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Abstract
The arrival of new antiviral drugs to treat chronic hepatitis B virus (HBV) and hepatitis C virus
(HCV) infections has given rise to great expectations along with concerns regarding the selection of
drug-resistant variants. Many lessons learned from HIV therapeutics can be helpful for designing
adequate treatment strategies against viral hepatitis, the avoidance of sequential weak monotherapies
being one of them. While HIV, HBV and HCV share many biological features, including very rapid
viral dynamics, distinctive characteristics explain why the speed of selection of drug resistance differs
substantially between these viruses, being faster for HCV than for HIV, and slower for HBV.

Chronic infection due to HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) accounts
for a substantial proportion of deaths worldwide. Around 36 million people are currently living
with HIV. These numbers are approaching 400 million and 200 million for chronic HBV and
HCV infections, respectively. Because of similar routes of transmission, these viruses are seen
more frequently than expected in co-infection [1,2]. Besides sharing epidemiological niches,
HIV, HBV and HCV share several biological similarities, which largely explain the therapeutic
difficulties arising when treating any of them, drug resistance being one if not the most
challenging complication.

Viral dynamics are rapid for all three of these viruses. Estimates of the daily production of
virions are in the range of 1010 for HIV [3], 1012 for HCV [4] and 1012-1013 for HBV [5,6]
The half-life of free viral particles is very short, below 1 hour for HIV [7], and between 2-3
hours for HCV [4,8]. For HBV there is some controversy and estimates vary between 3 and
24 hours [5,6]. What is more different is the half-life of infected cells. It has been estimated to
be about 1 day for CD4+ T lymphocytes productively infected with HIV [9], several days or
weeks for hepatocytes infected with HCV [4] and up to 100 days for those infected with HBV,
with large lifespan heterogeneity [10].

Mutations occur frequently during the replication of HIV, HBV and HCV. The reverse
transcriptase enzymes of HIV and HBV as well as the RNA dependent RNA polymerase of
HCV are intrinsically error prone and lack proofreading function, allowing for frequent
replication errors to occur. The result is the generation of multiple viral variants, known as a
quasispecies, that coexist and reach population densities in direct proportion to their relative
replication fitnesses. It has been predicted that every nucleoside of the 3.2 Kb HBV genome
[6] or the 10 Kb HIV [11] and HCV genomes theoretically can be substituted every day within
a given infected patient. Table 1 summarises the main distinctive viral dynamic features of
these three viruses.

Since any drug pressure may act to select pre-existing drug resistance viral variants, the speed
for selecting drug resistance mainly depends of the turnover of the viral nucleic acid acting as
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source of new viral genomes. In the case of HIV, it is the proviral DNA integrated within the
chromosomes of infected cells. For HBV, it is the cccDNA present within the nucleus of
infected hepatocytes as extra-chromosomal (episomal) material. Finally, for HCV there is no
stable reservoir of genetic material and the HCV-RNA strands present in infected hepatocytes
serve as templates for producing new HCV virions that soon thereafter are released (Figure 1).

The viral genetic material within infected cells is relatively stable and shows longer half-life
for HIV and HBV, in comparison with HCV. Whereas HIV proviral DNA may persist as long
as the lifespan of an infected CD4+ T lymphocyte, and the same applies to HBV cccDNA
within infected hepatocytes [12,13], HCV-RNA strands are short-lived molecules with a half-
life of about 10 hours [14], in constant renewal replicating in cytoplasmic vesicular
membraneous structures within infected hepatocytes [15]. Given these facts, it is easy to
understand that the time needed for selecting drug resistance mutations, present at baseline
only as minority genomic variants, which then expand and fill a major part of the virus
population should be longer for HBV than for HIV, and that it must be particularly short for
HCV. This may explain in part why resistance to lamivudine used as monotherapy may be
recognised within three weeks in HIV [16], while it only develops after several months to years
of therapy in HBV [17].

The major determinants involved in the selection of drug-resistant mutants for all these viruses
are the fitness of the mutants and the replication space available for the spread of mutants
[18]. In chronic hepatitis B, the replication space is provided by hepatocyte turnover, which
allows the loss of HBV wild-type infected cells and the generation of non-infected hepatocytes
that are susceptible to new HBV mutant infections. This process is usually very slow in chronic
hepatitis B because the immune mediated killing of infected cells is slow [19]. By contrast, in
HIV, the turnover of CD4+ T lymphocytes is quite rapid allowing the mutant viruses to expand
rapidly. The spread of mutants in the presence of the drug will also depends on the relative
fitness of these variants. For HCV, the diversity of the viral genome is greater than for HBV,
and the proportion of infected hepatocytes and the rate of superinfection of these cells is not
well known, but the extraordinary rapidity of emergence of drug-resistant HCV mutants is in
agreement with the short turnover of HCV-RNA molecules in the cytosol of infected
hepatocytes.

In a situation in which most potential target cells are already infected and releasing virions, it
is clear that infected cells with a long half-life will provide only a minimal opportunity for
replacing the original virus population by a new one of drug-resistant variants. This is the case
for HBV, whose infected hepatocytes may survive for several weeks or months [10,20]. In
contrast, CD4+ T lymphocytes infected with HIV show a shorter half-life (∼1 day) [9]. This
is why the dynamics of selection of drug resistance are so different comparing HBV and HIV,
despite their respective genetic material being archived within the nucleus of infected cells.

Besides the different half-life of each of the respective viral genetic materials, other factors
may explain the relatively slow selection of drug resistance in HBV compared to HIV and/or
HCV (Table 2). Among others are the constraints imposed by the fact that the HBV genome
shows overlapping reading frames. In this way, changes at one position may affect the structure
and function of more than one viral protein. Indeed, it is well known that some lamivudine-
associated resistance mutations may modify the antigenicity of the HBV surface antigen, as a
result of the large overlap between the HBV polymerase and envelope genes [21]. HBV escape
mutants induced by antiviral therapy have recently attracted much attention as they may
represent a public health threat in the near future [22]. Moreover, mutants of the viral
polymerase gene may induce mutations in the overlapping surface antigen which may then
generate defective or less infectious mutants, that may need trans-complementation of the
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mutant protein by wild type to package and propagate the mutant virus (some of the M204I
and the A181T mutants are examples) [23].

Another mechanism by which drug resistance in HBV may be selected for much slowly than
in HIV or HCV depends on the immune system. Rapid selection of immune escape mutants
has been described for HIV and HCV [24,25], while some level of immune tolerance may
persist throughout the entire course of chronic HBV infection [26], providing little selective
pressure.

Several therapeutic consequences derive from these biological considerations. The first is that
eradication of HIV and HBV will not be attainable even after several years of complete virus
suppression with current antiviral therapies, since relatively stable reservoirs of genetic viral
material may exist awaiting to be awaken in the advent drug pressure is discontinued. In
contrast, the fragile nature of HCV-RNA molecules in continuous turnover may provide a
unique opportunity for eradication. Indeed, the vast majority of patients who achieve sustained
virological response with interferon-based therapies do not show a rebound in HCV replication
thereafter [27,28], suggesting that the virus has definitively been eliminated. This is true even
in HIV-HCV co-infected persons, in whom immunodeficiency might rise suspicion of possible
late relapses [29,30].

A last therapeutic implication of these differences in the kinetics of selection of drug-resistant
mutants is the difficulty to prove the benefit of combination therapy in chronic hepatitis B. It
was relatively easy to demonstrate this benefit against HIV and it is currently being shown
against HCV using STAT-C molecules [31]. Although drugs targeting different steps of the
life cycle of both HIV and HCV have been developed, and this has not been the case for HBV,
it is clear that the relatively slow rate of emergence of drug-resistant HBV mutants in
comparison with HIV or HCV keeps open the possibility of continuing the use of monotherapy
against HBV. Clearly, it will not be the case using drugs with relatively low potency,
suboptimal dosing and/or low genetic barrier for resistance, such as lamivudine, emtricitabine,
telbivudine or adefovir. However, it may apply to drugs such as entecavir or tenofovir, which
have much more potent antiviral activity and a high genetic barrier to resistance, and for which
the annual rate of selection of resistance is below 1-2%, at least in drug-naïve chronic hepatitis
B patients [32-34].
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Figure 1.
Schematic representation of the virus life cycle for HIV, HBV and HCV.
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Table 1
Main distinctive viral dynamic features of HIV, HBV and HCV.

HIV HBV HCV

Virus
 • Daily production of virions per day 1010 1012-1013 1012

 • Half-life of free virions (hours) 1 3-24 2-3
 • Half-life of intracellular virions Days (dependent of infected

cells t1/2)
Months (dependent
of infected cells t1/2)

Hours (non-dependent of
infected cells t1/2)

 • Mutation rate Very high High Very high
 • Constraints due to ORFs in targeted viral enzymes Moderate High None
 • Immune mediated escape mutants Frequent Unfrequent Frequent

Target cells
 • Half-life of infected cells Days Months Weeks
 • Size of susceptible cells compartment Large Small Probably large
 • Intracellular viral reservoir Yes Yes No

(integrated cDNA) (cccDNA)
ORFs, overlapping reading frames; cDNA, complementary DNA; cccDNA, covalently closed circular DNA
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Table 2
Factors explaining the slower selection of drug resistance in HBV compared to
HIV and HCV.

1 Slower turnover of genetic material acting as source of newly produced viral particles in HBV than HIV and HCV.

2 Cconstraints in the HBV genome imposed by overlapping reading frames, that do not exist in HIV nor HCV.

3 More effective immune escape for HIV and HCV than for HBV.
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