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Abstract
Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to
‘jump’ across the genome. Their mobility contributes to oncogenesis, evolution, and genomic
plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are
more susceptible than differentiated cells to genomic aberrations including insertion, deletion and
duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent
cells. Here, we review recent progress in understanding retrotransposons and provide a perspective
on the relationship between retrotransposons and genomic variation in pluripotent stem cells.
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Embryonic stem cells (ESCs) are derived from the inner cell mass of the mammalian
blastocyst and have the capacity to self-renew and differentiate into all types of cells and
tissues (Thomson et al., 1998). The pluripotency of ESCs makes them a promising system
for in vitro studies of cell biology, screening drugs for efficacy and toxicity, and
regenerative medicine (Jung et al., 2012). Recent studies succeeded in reprogramming
human and mouse somatic cells into ESC-like cells by ectopic expression of defined
transcription factors (Oct4, Sox2, Klf4, and c-Myc) (Park et al., 2008; Takahashi and
Yamanaka, 2006). Such induced pluripotent stem cells (iPSCs) avoid the ethical issues
involved in deriving ESCs and provide autologous sources for cell therapy.

Despite their tremendous potential in cell-based therapies, several challenges remain to be
overcome before pluripotent cells can be used in the clinic. Long-term culture of ESCs and
iPSCs induces karyotypic changes (Draper et al., 2004; Lefort et al., 2008; Spits et al., 2008)
and copy number variations (CNVs) (Hussein et al., 2011; Liang et al., 2008; Närvä et al.,
2010). Overexpression of Klf4 and c-Myc represses the p53/p21 signaling pathway,
resulting in increased DNA damage (Deng and Xu, 2009; Hong et al., 2009; Kawamura et
al., 2009). In addition, ESCs and iPSCs contain fewer genomic domains enriched with
repressive histone modifications, such as H3K27me3 and H3K9me3, compared to somatic
cells such as fibroblasts (Hawkins et al., 2010). DNA methylation status in regions outside
promoters also changes during reprogramming into iPSCs, to a greater extent than it changes
within promoters (Lister et al., 2011; Meissner et al., 2008). This genomic and epigenetic
instability increases the risk of diseases of the genome, such as tumors, and makes these
cells less than ideally suitable for fundamental research and stem cell–based transplantation
therapy.
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Transposable elements (TEs) are mobile DNA sequences that can move from one
chromosomal site to another. TEs are a major source of CNVs (Figure 1) (Huang et al.,
2010). Retrotransposons, the most abundant TEs, can be classified according to the presence
or absence of a long terminal repeat (LTR). Non-LTR retrotransposons are further separated
into Short and Long INterspersed Elements (SINEs and LINEs) (Finnegan, 1997). SINEs
and LINEs are transcribed by RNA polymerases (Pol) III and II, respectively, and the
resulting transcripts are converted into DNA by reverse transcriptase (RT). These DNA
copies are subsequently integrated into genomic DNA. Since RT is encoded by LINEs but
not SINEs, reverse transcription of SINEs must be accomplished by RT encoded by other
elements. LTR retrotransposons are also transcribed by RNA polymerase II, using a
promoter within the LTR itself (Havecker et al., 2004). Following transcription,
retrotransposon RNA is translated into proteins that form the virus-like particle (VLR),
which encapsulates the RNA within the cytoplasm. Reverse transcription proceeds within
the VLR, and the resulting retrotransposon cDNA is integrated into the host genome.

Most retrotransposons in the human genome have been mutated and transcriptionally
silenced. In addition, many retrotransposons are attenuated by epigenetic modifications such
as DNA methylation (Kuramochi-Miyagawa et al., 2008), enrichment of repressive histone
modifications (Kondo and Issa, 2003; Martens et al., 2005; Mikkelsen et al., 2007),
depletion of active histone modifications (Huda et al., 2010), and strong nucleosome
positioning (Englander and Howard, 1995, 1996; Tanaka et al., 2010). Thus,
retrotransposons have been historically disregarded as “junk DNA.” However, despite the
presence of repressive machinery, recent studies have demonstrated that younger
retrotransposons can be activated in specific cell types, including neuronal cells (Baillie et
al., 2011; Coufal et al., 2009), tumors (Balaj et al., 2011), germ cells (Watanabe et al.,
2006), and undifferentiated cells (Macia et al., 2011). In particular, for a retrotransposition
event to be passed on to the next generation, the retrotransposition must occur in a germ cell
or a stem cell that subsequently differentiates into the germ cell lineage.

Several recent studies have described the specific activities and mechanisms of
retrotransposons in undifferentiated cells. Here, we address the virulence of retrotransposons
in the human genome, review recent advances in understanding the behaviors of
retrotransposons in undifferentiated cells, and discuss their potential roles in pluripotent cell
types (Figure 2).

Impact of Alu elements
The Alu retrotransposons, a family of primate-specific SINEs, are the most abundant
repetitive elements (>1 million copies) in the human genome (Grover et al., 2004). A typical
Alu element is approximately 300 bp long, and comprises two distinct GC-rich regions
linked with an A-rich region. According to their evolutionary ages, Alu elements are
classified into subfamilies: old (AluJ), middle (AluS), and young (AluY) (Batzer and
Deininger, 2002). Whereas all AluJ and many AluS elements are currently inactive, a
portion of AluS and AluY elements (approximately 6,000 copies) are still active (Bennett et
al., 2008). Alu elements do not encode any proteins, but contain two internal promoter
elements (A and B box) in the left monomer. These promoters are not detectable in older
Alu elements (Alemán et al., 2000). The activity of the A box may be repressed in Alu
elements that harbor nucleosomes in specific positions (Englander and Howard, 1995, 1996;
Tanaka et al., 2010). In addition, younger Alu elements contain more CpG dinucleotides, but
these are hypermethylated in somatic cells (Xie et al., 2009).

Alu insertion in the vicinity of a gene is likely to influence post-transcriptional regulation of
the neighboring gene, for example by influencing alternative splicing (Häsler et al., 2007).
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Alu-mediated changes in regulatory mechanisms confer both advantages and disadvantages
in humans (Lev-Maor et al., 2008). As an example of a positive effect, the insertion of an
Alu element within the fifth intron of the plakophilin 2 (PKP2) gene introduced a new splice
site, yielding a novel protein isoform in the hominid lineage (Krull et al., 2005). On the
other hand, approximately 0.1% of genetic disorders are related to Alu insertion (Deininger
and Batzer, 1999). Retinitis pigmentosa (RP) is an inherited eye disease characterized by
photoreceptor loss, decline of visual field, and night blindness. Approximately 1.2% of RP
patients have an Alu insertion in the ninth exon of male germ cell–associated kinase (MAK)
(Tucker et al., 2011). Tucker et al. recently developed iPSCs from RP patients and
monitored MAK gene and protein expression during retinal cell differentiation. They
showed that the Alu insertion causes a splicing defect, resulting in failure to produce mature
MAK protein in retinal precursor cells. A recent study demonstrated that Alu RNA levels
are increased in human ESCs (hESCs) (Macia et al., 2011). Therefore, it is possible that
pathogenic Alu insertions such as the one responsible for RP occurred in undifferentiated
cells or during differentiation of the germ cell lineage.

Adenosine-to-inosine (A-to-I) RNA editing is a form of post-transcriptonal regulation that
increases transcriptome and proteome diversity. The majority of A-to-I editing occurs in Alu
elements, within non-coding RNAs, and in the introns and untranslated regions (UTRs) of
coding RNAs (Athanasiadis et al., 2004; Peng et al., 2012). Editing in coding regions is rare,
but is significantly increased during brain development, suggesting that it may contribute to
functional changes in neuronal proteins and the development of brain complexity (Wahlstedt
et al., 2009). The ADAR (Adenosine Deaminase Acting on RNA) proteins are enzymes that
catalyze the A-to-I reaction in double-stranded regions of RNA regions. Three genes
encoding ADAR proteins (ADAR1, ADAR2, and ADAR3) have been identified in the
human genome (Hogg et al., 2011). In mouse, ADAR1 is required in embryogenesis, and its
loss induces widespread apoptosis (Wang et al., 2000; Wang et al., 2004). The level of A-to-
I RNA editing in Alu elements within non-coding regions is higher in hESCs, but decreases
during neuronal differentiation whereas the level of editing in coding regions is low in both
undifferentiated and differentiated cells (Osenberg et al., 2010). Furthermore, the ADAR1
mRNA level in hESCs is dramatically higher than those of ADAR2 and ADAR3.
Knockdown of ADAR1 decreases the level of A-to-I editing in Alu RNAs and increases
expression of genes related to cell development and differentiation.

The A-to-I editing of inverted Alu pairs in 3′ UTRs promotes mRNA silencing by nuclear
retention (Chen et al., 2008). LIN28, one of the reprogramming factors that have been used
to derive iPSCs, contains inverted Alu elements in its 3′ UTR (Yu et al., 2007). Despite the
high level of Alu A-to-I editing in hESCs via ADAR1, LIN28 protein is highly expressed in
these cells. Chen et al. recently demonstrated that expression of NEAT non-coding RNA is
essential in assembly of paraspeckles, which enhances nuclear retention of edited mRNAs
(Chen and Carmichael, 2009). They found that hESCs do not express NEAT and do not
form paraspeckles. Thus, LIN28 is not retained in the nuclei even with the A-to-I editing.
Taken together, these findings suggest that Alu elements play an important role in human
embryonic development.

Impact of L1 elements
L1 is the major LINE in mammals, and occupies approximately 17% (approximately
500,000 copies) of the human genome (Lander et al., 2001). Although there are three
subfamilies of LINEs in the human genome, only L1 is capable of autonomous
amplification. Full-length L1 is approximately 6 kb long and encodes two proteins, ORF1p
and ORF2p. ORF1p forms a ribonucleoprotein particle by binding single-stranded L1 DNA
and RNA, thereby serving as a nucleic acid chaperone (Kolosha and Martin, 1997; Martin
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and Bushman, 2001). ORF2p is a multifunctional protein with endonuclease and RT activity
(Feng et al., 1996; Mathias et al., 1991). Both proteins are required for L1 retrotransposition
(Martin et al., 2005). ORF1p is not crucial for retrotransposition of Alu elements, but can
enhance Alu mobilization (Wallace et al., 2008). In addition to ORFs, L1 has sense and
antisense RNA Pol II promoters in the 5′ UTR and polyadenlyation signals in the 3′ UTR.
Therefore, L1 insertion can confer promoter and polyadenylation activity on neighboring
genes (Mätlik et al., 2006; Nigumann et al., 2002; Roy-Engel et al., 2005; Speek, 2001).

There are approximately 4,000 full-length L1 elements in the human genome. As with Alu
retrotransposition, L1 retrotransposition contributes to both genomic evolution and
pathogenesis (Chen et al., 2006; Cordaux and Batzer, 2009). In some haemophilia A
patients, L1 insertions are present in exon 14 of the gene encoding Factor VIII, which is
required for blood coagulation (Kazazian et al., 1988). In a patient with Duchenne muscular
dystrophy, a de novo insertion of L1 into exon 44 of the gene encoding dystrophin results in
exon skipping (Musova et al., 2006). More than 90% of disease-causing insertions are due to
Alu and L1 elements (Hancks and Kazazian, 2012). Because L1 mediates the
retrotransposition of other elements, L1 expression is related to almost all disease-causing
insertions in the human genome.

L1 RNAs are highly transcribed in germ cells (Kano et al., 2009), hESCs (Garcia-Perez et
al., 2007; Macia et al., 2011), and neuronal cells (Coufal et al., 2009). In hESCs, highly
expressed L1 elements are located within intragenic regions (Macia et al., 2011). Despite
high L1 expression in these cell types, the genomic integration of L1 is not detectable in
germ cells (Kano et al., 2009). Rather, L1 RNAs are carried over from the germ cells into
the embryo, and integration occurs during embryogenesis. These results suggest that most
L1 retrotranspositions occur in cells of the early embryo, including ESCs, and lead to
mosaicism in somatic and germ-line tissues (van den Hurk et al., 2007).

L1 elements also play a key role in dosage compensation. In order to compensate for the
double dose of X-chromosome genes in females relative to males, one copy of the X
chromosome in female somatic cells must be inactivated. During differentiation of ESCs, X-
chromosome inactivation (XCI) is initiated by coating the X chromosome with the non-
coding XIST RNA; L1 elements are thought to provide binding sites for XIST (Bailey et al.,
2000; Lyon, 2000). L1 elements are two-fold more abundant on the X chromosome than on
autosomes; conversely, regions that escape XCI are relatively depleted of L1 elements
(Lyon, 1998). The majority of L1s are involved in forming the heterochromatic nuclear
compartment of the inactive X chromosome. A subset of young full-length L1s are active
outside the XIST-mediated compartment during early stages of differentiation, but they are
expressed within the compartment during later stages. Although it is clear that L1 elements
are associated with XCI during ESC differentiation, the mechanism underlying expression
of young L1 elements during ESC differentiation remains unknown. According to one
current model, L1 transcription assists in the spreading of the silent compartment along the
inactive X (Chow et al., 2010).

Previously, we and other groups demonstrated that the inactive X chromosome may be
reactivated during reprogramming of fibroblast cells derived from Rett syndrome (RTT)
patients into iPSCs (RTT-iPSCs) (Cheung et al., 2011; Kim et al., 2011; Marchetto et al.,
2010; Pomp et al., 2011). RTT is a neurodevelopmental disorder, arising mostly in girls.
RTT patients carry mutations in the gene encoding Methyl-CpG binding protein 2 (MeCP2)
(Amir et al., 1999). RTT-iPSCs exhibit increased susceptibility to retrotransposition of L1
elements (Muotri et al., 2010). By contrast, Alu transcription is not regulated by MeCP2 (Yu
et al., 2001).
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TET1 protein was recently identified as an enzyme that converts methylcytosine (5mC) to 5-
hydroxymethylcytosine (5hmC), a process that is upregulated during the generation of
iPSCs (Ruzov et al., 2011; Tahiliani et al., 2009). TET1 is highly expressed in ESCs and is
essential for maintenance of pluripotency (Ito et al., 2010). The level of 5hmC is elevated in
L1 promoters in ESCs, but decreases after differentiation into embryonic bodies (EBs) (Ficz
et al., 2011). By contrast, the level of 5mC in L1 promoter increases during differentiation of
ESCs into EBs. 5hmC is enriched in binding sites of pluripotency factors (Oct4, Nanog, and
Sox2), enhancers marked by H3K4me1 and H3K27ac, promoters, and gene coding regions
in human (Stroud et al., 2011; Szulwach et al., 2011) and mouse ESCs (Pastor et al., 2011;
Wu et al., 2011a; Xu et al., 2011). Because the reaction catalyzed by TET1 involves
demethylation of methylated cytosine that marks inactive genes, 5hmC is presumed to be
distributed around active genes. However, recent studies in ESCs have revealed that 5hmC
is also enriched in developmental genes with bivalent histone modifications (H3K4me3 and
H3K27me3) (Wu et al., 2011a; Wu et al., 2011b). Furthermore, chromatin
immunoprecipitation with massively parallel sequencing (ChIP-seq) analysis has revealed
that TET1 is co-localized with the SIN3A co-repressor (Williams et al., 2011).
Consequently, TET1 (as well as 5hmC) may function as both activator and repressor. It is
still unclear whether 5hmC in L1 promoters activates L1 transcription. However, because
SINE and LINE elements are significantly depleted around PcG-bound promoters in hESCs
(Estécio et al., 2010), one could infer that 5hmC may activate L1 transcription in
undifferentiated cells.

In addition to mechanisms for activating L1 elements, mechanisms also exist to repress L1
in ESCs/iPSCs. APOBEC (Apolipoprotein B mRNA editing enzyme, catalytic polypeptide)
is a cytidine deaminase that removes 5hmC by converting it into 5hmU (Branco et al.,
2012). Members of the human APOBEC3 family inhibit L1 retrotransposons in HeLa cells
(Kinomoto et al., 2007). Despite high expression of almost all members of the APOBEC3
family in hESCs, only APOBEC3B restricts L1 retrotransposition in those cells (Wissing et
al., 2011). APOBEC3B mRNA is not expressed in somatic tissues (Bogerd et al., 2006).
Thus, APOBEC3B-mediated cytidine deamination represents a mechanism for regulating L1
retrotransposition that is unique to undifferentiated cells.

Impact of SVA elements
SVA is a newly defined family comprising three other types of repetitive elements (SINE-R,
VNTR, and Alu) (Ostertag et al., 2003). SVA elements evolved recently in the hominid
lineage, and many of them are currently active in the human genome. Their mobilization is
mediated in trans by L1 elements (Hancks et al., 2011). Several SVA insertions disrupted
gene structures, resulting in genetic diseases (Hancks and Kazazian, 2010). In Fukuyama
muscular dystrophy, SVA insertion into the 3′ UTR of the gene encoding fukutin provokes
an abnormal splicing event that changes the position of the stop codon (Taniguchi-Ikeda et
al., 2011). Although the activity of SVA in undifferentiated cells has not been elucidated,
the evidence regarding L1 activity in ESCs/iPSCs suggests that increased retrotransposition
of SVA elements may occur during pluripotent stages.

Impact of LTR retrotransposons
In contrast to other retrotransposons, LTR retrotransposons are thought to be static in the
human genome at present. However, recent studies have suggested that LTR
retrotransposons have contributed to the spread of binding sites for pluripotency factors
during evolution (Bourque et al., 2008). Kunarso et al. performed ChIP-seq for CTCF,
OCT4, and NANOG in hESCs and found that more than 2,000 and 4,000 OCT4 and
NANOG binding sites, respectively, are within endogenous retrovirus 1 (Kunarso et al.,
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2010). Most of these repeat-associated binding sites were not present in homologous regions
of the mouse genome. Despite shared expression of numerous genes in human and mouse
ESCs/iPSCs (Chin et al., 2009; Hanna et al., 2010), the transcriptional and epigenetic
profiles of the human cells exhibit several distinct patterns (Bernstein et al., 2005; Ginis et
al., 2004; Richards et al., 2004). Genes associated with leukemia inhibitory factor signaling
pathways, cell cycle and death pathways, and cytokines are highly expressed only in mouse
(Ginis et al., 2004; Richards et al., 2004). In addition, despite similar patterns of histone H3
lysine 4 methylation (H3K4me) in orthologous regions, many of the H3K4me-enriched
regions are not conserved (Bernstein et al., 2005). It may be speculated that the human-
specific pluripotency regulatory networks have arisen as a result of retrotransposition events
within transcription factor binding sites over the course of human evolution.

Concluding remarks
Several lines of new evidence have revealed that retrotransposon expression is increased,
and that retrotransposon-mediated gene regulation occurs, in undifferentiated cells. Because
retrotransposition also promotes genomic evolution (Cordaux and Batzer, 2009),
retrotransposition is a double-edged sword with respect to the host genome. Whereas
integration events in germ cells can be passed down to future generations, only a fraction of
the events in ESCs are heritable. Piwi-interacting RNAs, which are capable of
retrotransposon silencing, are highly expressed in germ cells but diminished in ESCs
(Ohnishi et al., 2010). It is possible that the early embryonic stage is more tolerant to
retrotransposition than germ cell lineage to increase genomic diversity.

Techniques for generating iPSCs are improving rapidly, and the current methods exhibit a
significantly lower frequency of CNVs (Quinlan et al., 2011). Understanding the
mechanisms of retrotransposon activation and repression in undifferentiated cells should
enable us to more effectively develop non-pathogenic iPSCs for use in research and cell-
based therapies.
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Figure 1. Schematics of the major classes of retrotransposons
Typical sequence length of each retrotransposon is according to the Repbase database
(http://www.girinst.org/repbase/). Alu contains two RNA polymerase III promoters, but does
not encode proteins. L1 has a polymerase II promoter in the 5′ UTR region and two ORFs.
SVA consists of hexamer repeat regions, Alu-like regions, variable number of tandem
repeats (VNTR), SINE-R, and polyA regions, but does not encode proteins. Because there is
no internal promoter, SVA may be transcribed using 5′-flanking promoters. LTR
retrotransposon contains a promoter in the LTR, and the transcript produces group specific
antigen (gag), protease (pro), reverse transcriptase (pol), and envelope (env) proteins.
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Figure 2.
Summary of ESCs/iPSCs-specific behaviors of retrotransposons. The first column represents
the contributions of retrotransposons to undifferentiated cells. The second column gives
examples of diseases related to each retrotransposon.
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