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Abstract
DNA methylation has been studied comprehensively and linked to both normal neurodevelopment
and neurological diseases. The recent identification of several new DNA modifications, including
5-hydroxylmethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), has
given us a new perspective on the previously observed plasticity in 5mC-dependent regulatory
processes. Here we review the latest research into these cytosine modifications, focusing mainly
on their roles in neurodevelopment and diseases.
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Introduction
In the early 1900s, genetics and developmental biology were considered to be two separate
entities [1]. Conrad Waddington first coined the term “epigenetics” in the middle of the
twentieth century, derived from the Greek words for “over” or “above” genetics, to describe
the molecular events involved in early undifferentiated embryonic development, linking the
two important fields together [2]. The current definition of epigenetics is the study of
heritable changes in gene expression and function that do not alter DNA sequence [3,4].
There are currently three well-characterized epigenetic mechanisms, cytosine modifications,
histone modifications, and ATP-dependent chromatin remodeling, of which modification of
cytosines is the only mechanism that directly imposes on DNA [5–8]. DNA methylation was
first proposed to play an important role in long-term memory formation [9] and remained
the major DNA covalent modification to influence transcriptional states, and ultimately
cellular identity. Methylation on the fifth position of cytosine (5mC) typically occurs in the
context of regions that contain a high frequency of CG dinucleotides in the mammalian
genome and plays pivotal roles in the regulation of gene expression, chromatin structure,
gene imprinting, X-chromosome inactivation, and genomic stability [10–12]. The exceptions
are CpG islands, which are frequently located alongside gene promoters and usually remain
unmethylated. DNA methylation is often associated with a gene repressive environment, and
maintaining proper DNA methylation status is essential for normal development, with
aberrant DNA methylation patterns frequently being linked to the pathogenesis of numerous
diseases, including neurological disease and cancer [6,13–15]. Three well-defined DNA
methyltransferases (DNMTs) are responsible for preserving or generating this marker.
DNMT1 maintains DNA methylation during the cell cycle by copying the existing pattern of
hemi-methylated DNA to their daughter strands during DNA replication. DNMT3A and 3B,
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in contrast, create new methylation loci by coordinating with different interacting partners,
including histone modifiers or transcription repressors, to achieve their specificity, thereby
acting as de novo methyltransferases [16,17]. Aside from the known DNMT characters,
DNA methylation can also be influenced by non-canonical DNMT functions or their co-
factors [18,19]. DNA methylation can be recognized by a spectrum of protein “readers,”
such as methyl-CpG binding protein 2 (MeCP2) and methyl-CpG-binding domain proteins
1-4 (MBD1-4) [20,21]. The aberrant expression of these proteins often has severe
consequences, such as neurological disorders and cancer, emphasizing the importance of the
correct interpretation of DNA methylation markers [22–24] (Fig 1). The respective roles of
DNMTs and MBDs in neurodevelopment and disease have been extensively characterized
and will be discussed in the following sections.

Another DNA modification, 5-hydroxymethylcytosine (5hmC), was initially identified in
bacteriophage in 1953, the same year Watson and Crick proposed the DNA structure [25].
5hmC was found in mammalian genomes in 1972 [26]; however, the mechanisms and
proteins responsible for generating this marker remained unknown. In 2009, Rao and
colleagues demonstrated that ten-eleven translocation 1 (TET1), a 2-oxoglutarate (2OG)-
and Fe (II)-dependent enzyme, catalyzes conversion of 5mC to 5hmC [27]. Subsequent
studies revealed that TET1 could further oxidize 5hmC to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC), giving us a completely new perspective on the plasticity of 5mC-
dependent processes [28–30]. It is of particular interest that the overall 5hmC level varies
between tissues, with approximately ten times more in brain tissues like Purkinje neurons
[31–35], as well as embryonic stem cells (ESCs), compared to other tissues [28,36–38]. This
differential distribution points to the possible functional importance of this DNA
modification in development and neuronal activity.

In this review, we summarize the current knowledge of and advances in the molecular
mechanisms of cytosine modifications, with a particular focus on the impact they have on
neurodevelopment and human diseases.

DNA methylation in neurodevelopment and neurological disorders
Roles of DNA methyltransferases: the writers

The adult mammalian central nervous system (CNS) was once believed to never generate
new neurons, but recent research has proved that thousands of new neurons are actually
generated every day, primarily derived from the adult neural stem cells (NSCs) located in
the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and the subventricular
zone (SVZ) of the lateral ventricle [14]. In this case, adult neurodevelopment can be viewed
as classic stem cell differentiation, and thus involves precise epigenetic control. On the other
hand, DNA methylation is known to be critical in synaptic plasticity related to long-term
learning and memory in mature neurons, likely owing to regulation of specific gene
expression [39,40]. It is intriguing that the expressions of three DNMTs show differential
patterns in various brain tissues and in the developmental stage, pointing to their distinctive
roles in neuronal development and function [41,42]. For example, Dnmt1 mRNA is
ubiquitously expressed in both dividing neural precursor cells and postmitotic neurons in
mouse brain, consistent with their important role in maintaining DNA methylation patterns
throughout cell replication [42]. In contrast, Dnmt3a and 3b show temporally and spatially
different expression during neurodevelopment. Dnmt3b is robustly expressed in SVZ
between embryonic days (E) 10.5 and 13.5, but becomes virtually undetectable in the CNS
after E15.5, whereas Dnmt3a starts to be expressed in SVZ neural stem cells from E10.5 to
E17.5 and can be detected predominantly in postnatal neurons from almost all brain regions
[41]. These interesting observations suggest distinct, non-overlapping roles for the different
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Dnmts in brain function and highlight the importance of DNA methylation in prenatal and
postnatal neurodevelopment.

Mutations in any of the three major Dnmts in mice lead to embryonic lethality [16,43], thus
conditional knockout of Dnmts in mice has been applied to study their role in the CNS [44–
46]. For example, conditional ablation of Dnmt1 in the dorsal forebrain results in the failure
to develop somatosensory barrel cortex, and thalamocortical long-term potentiation is also
impaired [44]. In a separate report, Dnmt1 deletion in neural progenitor cells induced
derepression of astroglial marker genes, as well as genes involved in JAK-STAT signaling,
indicating the importance of DNA methylation in controlling astroglial differentiation [47].
Unlike the deletion of Dnmt1 and Dnmt3b, mice that lack functional Dnmt3a in the CNS
appear to be grossly normal at birth, but die prematurely with the acquisition of
developmental mental defects [45]. In a separate study, Wu et al demonstrated that Dnmt3a
deletion leads to impaired postnatal neurogenesis at both neurogenic zones. This is
confirmed by 10-fold fewer neurons being differentiated in vitro from Dnmt3a-null neural
stem cells compared to wild-type. Genome-wide Dnmt1-binding and DNA methylation
analysis using WT or Dnmt3a-null postnatal neural stem cells revealed that Dnmt3a
methylates intergenic regions and gene bodies flanking proximal promoters. Surprisingly,
Dnmt3a knockout induces the silencing of genes related to neurogenic activity, and Dnmt3a
occupancy prevents Polycomb repressive complex recruitment [46]. However, the
possibility remains that the Dnmt3a-dependent nonproximal promoter methylation can
functionally antagonize Polycomb deposition of trimethylation of histone H3 lysine 27
(H3K27me3). Nonetheless, this interesting observation implies that Dnmts might have dual
functions in neurodevelopment. With regard to long-term plasticity maintenance, neither
Dnmt1 nor Dnmt3a knockout alone, but their double knockout (DKO) in mouse forebrain
leads to profound deficits in learning and memory [39]. All this evidence points to a
mechanism whereby individual Dnmts play distinctive roles in early neurodevelopment, and
they orchestrate together to maintain long-term proper neuronal functions.

Both genetic and epigenetic alterations have been studied extensively in cancer and are
found to be critical in carcinogenesis and tumor progression [48,49]. This powerful evidence
serves as an excellent reference for dissecting epigenetic mechanisms in neuronal disease. In
normal cells, DNA methylation occurs largely on repetitive sequences to maintain genomic
stability, and promoter CpG islands are usually unmethylated. These features are often
reversed in cancer cells, with promoter CpG islands becoming hypermethylated, thereby
repressing a large set of tumor-suppressing genes, and repetitive sequences showing
hypomethylation, resulting in chromosome instability and activation of transposable
elements [50–52]. Recent genome-wide DNA methylome analysis in cancer cells indicates
that most affected CpG island genes are already silenced prior to aberrant DNA
hypermethylation, which is reminiscent of normal development, where gene silencing
precedes promoter CpG methylation [53]. Mechanisms other than DNA methylation appear
to be involved in transcription control on these genes. In fact, DNA methylation orchestrates
with other epigenetic mechanisms, such as histone modifications, to influence cellular
activity and disease onset [13,51,52].

Given the critical functions of DNMTs mentioned in the previous section, it is not surprising
that several neurological disorders are caused by mutations within DNMTs. For example,
hereditary sensory and autonomic neuropathy type 1 (HSAN1) is an autosomal dominant
neurodegenerative disorder involving loss of sensation and various neuropathies in the third
or fourth decade of life [13]. A recent study identified mutations on the DNMT1 sequence,
and these mutations lead to premature degradation of mutant proteins and impair DNMT1
cellular activity. Since DNMT1 primarily maintains methylation patterns during the cell
cycle, these mutations likely affect gene transcription due to the loss of specific promoter
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methylations through cell replication and may progressively impair neuronal differentiation,
migration, and central neural connections [54]. Notably, the fact that DNMT1 mutation also
affects postmitotic neurons in HSAN1 patients led to the interesting notion that DNMT1
might also be involved in modulating DNA methylation in a cell cycle-independent manner
[55]. Mutations in DNMT1 are also reported in autosomal dominant cerebellar ataxia,
deafness, and narcolepsy (ADCA-DN), with their locations in close proximity to the
mutations in HSAN1 [56]. These findings highlight the functional importance of DNMT1 in
the maintenance of normal neuronal activity.

The immunodeficiency, centromere instability, facial anomalies (ICF) syndrome is
characterized mainly by polymorphic mutations on the de novo methyltransferase,
DNMT3B [57,58]. These patients suffer from impaired cellular immunity and unusual facial
features [51]. DNMT3B-mutated cells show hypomethylation and imbalances in histone
markers on pericentromeric repeats [16]. Subsequent global gene profiling revealed that a
large set of genes related to immune function, development, and neurogenesis are de-
repressed. These genes are associated with loss of DNA methylation, repressive H3K27me3
marker, and Polycomb repressive complex [59]. Another syndrome closely related to ICF,
ICF2, was recently linked to mutations of the zinc-finger- and BTB (bric-a-brac, tramtrack,
broad complex)-domain-containing 24 (ZBTB24) gene [60,61]. Mechanistically, ZBTB24 is
a putative DNA-binding protein and may be involved in juxtacentromeric DNA methylation
[60]. DNMT3A has not yet been linked to neuronal diseases, although its deletion does
impair postnatal neurogenesis [46], but it is strongly associated with acute myeloid leukemia
[62,63].

Roles of methyl-CpG binding proteins (MBPs): the readers
Since DNA methylation plays a critical role in neurodevelopment, it is feasible that the
methylation “reader,” methyl-binding proteins, may also be indispensable to correctly
interpreting existing modifications [21]. Indeed, methyl-CpG binding protein 1 (MBD1)
appears to be an important regulator of neural stem cells. MBD1-null mice show reduced
neuronal differentiation and increased genomic instability. In addition, MBD1 knockout also
affects postnatal neurogenesis in the SGZ, indicating its dual roles in both neurogenesis and
the maintenance of long-term brain function [64]. Nevertheless, in this particular study, the
adult NSCs from wild-type mice already exhibited 21.3% aneuploidy, and NSCs from
MBD1 null mice enhanced this trend by an additional 20%. Hence, further experiments can
be performed in the future to rule out indirect effects caused by the specific cell type used
here. One proposed mechanism for MBD1 is that it directly binds to the hypermethylated
promoter of basic fibroblast growth factor 2 (Fgf2), an essential growth factor for neural
development. MBD1 deletion results in Fgf2 promoter hypomethylation and differentiation
arrest [65]. Since this study was performed in cultured adult NSCs, further studies should be
conducted to confirm this observation in vivo.

Methyl-CpG binding protein 2 (MeCP2) was first identified about two decades ago for its
ability to recognize and bind to methylated DNA [66]. Quantitative analysis of MeCP2
revealed its broad expression in various tissues, with the highest levels in brain, lung, and
spleen. Expression of MeCP2 in brain shows temporal and spatial order and is correlated
with the maturation and function of the central nervous system [67]. MeCP2 is one of the
best-characterized MBPs [24,68] and has been implicated in the regulation of global histone
modification [69], target gene repression [70,71] or activation [23,72], long-range
interaction between distant regions of the genome [73], and the regulation of alternative
splicing [74]. The MeCP2 gene is X-linked, with one copy inactivated during dosage
compensation [75]. Therefore, mutations induce the premature death of males in their first
two years of life [76]. Females with the same mutations survive longer, but develop a severe
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progressive neurodevelopmental disorder called Rett syndrome (RTT) [77]. It appears that
precise control of the MeCP2 level is important, as increasing copy numbers of MeCP2 are
found to cause mental retardation, autism, and psychiatric symptoms [78]. A number of
mouse models with MeCP2 mutations or conditional knockout have been created [24,68].
These mice recapitulate the RTT phenotypes, confirming the key role of MeCP2 in RTT.
Post-translational modifications are suspected of playing a key part in the regulation of
MeCP2 behavior. For instance, brain-specific MeCP2 phosphorylation has been linked to
activity-dependent brain-derived neurotrophic factor (Bdnf) transcription, a growth factor
that supports neuron growth and differentiation [79]. Recent genome-wide profiling of
MeCP2 revealed that MeCP2 S421 phosphorylation occurs globally in response to neuronal
stimulation and participates in dendritic development and key neurological responses [80].

There have also been efforts to rescue the RTT phenotypes in a mouse model by re-
expressing functional MeCP2 proteins. Indeed, tamoxifen-induced MeCP2 expression in
MeCP2 null mice could reverse neurological phenotypes, although some mice experienced
rapid death, possibly due to overinduction of MeCP2 [81]. This observation suggests that the
neuronal damage of RTT is reversible. The authors of this study proposed a model wherein
DNA methylation patterns are preserved, even in the absence of MeCP2, and replenishment
of MeCP2 can thus restore neuronal activity. These observations, along with others [82],
shed new light on potential therapeutic treatments for RTT patients.

Numerous efforts have also been put into identifying the 5hmC or even 5fC and 5caC
readers. It turns out that many MBPs also possess the capacity to recognize 5hmC. For
example, a recent study purified distinct types of neuronal cells and found that both 5mC
and 5hmC show a strong cell type-related bias. These investigators also identified MeCP2 as
a 5hmC-binding protein, establishing a dual role for MeCP2 in the orchestration of neuronal
plasticity by coordinating different cytosine modifications [31]. In addition, Yildirim et al
demonstrated the Methyl-CpG binding protein 3 (MBD3) co-localizes with Tet1 and 5hmC
in ESCs, and MBD3 showed a preference to bind to 5hmC over 5mC [83]. Furthermore,
Vermeulen and colleagues systematically characterized the protein readers to a variety of
different cytosine modifications in ESCs, neuronal progenitor cells (NPCs), and adult mouse
brain tissue. Their study revealed a protein list that overlaps between various modifications,
including MeCP2 and some methyl-CpG binding proteins. Remarkably, some readers
displayed strong tissue or modification specificity, suggesting that correct and specific
interpretation of the cytosine modifications is critical for normal development and
homeostasis [84].

DNA methylation in repetitive elements
As discussed above, the deletion or mutation of either DNMTs or MBPs leads to aberrant
DNA methylation patterns in brain, and eventually neurodevelopmental deficiency. Among
many mechanisms proposed, the activation of retrotransposons is one attractive model [85].
An engineered human long interspersed element 1 (LINE-1 or L1) has been found to
retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells [86].
Subsequent research confirmed this by detecting an increased copy number of endogenous
L1 in several regions of human brain. Bisulfite sequencing revealed 5′UTR hypomethylation
in human brain tissues compared to matched skin samples, highlighting the importance of
DNA methylation in this process, which is consistent with the notion that DNA
hypermethylation occurs in the repetitive elements to maintain genomic stability [87]. The
transposable elements may help fine-tune gene expression in the brain in a single cell-based
manner to achieve specific and complicated neuronal responses [14].
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Other DNA methylation-related neurodevelopmental and neurodegenerative diseases
A common feature of repeat expansion diseases, including many common neurological
disorders like fragile X mental retardation syndrome (FXS) and Huntington’s disease (HD),
is trinucleotide repeats on the coding region, untranslated region, or even introns of certain
genes [88,89]. Among different mechanisms of disease formation, RNA gain-of-function
toxicity has been reported extensively from the repeat elements either interfering with
alternative splicing (e.g., in myotonic dystrophy, DM) or disrupting the balance and
availability of RNA-binding proteins (e.g., fragile X tremor ataxia syndrome, FXTAS) [88–
91]. Nonetheless, a recent study suggests that polyglutamine-expanded HTT can alter DNA
methylation at both promoter-proximal regions bearing low CpG content, as well as distal
regulatory regions [92]. Notably, trinucleotide repeat instability on the genome has also been
proposed [93]. Since DNA methylation occurs primarily in CG dinucleotides, some of the
diseases containing non-methylatable repeats, such as CAG in HD, spinal and bulbar
muscular atrophy (SBMA), several forms of spinocerebellar ataxia (SCA1, 2, 3, 6, 7, 8,12
and 17), and CTG in myotonic dystrophy type 1 (DM1), may not be affected [51,89].
However, methylatable CGG repeats do occur in several diseases, including FXS and
FXTAS, and may contribute to the onset and progression of those diseases. The molecular
basis of FXS has been attributed to the CGG repeats within the 5′ untranslated region of the
FMR1 gene [94], with extensive repeats causing silencing of the transcripts [95]. DNA
methylation has been clearly taken into account for the mechanism of FMR1 gene silencing
[96]. There are also other repeat-related diseases, such as syndromic/non-syndromic X-
linked mental retardation, oculopharyngeal muscular dystrophy with GCG repeats, and
myoclonic epilepsy of Unverricht and Lundborg with CCCCGCCCCGCG repeats, which
could also be subject to DNA methylation, although whether DNA methylation plays a part
in those diseases remains to be determined [89].

In recent decades, DNA methylation has emerged unequivocally as a key player in normal
neurodevelopment and numerous neurological disorders. DNA methylation inhibitors, such
as 5-aza-2′-deoxycytidine, are already undergoing clinical trials for some of these diseases,
which could give us insight into reversing disease phenotypes [52]. Taken together, there is
mounting and compelling evidence that the DNA methylation machinery, including DNA
methyltransferases and MBPs, is critical in prenatal and postnatal neurodevelopment.
Deletion or mutation of these players can cause skewed neuronal activity and lead to
neurological phenotypes.

DNA 5-hydroxylmethylation in neurodevelopment and disease: a new
perspective
Is 5-hydroxylmethylcytosine an intermediate or stable cytosine modification?

DNA methylation has been studied exhaustively for decades, with relatively well-
established protein players to generate or interpret this marker. In contrast, how DNA
methylation is dynamically regulated, especially the machinery of passive or active DNA
demethylation and the identity of demethylases, had not been described until very recently
[33,97–100]. The discovery that the DNA methylation eraser ten-eleven translocation 1
(TET1, one of the three TET proteins in mammals) can oxidize 5mC to 5-
hydroxymethylcytosine (5hmC) [27] has attracted broad attention and led to a flurry of
studies within the last several years. The development of next-generation sequencing allows
scientists to characterize this new cytosine modification genome-wide and postulate its
function in the transcription state by analyzing its genomic distribution and associated
protein factors. In the meantime, two further 5hmC oxidation products by TET proteins, 5-
formylcytosine and 5-carboxylcytosine, were also found to exist in mouse embryonic stem
cells (mESC), mouse tissue, and human cells shortly after 5hmC was shown to be converted
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from 5mC [29,30,101]. The establishment of various cytosine modifications raises an
intriguing question: are either of the oxidized 5mC derivatives an intermediate in the active
DNA demethylation process, or are they actually novel stable cytosine modifications that
participate in epigenetic regulation?

Several lines of evidence indicate that different cytosine modifications are actually unified
in a cycle to ensure their dynamic regulation in response to developmental cues. By
investigating DNA demethylation in the dentate gyrus of adult mouse brain, Guo et al
demonstrated that 5hmC converted by TET1 from 5mC is more prone to undergo
deamination than 5mC by the AID (activation-induced deaminase)/APOBEC
(apolipoprotein B mRNA-editing enzyme complex) family of cytidine deaminases. The
deamination product, 5-hydroxymethyluracil (5hmU), triggers the base-excision repair
(BER) pathway to be turned back to 5mC to complete the demethylation cycle. This
relatively short pathway, which is not involved in 5fC and 5caC formation, is important for
neuronal activity-induced, region-specific, active DNA demethylation [102]. An alternative
pathway has also been proposed recently, based on the fact that TET proteins can further
oxidize 5hmC to 5fC and 5caC. 5caC can be successively excised by thymine DNA
glycosylase (TDG) to generate an abasic site, which can then be repaired to a cytosine by the
BER pathway [29,30,101,103]. These findings elucidate plausible models for active DNA
demethylation, although their precise dynamics, cellular specificity, and associated functions
remain to be determined. Furthermore, simultaneous passive DNA demethylation may also
be important in basic biological activities like development. It has been suggested that
DNMT1, the only DNA methyltransferase that copies the existing DNA methylation to the
daughter strand during DNA replication, has dramatically more affinity for hemi-methylated
DNA than hemi-hydroxymethylated DNA [104]. This could easily result in the loss of
inheritable DNA methylation if corresponding sites have been converted to 5hmC/5fC/5caC
before cell replication [105]. It has long been known that the paternal but not the maternal
genome in a zygote endures global DNA demethylation before the first mitosis, but the
mechanisms behind this have remained elusive [106,107]. A recent report revealed the 5mC
of the paternal genome can be converted to 5hmC by TET3, the only one of the TET
proteins expressed in zygote. Tet3-deficient zygotes fail to convert 5mC to 5hmC, impairing
key epigenetic reprogramming genes, such as Oct4 or Nanog expression, thereby affecting
normal embryonic development [108]. These findings taken together argue that 5hmC and
its subsequent oxidation products may serve as an intermediate for the DNA demethylation
process.

5hmC, on the other hand, is also implicated as a stable cytosine modification that has a long
half-life in the mammalian genome, especially in neuronal cells, as demonstrated by us and
others [31–33]. For example, Song et al used selective chemical labeling combined with
high-throughput sequencing to map 5hmC genome-wide in several cell lines and mouse
brain and showed that intragenic 5hmC enrichment correlated with the expression of genes
linked to age-related neurodegenerative diseases. In addition, the age-dependent acquisition
of 5hmC is also seen [33]. Szulwach et al have specifically mapped the genome-wide
distribution of 5hmC in mouse hippocampus and cerebellum at three different ages, allowing
accurate comparison of 5hmC levels and distribution at different stages of postnatal
neurodevelopment [32]. 5hmC levels were found to be significantly higher in both the
cerebellum and hippocampus of adult mice at 6 weeks and 1 year of age than postnatal day 7
mice. Two findings are important to note here. First, the gain of 5hmC level in a number of
neurodevelopmentally activated genes did not result in a concomitant loss of 5mC, arguing
that 5hmC is not solely the oxidation product of 5mC, and newly formed 5hmC can also
occur on non-CpG cytosines. Second, tissue-specific differentially hydroxymethylated
regions (DhMRs), for instance, cerebellum- but not hippocampus-specific 5hmC territories
associated with different ages, were identified. Interestingly, more than 6000 DhMRs found
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in 6-week-old but not P7 mouse cerebellum persists until 1 year of age, arguing that 5hmC is
a stable cytosine modification in brain tissues. Moreover, a RTT mouse model with MeCP2
knockout displayed increased 5hmC levels. This is consistent with the notion that MeCP2
serves as a protective mechanism by binding to 5mC, and its depletion leads to the
conversion of 5mC to 5hmC [32]. A recent study further purified distinct types of neuronal
cells and found that both 5mC and 5hmC show a strong cell type-related bias. These
investigators also identified MeCP2 as a 5hmC-binding protein, establishing a dual role for
MeCP2 in the orchestration of neuronal plasticity by coordinating different cytosine
modifications [31].

Based on the evidence presented here, one feasible proposal is that 5hmC has dual roles,
being either a DNA demethylation intermediate or a stable epigenetic marker. In some
developmental stages that require rapid DNA demethylation to reset the epigenome, such as
in zygote or primordial germ cells (PGCs), the available TET proteins (TET3 in zygote and
TET1 or TET2 in PGCs) rapidly convert 5mC to 5hmC and all the way back to
unmethylated cytosine, possibly coordinating with a number of their cofactors to ensure
proper gene expression and facilitate normal development [108–110]. The rationale behind
this epigenetic reshuffling during embryonic development likely accounts for the re-
establishment of a proper epigenetic state adapted from paternal and maternal genome to
ensure normal development, and the expression of Tet proteins appears to be the decisive
factor for 5hmC abundance and distribution. In postnatal development, however, some
5hmC derived from 5mC can be quickly turned back into unmethylated cytosine, whereas a
significant and increasing portion of 5hmC during aging persists for a long time, even
throughout the entire life span, to control long-term gene expression. Thus, the rationale for
stable 5hmC is possibly related to transcriptional control of specific genes that are important
for tissue-specific events. This model is particularly apt for neuronal cells, given the
extraordinarily high level of 5hmC in those cells, likely reflecting its unique function in
neuronal activity. However, there were no expression differences in Tet proteins seen during
postnatal neurodevelopment, suggesting additional co-factors or mechanisms may be
involved in regulating 5hmC level [32].

Requirements of 5hmC and the TET proteins in neurodevelopment and implications in
neurological diseases

Our understanding of the correlation between TET proteins, 5hmC, and neurodevelopment
is still in its infancy. Although the mechanisms of active DNA demethylation have been
speculated about for years, there are many factors involved in this process [111]. One of
these is growth arrest and DNA damage-inducible protein 45 (Gadd45) [112,113].
Knockdown of Gadd45a promotes global DNA demethylation, with a requirement for the
DNA repair endonuclease XPG [112]. Gadd45b was found in mouse hippocampus as an
early responder to various stimuli that promotes adult neurogenesis. Gadd45b induces
promoter DNA demethylation of several genes involved in neurogenesis, including brain-
derived neurotrophic factor (Bdnf) and fibroblast growth factor (Fgf) [113]. Although a
direct interaction between Gadd45 and TET protein has not been reported, it is possible that
TET proteins could be involved in Gadd45-mediated DNA demethylation, thereby affecting
neuronal development. Another enzyme family, isocitrate dehydrogenases (IDHs), catalyzes
oxidative decarboxylation of isocitrate to produce α-KG, which is required for TET
oxygenase activity [114]. IDH deletions or mutations cause global 5hmC loss and are
associated with numerous cancer types, including lower-grade diffuse astrocytic glioma
[115–118]. Three recent reports simultaneously demonstrated the direct interaction between
TET proteins and O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt). TET
proteins are required for the recruitment of Ogt to chromatin, and Ogt can then GlcNAcylate
host cell factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS
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complex, as well as trigger histone2B Serine 112 GlcNAcylation [119–121]. Interestingly, a
previous study showed overexpression of Ogt increases the percentage of neurons exhibiting
axon branching and the numbers of axonal filopodia [122]. In brain, Ogt is seen mostly in
neuronal cell bodies and processes, arguing for its functional importance in
neurodevelopment and neuronal activity [123]. The detailed molecular mechanisms of Ogt-
TET proteins, as well as 5hmc, in neurodevelopment and possibly neuronal diseases remain
to be determined.

One report looked at the dynamic change in TET proteins and 5hmC in neurogenesis and
found an increased 5hmC level during neuronal differentiation from neural stem cells [124].
5hmC is enriched in the gene bodies of activated neuronal function-related genes, and no
profound cytosine demethylation was seen, confirming 5hmC is stable in neuronal cells.
These investigators also show a negative correlation of 5hmC with H3K27me3 and its
effector Polycomb protein complex [124]. These data confirmed the critical role of 5hmC
and TET proteins in neurodevelopment, as also shown in Xenopus [125].

Conclusions and perspectives
The field of cytosine modifications is progressing rapidly, thanks to the development of
high-throughput sequencing methods that allow scientists to precisely investigate their
detailed distribution genome-wide, and the build-up of cytosine modification variants in
recent years has attracted vast attention. One of the most important future tasks certainly is
to understand the dynamic regulation, distribution, and conversion of cytosine
modifications. The evidence described in this review offers strong support for the idea that
cytosine modifications are one of the most decisive epigenetic mechanisms influencing
normal neurodevelopment, and its aberrant regulation can lead to a variety of neurological
disorders. Often, multiple epigenetic mechanisms, such as cytosine modification, histone
modification, or chromatin remodeling, cooperate and orchestrate the transcription state and
ultimately govern cell identity, tissue development, and its normal function [36,37]. Given
the high enrichment of 5hmC in the CNS, it will be interesting to explore the crosstalk
among various epigenetic mechanisms, especially the newly defined 5hmC, in neuronal
activity, and ultimately to develop novel therapeutic approaches for neurological disorders.
Therefore, we have our eye focused on 5hmC for the future.

Although there has been significant progress on 5hmC and TET proteins just since 2009, in
comparison with the relatively more well-developed 5mC field, several important questions
remain unanswered. For example, the exact correlation of TET proteins and 5hmC with gene
expression remains elusive and controversial. Proteomic analysis has revealed several TET-
binding proteins. Among these, Ogt [119–121], Nanog [126], and PARP1 [127] may be
involved in TET-mediated gene activation. In comparison, SIN3A could be serving as a co-
repressor for TET-mediated gene silencing [128] (Fig. 2). The dual roles of TET proteins in
transcription require further investigation. Tet1 or Tet2 knockdown in mESCs does not
appear to affect their self-renewal, although the global 5hmC level is reduced, and the
differentiation ability of the cells is skewed [126,128–130]. In addition, TET1 knockout
mice appear grossly normal, but with skewed differentiation toward trophectoderm in vitro
[131]. Recently, efforts have also been made to generate Tet1 and Tet2 double knockouts
(DKO). Surprisingly, viable and overtly normal DKO mice were obtained, although a
fraction of DKO embryos displayed midgestation abnormalities [132]. These observations
point to the possibility of a partially redundant role of different TET proteins. Future studies
are needed to uncover the precise roles of TET proteins and 5hmC in stem cell pluripotency
and differentiation.

Given the unusually high 5hmC level in brain tissues, it could be critical in maintaining
normal neuronal homeostasis and functions. Therefore, it is reasonable to speculate that
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there are aberrant 5hmC levels and distributions in neurological and neurodegenerative
disorders. In fact, a recent publication demonstrated genome-wide loss of 5hmC in HD, and
their DhMR-annotated genes are associated with canonical pathways related to neuronal
development and differentiation [133]. It will be very interesting to investigate the roles and
regulations of 5hmC, its writers, readers, and erasers in other neuronal disorders, as well as
normal neuronal activities.

The roles of 5fC and 5caC, including whether they are also stable in the genome, have gone
uninvestigated because they are not at all abundant in the genome, and we lack a specific
method to enrich and map them. We and others recently solved this issue by using either a
chemical labeling or antibody enrichment method to globally map these two cytosine
modifications. 5fC has been found at poised enhancers among other gene regulatory
elements [134], as well as in repetitive elements [135]. Future work will be needed to
address their precise role in gene expression.

Evidence accumulated in the past decade has revealed the critical role of DNA methylation
in neurological diseases; however, a direct correlation between TET proteins, 5hmC, and
neurological diseases has not been reported, although we now know they clearly play a role
in leukemia [114,136–138] and melanoma [117]. In addition, unlike DNA methylation and
many histone modifications, chemical compounds that can manipulate the 5hmC level in
vivo have not been systematically explored, despite isolated reports that ascorbate (vitamin
C) may be one of them [139]. Establishing such a compound library would be a major
benefit for future clinical trials on 5hmC-related neurological diseases.
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Figure 1. Molecular mechanisms for cytosine modification-related pathogenesis
a. Mutations of DNMT1 or DNMT3 reduce 5mC levels and influence gene transcription or
genomic stability. b. Mutations of MBPs reduce their 5mC binding affinity and trigger
severe neurological diseases. c. The expanded CGG repeats on mutated FMR1 genes could
possibly be methylated and inhibit FMR1 transcription. d. Mutations of TET proteins or
their co-factors, such as IDH, could reduce the global 5hmC level, as seen in cancer or HD.
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Table 1

Summary of key proteins discussed in this review and their related diseases or neurological phenotypes.

Categories Molecular mechanisms Related diseases or phenotypes References

DNMTs DNMT1 mutations Hereditary sensory and autonomic neuropathy type 1
(HSAN1); autosomal dominant cerebellar ataxia,
deafness, and narcolepsy (ADCA-DN).

[54–56]

DNMTs DNMT3a functional mutant or
deletion

Acquisition of developmental mental defects; impaired
postnatal neurogenesis.

[46]

DNMTs DNMT3b mutations The immunodeficiency, centromere instability, facial
anomalies (ICF) syndrome.

[51],[57–58]

MBPs MBD1 deletion Reduced neuronal differentiation and increased
genomic instability.

[64–65]

MBPs MeCP2 mutations or
overexpression

Rett syndrome (RTT); mental retardation, autism, and
psychiatric symptoms.

[66–78]

Methylatable CGG repeats Potential possibility of CGG
methylation on FMR1 genes

Fragile X mental retardation syndrome (FXS); fragile
X tremor ataxia syndrome (FXTAS)

[51], [88–91],

TETs TET2 mutations Leukemia; loss of 5hmC [114], [135–137]

5mC excision Gadd45b deletion Induced proliferation of NPCs and dendritic growth of
newborn neurons; loss of 5hmC

[113]

TET co-factors IDH deletion or mutation Various cancer types; loss of 5hmC [115–118]

TET co-factors Ogt overexpression Elevation of neurons exhibiting axon branching and the
numbers of axonal filopodia

[122]
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