
present results from the Medical Expenditure Panel Survey (MEPS), estimating health care
spending among adults who report a generalist versus a specialist as their usual source of
care. We highlight relevant interpretations of various analytic approaches and offer a set of
guidelines for researchers to select the most appropriate propensity score methods for their
study given their desired estimand.

General Propensity Score Methodology

The propensity score is defined as the probability that an individual received the treatment,
based on his or her observed characteristics. Propensity score methods rely on two
fundamental assumptions, collectively termed “strong ignorability” by Rosenbaum and
Rubin (1983). The first component of strong ignorability is that there is sufficient overlap
(positivity): every individual could potentially be assigned to any treatment group and the
distributions of baseline covariates among treatment groups overlap, such that no
combinations of covariates are unique to a single treatment group. The second component is
that of unconfounded treatment assignment, meaning that treatment status is independent of
the potential outcomes after conditioning on the observed covariates. Broadly, this assumes
that the set of observed pretreatment covariates is sufficiently rich such that it includes all
variables directly influencing both the treatment status and outcome (i.e., there are no
unobserved confounders).
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Propensity scores are typically estimated using logistic regression or hon-parametric
methods such as random forests or generalized boosted models (Stuart, 2010; McCaffrey et
al, 2004). We focus on three common approaches for using propensity scores: k:1 matching,
subclassification, and weighting, first describing their standard use and then discussing
extensions to complex survey data.

Propensity score matching pairs each treated individual with k (typically 1 — 5) control
individuals with the closest propensity score to the treated individual. This approach
discards control subjects who are not “good” matches (Stuart, 2010). This approach is
appropriate when the ATT, not the ATE, is of primary interest.

Propensity score subclassification groups individuals (both treated and control) with similar
propensity score values into subclasses or strata. Typically at least 5 subclasses are used
(Cochran, 1968). Subclassification can be used to estimate either the ATE or ATT (Stuart,
2010). Generally, regression analysis is conducted within each subclass and then effect
estimates averaged across subclasses to generate the final effect estimate (Lunceford and
Davidian 2004). To estimate the ATT, subclass-specific estimates are weighted by the
proportion of all treated individuals in each subclass; to estimate the ATE, subclass-specific
estimates are weighted by the proportion of all individuals (treated and control) in each
subclass.

Propensity score weighting uses the propensity score to calculate weights, similar in spirit to
sample selection weights in survey sampling. The propensity score weight is incorporated
into the analysis to weight the sample to the relevant “population” of interest; weighting can
estimate the ATT or ATE. To estimate the ATT, each treated individual receives a weight of
1 while control individuals are weighted by e/(1-e), where e is the propensity score. This
weights the control group to look like the treatment group and is sometimes called
“weighting by the odds.” To estimate the ATE, the treatment group weights are 1/e while the
control group weights are 1/(1-e), weighting each group to the combined sample; this is
often called “inverse probability of treatment weighting” (IPTW; Lunceford and Davidian,
2004).

Incorporating Survey Weights with Propensity Score Methods

We now discuss ways to incorporate complex survey designs with propensity score
methods. Consistent with previous work in this area, and given a focus in non-experimental
studies on bias reduction, we primarily discuss methods to incorporate the survey weight
with propensity score methods (Zanutto, 2006; Zanutto, Lu, and Hornik, 2005), and include
brief reference to other complex survey design elements. Thinking about the weights, there
are two stages at which the survey weights could be incorporated into propensity score
methods: 1) when estimating the propensity score, and 2) when estimating the treatment
effect.

In Stage 1, we recommend including the survey weight as a predictor in the propensity score
model. The survey weight may capture relevant factors, such as where an individual lives,
their demographic characteristics, and perhaps variables related to their probability of
responding to the survey (Korn and Graubard, 1991; Pfeffermann, 1993). Ideally we might
include these variables themselves (along with strata or cluster indicators) in the propensity
score model, but this is not always feasible. In particular, the survey weight may be
particularly important to use in this way when the individual variables that make up the
weight (e.g., sampling strata or other characteristics of individuals) are not available
separately, for example when confidentiality concerns prevent the release of stratum
indicators, or when degrees of freedom concerns prohibit their inclusion (e.g., when there
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are a large number of strata or clusters). Including the weight may thus help satisfy the
assumption of unconfounded treatment assignment. A similar strategy is recommended by
Lumley (2010) in the context of estimating weights to adjust for non-response.

A separate question is whether the propensity score model needs to be a weighted regression
or account for the complex survey design elements. In keeping with Zanutto’s (2006)
recommendation, we argue that the propensity score model does not need to be survey-
weighted, since we are not interested in generalizing the propensity score model to the
population. In fact, propensity scores are inherently an in-sample concept since the goal is to
make the observed treated and control groups as similar as possible (rather than in
generating a model of treatment assignment that would relate to the target population).
Similarly, because we do not use the variance estimates from the propensity score model
(we only obtain the predicted probabilities), it is not crucial to incorporate the clustering and
stratification information in the model estimation.

At Stage 2, the decision to incorporate survey design elements in the final outcome model
(and how to do so) depends in part on the study goal (Figure 1). The goal of many analyses
of complex survey data is to make population-level inferences (the PATE or PATT). As
such, it is imperative to account for survey design elements (especially weights) in the final
outcome model if the association of interest may vary between the population and the
sample. Alternatively, if the goal is to estimate effect estimates for the survey sample itself
(the SATE or SATT) the survey weights are not needed. All outcome models should account
for clustering and stratification to yield accurate variance estimates, due to the resulting non-
independence of individuals.

The following approaches may be used to combine survey weighting and propensity score
methods when interest is the PATT or PATE. When using propensity score matching, the
effect estimate is generated from a survey-weighted regression that accounts for the complex
survey design within the matched sample (applications seen in DiBonaventur et al., 2010,
2011; Kuo et al., 2011). When using subclassification, subclass-specific effect estimates are
generated from a survey-weighted regression that accounts for the complex survey design
within each subclass. These subclass-specific effects are then combined using the survey-
weighted subclass size (applications in Roberts et al., 2010 and Zanutto, 2006). To estimate
the PATE, the weighting ratio (for a given subclass) is the number of people in the
population in that subclass divided by the total number of people in the population. To
estimate the PATT, the weighting ratio (for a given subclass) is the number of people in the
population who were treated in that subclass divided by the total number of people in the
population who were treated. When using propensity score weighting, the propensity score
weights and survey weights are multiplied to form a new weight; the effect estimate is
generated from a weighted regression that incorporates the complex survey design elements
and the composite weight (application seen in Cook et al. 2009). This approach is
conceptually similar to methodology for addressing differential censoring in the context of
propensity score weighting: inverse probability of censoring weights are multiplied by
propensity score weights and this composite weight is used in the final analysis (Cain and
Cole, 2009; Cole et al., 2003; Cole et al., 2010). It is also similar to the multiplication of
survey sampling weights by non-response adjustment weights, as is commonly done in
survey analysis (Groves et al., 2004).

Example 1: Simulation Study

We first describe a simple simulation study used to assess the performance of propensity
score methods with complex survey data. Data was simulated with the following structure: a
single normally-distributed covariate X, a binary treatment indicator variable, a survey
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sampling weight (which depended on X and which of 3 survey strata the subject was in), and
a pair of normally-distributed potential outcomes. The covariate X was related to survey
stratum membership, sampling probability, treatment assignment, and the size of treatment
effects. The simulation design thus included stratification and survey weights but, for
simplicity, did not incorporate clustering. Each simulated dataset contained 90,000
observations in the population from which samples of size 9,000 were drawn; 2,000
simulations were performed. This simulation study was conducted in R, and the Matchit
package was used to conduct the propensity score methods (Ho et al., 2011). The simulation
design code is provided in Appendix A.

We compared the following methods for estimating the treatment effect: a naive estimate
(ignoring both survey design elements and propensity scores), weighted regression
accounting for survey design elements, propensity score methods (ignoring survey weights
and survey strata), and propensity score methods accounting for survey design elements. We
assessed the performance of methods for estimating the PATT (weighting, subclassification
and 1:1 matching) and for estimating the PATE (weighting, subclassification). Appendix B
presents the regression models and Stata commands used for each estimand of interest.

For each method, we estimated the absolute bias, calculated as the absolute value of the
difference between the estimated and true effects. Additionally, we estimated the 95%
confidence interval coverage rate, namely the percentage of 95% confidence intervals that
contained the true treatment effect.

When estimating the PATE, methods that combine propensity scores and survey design
elements achieve the smallest absolute bias and best confidence interval coverage (Figure 2).
Using propensity score methods without survey design elements yields large bias and very
low coverage. In general, in conjunction with survey design elements, propensity score
subclassification and weighting perform very similarly.

Similarly, when estimating the PATT, methods that combine propensity scores and survey
design elements also perform most favorably, yielding the smallest absolute bias and best
coverage rates (Figure 2). Again, using propensity score methods without accounting for the
sampling weights yields bias and very poor coverage. In general, propensity score matching,
subclassification and weighting perform similarly, although propensity score weighting
shows smallest absolute bias.

Overall, this simulation study shows that combining propensity score methods and methods
that incorporate survey design elements can yield unbiased effect estimates with excellent
coverage for both PATE and PATT estimands. However, ignoring either the survey design
elements (e.g., weights) or propensity scores when trying to estimate the PATE or PATT
may Yyield very misleading results.

Example 2: The Association Between Usual Source of Care and Health Care
Expenditures

In this example, we discuss a real-world example to highlight the appropriate conclusions
that can be drawn from each propensity score approach. In this example, we estimate the
PATE, PATT, SATE and SATT of having a specialist physician as one’s usual source of
care on annual health care costs. Our data is drawn from the 2008 MEPS Household
Component, which is a nationally representative survey of the US civilian non-
institutionalized population (Ezzati-Rice, 2008). All final outcome models adjusted for the
MEPS’s strata and clusters when estimating the variance; relevant analyses also included the
sampling weight. Propensity scores were calculated in R using the Matchlt package (Ho et
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al., 2011) and exported to Stata for analysis. The outcome models were fit in Stata version

12 using the svyset command (StataCorp, 2011), which calculated the standard errors using
Taylor series linearization. The study design and methods are discussed in further detail in

Appendix C.

Table 1 presents the descriptive characteristics of the sample and the standardized biases.
Standardized bias is a way of quantifying the balance between the treatment and control
groups for each covariate; it is the difference in the means (or proportions) between the
treated group and control group divided by the standard deviation of the treated group
(Stuart, 2010; Austin & Mamdani, 2006). In 2008, 5,304 respondents representing 63
million people reported having a usual source of care. In the sample, 216 individuals
reported having a specialist physician as their usual source of care. Compared to individuals
in the sample with a family physician or general practice physician as their usual source of
care, these respondents were older, less healthy, had lower incomes, were more likely to be
on public insurance, had less education, and were less likely to identify as White. An
unweighted bivariate comparison (Table 1) indicated that individuals with a primary care
physician spent less, on average, than those who saw a specialist as their usual source of
care ($5,261.37 compared to $10,664.38). After accounting for the complex survey design,
we found some covariate differences between the two groups diminished; however, there
continued to be statistically significant differences on education, health status, marital status,
and type of insurance coverage. In addition, after accounting for the complex survey design,
average expenditures by type of usual source of care widened: individuals with a primary
care physician spent $5,274.18 annually compared to $10,899.97 for those who saw a
specialist.

Propensity score methods improved the balance between the two groups. As Figure 3
illustrates, the distribution of standardized biases for covariates used in the propensity score
model narrowed from the unmatched sample (labeled “All’") when using 1:1 matching, 5:1
matching, subclassification, and weighting. When estimating PATE and PATT, we included
the survey weight as a predictor in the propensity score model. When estimating the PATE,
subclassification provided better overall balance than weighting. When estimating the
PATT, 5:1 matching outperformed 1:1 matching, and subclassification provided better
balance than weighting. The overall performance of these methods was similar when
estimating the SATE and SATT. The SATE and SATT propensity score models did not
include the survey weights as a covariate.

Table 2 reports the estimated PATE, PATT, SATE, and SATT. PATE estimates ranged from
$2,477 using weighting to $2,765 using subclassification. We found that the various
propensity score methods produced a wide range of estimates for the ATT. The PATT
estimates ranged from $1,758 using weighting to $3,614 using 5:1 matching; the SATT
estimates ranged from $1,118 using 1:1 matching to $3,193 using 5:1 matching. Weighting
and subclassification estimates were more similar for the ATE. The PATE estimates ranged
from $2,477 using weighting to $2,765 using subclassification; the SATE estimates ranged
from $2,573 using subclassification to $2,948 using weighting. All estimates, except for
those from the 1:1 matched sample, were statistically significant at the 5% level.

Interpretation

We now provide exemplar interpretations of the PATE, PATT, SATE, and SATT using
propensity score weighting. The PATE is the population average treatment effect and is
arguably the most common estimand of interest. It is the average difference in outcomes
under the treatment and control conditions in the survey’s target population. In our example,
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the PATE represents the average impact on health care spending of having a specialist
(rather than a general practitioner) as one’s usual source of care among non-institutionalized
adults in the US. Our results indicate that having a specialist as one’s usual source of care
was associated with nearly a $2,477 increase in health care spending for US adults. This
result suggests that shortages of primary care physicians may result in higher spending if
Americans turn to specialists as their usual source of care.

The PATT is the population average treatment effect on the treated, which is the effect of
the treatment among those in the population who would actually receive the treatment. In
our example, the PATT represents the impact on health care spending of having a specialist
(rather than a general practitioner) as one’s usual source of care among non-institutionalized
US adults who had a specialist as their usual source of care. We found that among US adults
who selected a specialist as their usual source of care, having a specialist resulted in $1,759
higher health care spending than if those individuals had a primary care physician as their
usual source of care. This finding suggests that having a primary care physician as one’s
usual source of care is associated with lower spending even among those individuals who
would select a specialist and thus may have a theoretically higher likelihood to use medical
care services due to personal preferences or illness.

The SATE is the sample average treatment effect, which is the average difference in
outcomes under the treatment and control conditions among all survey respondents (treated
and control). In our example, the SATE represents the average impact on health care
spending of having a specialist (rather than a general practitioner) as one’s usual source of
care among MEPS survey respondents. We found that having a specialist as one’s usual
source of care was associated with an additional $2,948 in annual health care spending
among survey respondents. The SATT is the sample average treatment effect on the treated,
which is the average difference in outcomes under the treatment and control conditions for
survey respondents in the treatment group. In our example, the SATT represents the average
impact on health care spending of having a specialist (rather than a general practitioner) as
one’s usual source of care among MEPS survey respondents who had a specialist as their
usual source of care. We found that among those survey respondents who chose a specialist
as their usual source of care, the estimated effect was an additional $2,015 in annual health
care spending.

Discussion

In this paper, we sought to illustrate how researchers can use propensity score methods with
complex surveys. Propensity score methods are effective at reducing confounding arising in
observational studies. While computationally straightforward, propensity score methods
should be applied carefully and effect estimates interpreted thoughtfully, especially with
complex survey data.

The simulation study in Example 1 focused on identifying appropriate analysis methods that
yield unbiased effect estimates and are generalizable to the survey’s target population. As
this simulation study demonstrated, only methods that combine propensity scores and survey
design elements meet these criteria. Final outcome analyses that did not incorporate either
propensity scores or survey weights yielded significant absolute bias and poor 95%
confidence interval coverage rates. Analyses that only incorporated propensity scores
performed the poorest, with the highest bias and worst coverage rates. Of note, numerous
studies in our review of the literature used propensity scores but not survey weights and
interpreted their effect estimates as generalizable to the target population. Our simulation
study shows that this is not necessarily an appropriate interpretation.
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In Example 2, we explored the four different estimands (PATE, PATT, SATE, and SATT)
and illustrated the appropriate interpretation of each. We find that the estimated effect size
varied by propensity score method and estimand. This variation between methods may be a
result of the relatively small treated group size (N=216). More importantly, we show that the
inferences that can be drawn from these approaches are considerably different. When using
SATT, the inference is narrowed to the effect of specialists on those 216 survey subjects
who selected a specialist; for PATE, the estimated effect can be interpreted as the difference
in spending for all non-institutionalized adults in the United States.

When using complex survey data to estimate causal effects, researchers are faced with a
number of study design options. We recommend researchers approach this problem
systematically to ensure the desired estimand is estimated and proper inference is drawn.
First, researchers should decide if they are interested in the average treatment effect (ATE)
or the average treatment effect on the treated (ATT).

Second, researchers must identify to which group (i.e., the target population of the original
survey, the survey sample itself, or some other subgroup) they would like to generalize their
effect estimates. While we present four possible estimands, we expect that many researchers
use complex survey data in order to take advantage of the opportunity to generalize to the
target population and thus are interested in the PATE or PATT.

Third, survey weights should be used as a predictor in the propensity score model. We also
suggest including strata, clustering, and primary sampling unit information if available and
feasible. There is a substantial literature to guide researchers in estimating the propensity
score model and several software packages to assist in model diagnostics (e.g., Matchlt and
twang in R, psmatch2 and pscore in Stata).

Fourth, a propensity score method appropriate to the estimand of interest should be selected.
For PATT or SATT estimation propensity score weighting, subclassification or matching are
appropriate. For PATE or SATE either propensity score weighting or subclassification may
be used. One common recommendation is to select the method (within each of these sets)
that yields the best covariate balance between treatment and control groups (Stuart, 2010).

Fifth, in the outcome analysis, survey weights should be incorporated if the goal is to make
inferences about the target population (PATE or PATT). For all estimands, strata and
clustering should be accounted for in the final analysis (using standard survey commands) in
order to obtain accurate variance estimates. When matching, the outcome regression is
conducted within the matched data. For subclassification, the outcome regression is
conducted within each propensity-score defined subclass and then subclass specific
estimates are combined using population totals for PATT or PATE and sample totals for
SATT or SATE. For propensity score weighting, the outcome regression is estimated within
the total sample. When estimating the SATE or SATT, the model is run using weights that
are simply the propensity score weights; when estimating the PATE or PATT the weights
are the product of the survey weight and propensity score weight.

Lastly, it is important to be precise when interpreting the study results. Effect estimates from
national surveys will only be nationally representative if survey design elements and survey
weights are appropriately incorporated in the propensity score analysis.

Further work in this area is warranted. Our simulation design was intentionally simple;
simulations that include a more complex survey design, additional covariates, model
misspecification, or non-linear propensity score estimation may reach different conclusions.
In addition, while we investigated three common propensity score methods, we do not fully
assess the relative performance of these methods. Furthermore, the performance of other
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potential ways of combining propensity scores and complex survey designs has yet to be
explored, such as the possibility of conditioning on the weight rather than using weighted
models and design-based analysis (Gelman, 2007). Several technical issues such as how to
treat extreme weights and variance estimation for propensity score methods in complex
survey contexts should be investigated. Finally, while we argue that including survey
weights is not necessary for SATT and SATE results (in terms of interpretation), future
empirical and theoretical work could explore if any adjustment is necessary to reflect
individuals’ varying sampling probabilities.

Conclusion

This paper presents guidance to researchers who are interested in estimating causal effects
using complex survey data. We present a simulation and real-world example to illustrate
common pitfalls, advantages, and disadvantages in these methods. We recommend
researchers consider carefully their desired estimand of interest and population target. We
found that propensity score models and outcome models that accounted for the survey
sampling weights are more appropriate for making population level inferences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.

Estimated absolute bias and 95% confidence interval coverage rates when estimating the
PATE and PATT. Methods that combine propensity score methods and survey weights are
depicted with black bars. Naive=no survey weight or propensity score; SW= survey weight;
Weight=Propensity weight; Sub=Propensity score subclassification; NN=1:1 matching;
WeightSW=Survey weight and propensity weight; SubSW=subclassification and survey
weight; NNSW=1:1 matching and survey weight.

Health Serv Res. Author manuscript; available in PMC 2015 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

DuGoff et al.

Absolute standardized biases

Absolute standardized biases

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

PATE
[}
T T T
All Subclass Weighting
SATE
o
_—
E ' '
] I+I |
T T T
All Subclass Weighting
Figure 3.

Absolute standardized biases

Absolute standardized biases

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

Page 14
PATT
o
—_
'
'
'
:
'
1 o
'
_
'
'
'
' —_
! 1
'
'
' (-]
—_ p—— =
T T T T T
All One to One Five to One Subclass Weighting
SATT
[}
J—
'
'
'
'
'
'
'
'
J—
'
j - o
i : °
'
B e — e
T T T T T
All One to One  Five to One Subclass Weighting

Health Serv Res. Author manuscript; available in PMC 2015 February 01.

A comparison of the absolute standardized differences in means for covariates when
estimating the PATE, PATT, SATE, and SATT using different propensity score methods.
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