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Abstract

Though most behavioral traits are moderately to highly heritable, the genes that influence them are
elusive: many published genetic associations fail to replicate. With physical traits like eye color
and skin pigmentation, in contrast, several genes with large effects have been discovered and
replicated. We draw on R.A. Fisher’s geometric model of adaptation to explain why traits of
interest to behavioral scientists may have a genetic architecture featuring hundreds or thousands of
alleles with tiny individual effects, rather than a few with large effects, and why such an
architecture makes it difficult to find robust associations between traits and genes. In the absence
of strong directional selection on a trait, alleles with large effect sizes will probably remain rare,
and such a lack of strong directional selection is likely to characterize most traits currently of
interest in social science. We evaluate these predictions via a genome-wide association study
(GWAS) that carefully measured over 100 physical and behavioral traits with a sample size
typical of candidate gene studies. While we replicated several known genetic associations with
physical traits, we found only two associations with behavioral traits that met the nominal
genome-wide significance threshold. We use the theory and findings to discuss (1) the challenges
for social science genomics, particularly the likelihood that genes are connected to behavioral
variation by lengthy, nonlinear, interactive causal chains; (2) the prospects for dealing with these
challenges; and (3) the inherent tradeoff between two ways of meeting these challenges:
increasing sample size and improving phenotype measurement.

Introduction

People differ in their intelligence, personality, and behavior, and a century of research in
behavioral genetics leaves little doubt that some of this variation is caused by differences in
their genomes.12:3 Nonzero (and sometimes substantial) heritability of psychological traits
has been consistently established in twin, adoption, and family studies that have often been
massive in size. But beyond establishing that genes matter, such studies say little about the
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detailed genetic architecture of psychological traits, i.e., how many genetic polymorphisms
affect a trait, how the polymorphisms interact, what they are, and what they do.

The recent advent of affordable genome-wide association studies (GWAS) offers the
exciting opportunity to understand the genetic factors that influence psychological trait
variation with far greater precision. It has the potential to uncover some of a given trait’s
genetic architecture, including the number, genomic locations, average effects, and allele
frequencies of the DNA variants that affect the trait. Even an incomplete understanding of a
trait’s genetic architecture could prove a boon to social scientists for at least four reasons.

First, the presence of genetic variants can be detected with high reliability. Thus, they may
constitute direct measures of constructs that were previously regarded as only latent. For
example, there is some evidence that a person’s genotype for the SNP in FTO associated
with body mass index (BMI) may indicate a preference for certain kinds of high-calorie
foods,? and one might speculate that other genes may affect how much body weight is
produced from a person’s caloric intake. These genetic variants could then be used as
variables of interest, or as controls, in other models, testing models of the causation of
obesity that formerly could only appeal loosely to “genetic factors.”

Second, the discovery of genetic associations may identify or clarify the actual biological
mechanisms that underlie social and health behaviors. For example, a mechanistic role for
the hormone oxytocin in trust-related behavior has been suggested by findings that variants
in the oxytocin receptor gene (OXTR) are associated with differences in performance in a
behavioral-economic trust game (albeit with mixed results so far).” And just as in
medicine, where genetic discoveries have suggested new pathways for understanding and
treating disease (e.g., Crohn’s disease®), genetic discoveries may help social scientists
decompose crude concepts like “risk aversion” and “time preference,” both of which play
roles in health behaviors, into biologically meaningful subcomponents.

Third, under very special circumstances, genetic variants could be used as instrumental
variables that would identify causal relationships from non-experimental data. For such
analysis to be valid, the allele must reliably and exclusively affect a specific biological trait
(and no other biological traits). If these strong conditions are met, then one can use the
random assignment (during meiosis) of each person’s genotype at that allele as a natural
experiment to test the hypothesis that the biological trait, in turn, causes variation in some
behavioral phenotype. For example, Chen and colleagues showed that SNPs in ALDH?2 that
are known to increase alcohol metabolism are associated with decreased blood pressure.?
This provides evidence that alcohol consumption in fact causes an increase in blood pressure
—under the crucial, and perhaps implausible, condition that those SNPs are assumed not to
also affect blood pressure through some other channel. Other studies of this type have been
published,10 but it seems likely that the circumstances in which the instrumental variable
approach can work are rare.

Fourth, knowledge of individuals® genotypes could help in targeting social-science
interventions to those who stand to benefit from them the most—an application of concepts
from personalized medicine to public health and policy. Such a benefit is particularly likely
to help children, since their abilities and preferences are less developed and harder to
measure. For example, children with genotypes that confer a susceptibility to dyslexia might
be offered personalized educational resources from a very early age.

The leap in precision from GWAS, compared to twin studies, promises to help not just
working social and behavioral scientists but anyone interested in the evolutionary history
and adaptive pressures that shaped the human species and its variation. Not only does an
individual’s genome provide a partial recipe for the development of his or her unique
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phenome (set of phenotypes) forward in time, but our species’ array of genomic data
provides a trace of our collective evolutionary history backward in time. For example, once
it was discovered that mutations in the gene FOXP2 could cause a severe developmental
deficit in speech and language, comparative genomic analyses showed that this gene’s
sequence had changed at least twice since the separation of humans and chimpanzees from
their common ancestor, that it has been a target of natural selection rather than a legacy of
random drift, and that it is shared with Neanderthals—all relevant to venerable and hitherto
nearly unresolvable debates on the evolution of language.

Despite the extraordinary promise of extending genetic research to behavioral traits, results
so far of studies that have searched for genetic variants associated with these traits have been
disappointing: No strong, replicable associations have been discovered. Most of the claims
of genetic associations with such traits have turned out to be false positives, or at best vast
overestimates of true effect sizes. Chabris et al. found that across three independent samples,
only one of twelve published associations of particular genes with general intelligence
replicated, and this one replicated in only one sample out of three.11 Worse, the new samples
were considerably larger than the originals, which suggests that all of these reports were
probably false positives. Similarly, Benjamin, Cesarini, Chabris et al. found a SNP
associated with educational attainment and cognitive function, but could not replicate it in
three independent samples.* Benjamin et al. likewise found no significant associations with
any of a set of traits involving economic and political behavior.# Finally, Beauchamp et al.
conducted a GWAS of educational attainment (i.e., years of education completed) and found
no hits that met conventional genome-wide significance levels; those that approached
significance did not replicate in a second sample.12

Difficulty in finding specific genes that correlate with traits that are known to be heritable is
not unique to the social sciences. It is also a problem in GWAS of medical traits such as
psychiatric diagnoses and susceptibility to common diseases, and even with certain physical
traits, such as height. Table 1 summarizes the heritabilities estimated from twin studies of
medical, physical, and social science traits, based on three review articles and some recent
publications in behavioral economics; it shows that the heritabilities of physical and
psychological traits are similar and substantial.

The discrepancy between the high heritability of both physical and psychological traits, and
the rarity of replicable discoveries of particular genes for those traits, has been dubbed the
problem of “missing heritability”.13 One possible resolution of this paradox is that each of
the genes associated with a trait explains only a minuscule fraction of the total genetic
variance—and hence these genes are difficult to identify statistically—but there is a huge
number of such genes, and the heritability estimate reflects their aggregated effects.

Zuk et al. suggested that the discrepancy between heritability estimates from traditional
biometrical studies of families and GWAS results thus far comes from the fact that
biometrical studies will overestimate heritability if genes interact non-additively. 14 If this
suggestion is correct, then it may be that GWAS approaches that do not grapple with the
combinatorial explosion posed by the search for gene-gene interactions will fail to produce
interesting results. This criticism of biometrical studies, however, only applies when such
studies focus on only one type of kinship (e.g., twins reared together). Many human traits,
including height and 1Q, have been studied biometrically using many different kinds of
kinships (twins reared together and apart, parents and offspring living together and apart,
adoptive relatives who live together but are biologically unrelated). When these results are
considered collectively, they converge on relatively large heritability values.
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The evidence base for claims about heritability has been strengthened by a recently
developed way to estimate heritability that examines genetic variation directly. The
genomic-relatedness-matrix restricted maximum likelihood (GREML) techniquel® uses all
of the genotypic data from SNP arrays to estimate, for each pair of participants in a dataset,
their degree of genetic similarity (relatedness), and then correlates genetic relatedness with
phenotypic similarity across all of the pairs. Note that this technique does not require the
participants to be related in the conventional genealogical sense of being siblings or cousins.
It exploits the fact that all individuals within a population are distantly related, and that the
level of relatedness varies considerably among pairs of people. For example, Davies et al.
reported a GREML analysis with about 550,000 common SNPs and 3000 subjects in which
about 45% of the variance in general cognitive ability could be directly explained by the
SNP variation;16 Chabris et al. replicated this finding with a smaller sample.11 In the
original application of GREML, Yang et al. showed that 45% of the variance in height
across 4000 subjects could be explained by ~300,000 common SNPs.15 These estimates
leave room for unmeasured genetic variation (e.g., uncommon SNPs, other non-SNP
polymorphisms) to explain additional heritability.

In this context, a “common” variant is a polymorphic site where the minor allele shows a
frequency exceeding a certain threshold (say .05), whereas a “rare” variant is a site where
the frequency of the minor allele falls below this threshold. The GREML results finding
substantial heritability owed to common variants tend to discredit the hypothesis that
missing heritability arises because common variants typically studied in GWAS are merely
surrogates for rare variants of powerful effect that, if only they could be discovered, would
account for much more heritability.1” Furthermore, Wray et al. provide a thorough analysis
of the available GWAS results and show that a model relying exclusively on rare causal
variants cannot account for the data.18 It is important to note that, under any reasonable
evolutionary model, most genetic variants affecting a given phenotype may be rare. All else
being equal, however, common variants contribute more variability than rare variants, and
thus it is not at all inconsistent to expect that common variants will be responsible for a
substantial portion of heritability.

Though medical and behavioral geneticists are becoming increasingly sympathetic to the
many-common-genes-of-small-effect answer to the missing heritability question, it is still
not known w#hy such a diffuse polygenic architecture should be typical of quantitative traits.
Nor is it known what might account for the exceptions that have been found.

A simple possible explanation invokes the length of the causal chain from genetic to
phenotypic variation. For example, variation in pigmentation (e.g., of eyes, skin, and hair)
arises from the number of melanosomes produced, as well as their size and shape, and the
type of melanin synthesized.1® These biochemical differences follow directly from changes
in the composition or regulation of gene products, which in turn are strongly influenced by
differences in DNA sequence. Indeed, a single SNP in HERC2 is largely responsible for
blue eye color.20

In contrast, changes at the molecular and cellular level must be remote from their ultimate
effects in most behavioral phenotypes, and even from many physical phenotypes such as
body mass index (BMI). Consider that BMI may depend on what a person likes to eat, how
often he eats, how much he exercises, details of his metabolism, and a host of other complex
behaviors and physiological processes. Similarly, given that the physical basis of
psychological attributes such as cognitive ability, conscientiousness, impulsivity, and risk
aversion resides in intricate patterns of neural circuitry and interlocking biochemical
feedback loops, we should perhaps expect any single genetic variant affecting such an
attribute to contribute only a small fraction of the total variation in the phenotype.
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Here we offer a second explanation (which is nof mutually exclusive with the first), which
invokes the differential action of natural selection. More than 70 years ago, R.A. Fisher
proposed a geometric model of adaptation?! that may be summarized in Figure 1, which
depicts two quantitative traits as the vertical and horizontal dimensions on a two-
dimensional space (representing a slice of the vast multidimensional space of possible
phenotypes). Point A represents the current mean phenotype of the species (in this example,
a low value of trait 1 and an intermediate value of trait 2). Point O represents the optimum
favored by natural selection. Suppose that A was once optimal, because selection had
pushed the population to its optimum value, but that O no longer coincides with A because
an abrupt environmental change occurred that demands a different (in this case higher) value
of trait 1.

What would have to happen for selection to adapt the organism to the new optimum? One
possibility is a new mutation arising in a single individual and, if beneficial, reaching
fixation (100% allele frequency) in the population. In the model the fixation of a mutation
corresponds to adding a vector of random direction to the population’s current trait-space
position at A. This feature of the model captures two key observations: (1) mutations have
no inherent tendency to increase the fitness of their bearers, and (2) any single mutation may
affect several distinct traits, and therefore this mutation could change the population’s mean
values of both traits 1 and 2. The subset of new phenotypes that would result in an increased
level of adaptation is depicted in Figure 1 as the interior of the circle centered on O,
representing all the combinations of trait values that are closer to the optimum (using the
Euclidean distance metric).

The diagram also helps one understand the fates of mutations with different effect sizes.
Note that any mutation whose effect on the traits exceeds the diameter of the circle would
not be fixed, because it leaves the population farther from the optimum than when it started
(point A). Selection would simply favor the status quo. In general, the smaller the mutation,
the more likely it is to be beneficial, because there are many small moves that can be made
from A that stay within the circle, but few very large ones—most large moves will
overshoot the circle or move away from it. The fact that a smaller move is more likely to
take the population into the circle should already be evident from Figure 1. As the number of
traits/dimensions increases to larger values (which cannot be depicted in a two-dimensional
figure), the greater ease with which smaller moves take the population into the
“hypersphere” becomes quite dramatic.”

Fisher argued that mutations of large effect are relatively unimportant in evolution, since
they will rarely move a population closer to O. And the closer to the optimum the organism
already is, the less likely large mutations are to be beneficial. Fisher draws an analogy to the
process of focusing a microscope. When a microscope is already close to the correct
focusing point, a small random perturbation of the knob is likelier than a larger perturbation
to bring it closer to exact focus.

We will now expand Fisher’s argument to explain the puzzling contrast between some
physical phenotypes like skin or eye color on the one hand and social science and medical
phenotypes on the other. Suppose that trait 1 was previously under strong stabilizing
selection and thus has negligible genetic variation at the time of the environmental shift that
makes O the new optimum (this state of affairs would correspond to a tight clustering of
trait 1 values around point A). Since the rate of the approach to the optimum via existing
genetic variation (i.e., variation that does not result from de novo mutations) is bounded

*If the number of traits (n) is large, then the probability that a random mutation of length rtakes the population into a hypersphere of
radius zis 1 — ®(x), where @ is the cumulative distribution function of the standard normal distribution and x= ~/n/(22) [ref. 21].
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above by trait 1’s heritability (per the breeder’s equation),22 a population with negligible
genetic variability in that trait is unlikely to adapt quickly towards O unless a mutation of
large effect arises and reaches fixation—e.g., a mutation that took the population to A’,
where its new value for trait 1 is much closer to the optimum.

Alternatively, suppose that stabilizing selection on trait 1 had been much weaker, permitting
the buildup of substantial genetic variation (leading to a wide scatter of trait 1 values around
A). In this case a mutation of large effect is far less likely to become common through
positive selection. At the same time that this mutation is struggling to increase its frequency,
the existing genetic variation is enabling the population to adapt toward O. If O lies within
the current range of genetic variation (which is true for trait 1 under the assumption of the
more variable population in Figure 1) and selection is even moderately strong, then the
population mean shifts from A to O even without the arrival of a mutation of large effect. As
the population evolves, the diameter of the circle bounding all points of higher adaptation
continuously shrinks. Once the magnitude of the mutation that would have taken the
population to A’ exceeds the diameter of the circle, the mutation is disfavored and is very
likely to be eliminated from the population.T

To complete our explanation, we need to assume that the polymorphic sites contributing to
existing genetic variation tend to be small in effect. Even under weak stabilizing selection,
variants of large effect experience greater selection pressure and consequently are more
likely to be found at a low minor allele frequency.2>-27 This implies that any common (i.e.,
high-frequency) variants contributing to standing genetic variation will typically be small in
effect. Thus, we might expect many loci of small effect to explain most of the heritable
variation underlying a quantitative trait—unless there was recent selection for the trait that
was strong relative to the initial variability. If a trait turns out to be associated with many
genetic loci of small effect and few or no loci with large effects, then we would have
evidence that this trait has not experienced such selection.

In the remainder of this paper, we will show how this evolutionary analysis can help
epidemiologists and social scientists make sense of the genetics of behavior in the era of
rapidly expanding genome scans. We report the results of our own GWAS of more than a
hundred human phenotypes, both physical phenotypes such as body size and pigmentation,
and behavioral phenotypes of great interest to social scientists, such as general intelligence,
memory ability, verbal fluency, impulsivity, risk aversion, fairness, and utilitarianism. We
measured a wide variety of cognitive, personality, and behavioral-economic traits so that we
could generalize across types of traits and compare the behavioral to the physical
phenotypes. In other words, without sampling freckles, eye color, and height in a single
study, we could not make general claims about physical traits; without measuring religiosity,
memory, and impulsiveness in a single study, we could not make general claims about
behavioral traits; and without measuring both categories we could not compare them. To our
knowledge this study is the first to examine associations between a genome-wide panel of
single-nucleotide polymorphisms (SNPs) and such a broad spectrum of phenotypes; almost

A numerical example may help to illustrate our argument. Suppose that the fixation of a new mutation is the only means for the
population to increase its level of adaptation—that is, there is initially no genetic variation along the selected direction. Then if the
selective advantage of the new mutation is 5%, it will take about 500 generations to increase from a frequency of .001 to .999 [ref.
23]. A selective advantage of roughly this magnitude seems reasonable for many of the mutations affecting pigmentation. Now
suppose that the population contains substantial genetic variability in the trait. In particular, suppose that the trait has heritability 100%
and follows a standard normal distribution. If we stipulate that the old and new optima are separated by 2 phenotypic units (and that
each unit continues to correspond to a 5% change in relative fitness; i.e., a 5% gain in offspring per generation), then standard
quantitative-genetic results23,24 imply that the population will reach the new optimum in 40 generations. If the preexisting variants of
small effect have pleiotropic effects, the adaptation time may be somewhat longer. Nevertheless, in a race between the fixation of a
major mutation and polygenic adaptation, the latter will often have a profound advantage. Once polygenic adaptation has brought the
population close to the new optimum, the major mutation will become disfavored while still at a low frequency.
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all previous association studies of behavioral traits have examined only one or a few
candidate genes and phenotypes. In addition to including both physical and behavioral traits,
the study examined traits that are expected to be both monogenic and polygenic. An
additional innovation is that the behavioral phenotyping was intensive, relying not just on
standardized paper-and-pencil tests but on individual computerized tasks, sometimes
administering hundreds of trials to quantify a single trait. This step is essential because crude
measurement of behavioral traits could lead to false negatives and thus would not help
explain the puzzling failure to find associated genes. Thus, each of our 419 participants was
tested individually in a laboratory session lasting an average of 3.5 hours.

To preview the results: Despite an adequate sample size for detecting large effects and
despite high-precision measurements, we found few associations between SNPs and traits at
an appropriately stringent significance threshold. Since many of our measured phenotypes
(including our behavioral phenotypes) are known to be heritable,28 the absence of strong
associations in our data indicates that—aside from pigmentation—both physical and
behavioral traits are mainly affected by numerous genes with small effects.

After presenting the results, we discuss their implications for future genetic association
studies of behavioral traits, which are likely to become ever more common as the cost of
genotyping and sequencing declines. In addition to our analysis of the evolutionary genetics
of heritable variation, we introduce two other key issues in designing and interpreting such
studies: the effects of selection bias for participant inclusion in such studies, and the
tradeoffs between measurement error and statistical power in selecting simple, fast,
inexpensive assessments of a traits versus the sort of complex, time-consuming, and
potentially expensive assessments that we conducted.

Participants were recruited, and data and samples were collected, at two sites: Harvard
University in Cambridge, MA, and Union College in Schenectady, NY. Efforts were made
to recruit from the surrounding communities a more representative sample than the typical
college student population: Paper fliers were posted at various public locations,
advertisements were placed in free newspapers and on Craigslist, and the study was made
available to the Psychology Department Study Pool at Harvard.

Participants first completed an online screening questionnaire that included items regarding
age, medical history, and grandparental ethnicity. Participants who were younger than 18 or
older than 45, or who reported a history of bipolar disorder, schizophrenia, or severe head
trauma were excluded. To help control for ancestral confounding of genotypes and trait
levels,2? we recruited a sample of predominantly Western European ancestry, which was
ascertained at the screening process by asking potential participants to list the country of
origin or ancestry for each of their biological grandparents. A total of 419 participants
provided complete, usable genetic and phenotypic data.

Eligible participants were invited to either the Harvard or Union lab for a data collection
session lasting typically from three to four hours. Participants gave informed consent after
the nature of the procedure had been fully explained to them. A diverse set of cognitive,
personality, economic, attitude, demographic, and physical phenotypes were collected via
computerized tasks, paper-and-pencil surveys, and face-to-face interaction. DNA was
collected via two mouthwash samples in the lab, and then extracted and genotyped
elsewhere. Population stratification was investigated and controlled for in all genetic
analyses reported here. We used the program PLINK for genotypic data cleaning and
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analyses.30 (See for a complete list of phenotypes, descriptions of select phenotypes, and
details of DNA collection, extraction, genotyping, and analysis of population stratification.)

Linear regression was performed to test for purely additive association between SNPs and
all polytomous and continuous traits. Logistic regression was performed for dichotomous
traits. We chose the standard genome-wide significance threshold of 5x1078 for declaring a
SNP-trait association to be statistically significant.31 Under a frequentist approach aiming to
minimize the chance that even a single declared “hit” is a false positive, the large number of
examined traits would require an even more stringent threshold. However, we follow the
suggestion of the Wellcome Trust Case-Control Consortium,32 who adopt a quasi-Bayesian
justification for retaining the standard genome-wide significance threshold; it maintains a
constant ratio of true to false positives as the number of markers and traits increases (so long
as statistical power and prior probabilities for any given association do not change).
Moreover, since our primary goal is to compare results across phenotypes, what is most
important is to have a common threshold across phenotypes, and adopting the standard
threshold maximizes comparability of our results with other published results.

For any SNP showing an association with a trait at the significance threshold 5x1078, we re-
ran PLINK with our cognitive ability composite and NEO Openness, Neuroticism, and
Agreeableness factor scores as additional covariates in an effort to control for selection
bias.33 Selection bias may be an underappreciated contaminant in gene-trait association
studies.3# To understand the bias, consider this analogy: Suppose that a driveway will be wet
in the morning as the consequence of two possible causal mechanisms: whether it rained last
night, and whether a sprinkler was activated (Figure 2A). Suppose also that the two causal
variables are independent; that is, taking all days into account, there is no correlation
between whether it rains and whether the sprinkler turns on. If we only consider mornings
on which the pavement is wet, however, we will spuriously conclude that the two causes are
negatively correlated. For instance, if we see that the pavement is wet and we know that it
did not rain last night, we can be confident that the sprinkler was activated. We only see the
true non-correlation when we consider all days. Suppose that the probability of rain and the
probability of sprinkler activity are both 0.5 and are independent. If one checked the
driveway every morning, wet or dry, then one would observe rain and no sprinkler a quarter
of the mornings, sprinkler and no rain a quarter of the mornings, both a quarter of the
mornings, and neither a quarter of the mornings—the lack of association is apparent. Now
suppose one checked only the mornings with wet driveways. On a majority of the mornings
(two-thirds), one would discover either rain with no sprinkler or a sprinkler with no rain. In
other words, one would find a negative correlation, but only because those mornings that
would have diluted the correlation to zero were excluded. The basic principle emerging from
this example is that if one inadvertently conditions an observation on the common effect (is
the driveway wet?) of multiple causes (rain or sprinkler), one can counterfactually create the
illusion of a non-zero correlation among the causes.

This same principle applies in GWAS. Suppose that high levels of either trait 1 or 2 are
independent causes of a person ending up as a participant in our study, either because the

*An example using continuous variables may also help to illustrate the concept of selection bias, and its generality. Suppose that
intelligence and athletic ability (both continuous traits) are uncorrelated in the population at large. However, if we limit our
observations to the students attending a university that uses both of these attributes as admissions criteria, then we will find that
intelligence and athleticism are negatively correlated. If we encounter a student at this university with low intelligence, then it
becomes more probable that the student is a good athlete. Otherwise the student would likely not have been admitted. This negative
correlation between intelligence and athleticism among admitted students holds even if admission is not a deterministic function of
these two attributes; other attributes (e.g., musical talent) and “random noise” may play a role. Verma and Pearl provide a rigorous
mathematical proof that conditioning on a common effect induces dependence among the causes. S The apparent dependence does not
have to be a negative correlation as in these examples; an apparent positive correlation would result if, say, students high in both
athleticism and intelligence were especially likely to be admitted.
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trait affects whether the person decides to volunteer or it affects whether we decide to
include his or her data (Figure 2B). Then we will spuriously find any gene that affects trait 2
to be associated with trait 1, even if trait 1 is not at all affected by genetic variation. That is
because among people who participate in the study, traits 1 and 2 will appear to be
(negatively) correlated, and therefore a cause of scoring high on trait 2 will appear to also be
a cause of scoring low on trait 1. Controlling for the other traits affecting participation may
not fully solve the problem (even if we know what these traits are), because the trait of
interest may itself be connected to the other participation-related traits in a complex causal
graph, and therefore the decision to condition linearly on the other traits could in principle
introduce further bias. In practice, however, conditioning on traits that may affect study
participation is likely to be a conservative procedure. For example, if one trait mediates the
genetic effect of another, then controlling for the mediating trait will suppress the genuine
effect of the genetic variant on the downstream trait of interest, and therefore is unlikely to
generate additional false positives.

We performed a numerical simulation to illustrate the extent to which selection bias may
distort GWAS results. We stipulated two initially independent traits affecting participation
in the study; the sum of an individual’s zscores on these traits needed to exceed 3 in order
for the individual to be in the pool of participants. This corresponds to slightly less than two
percent of the general population being available to participate. We believe that this
simulated situation is not so farfetched as a model of some ongoing projects (e.g., the
Personal Genome Project;36 23 and Me37). We stipulated that each trait has a heritability of
0.50 and is affected by loci all with allele frequency 0.50 and average effect (regression
coefficient) 0.05; each causal locus thus account for 0.25% of the variance in its trait. The
results were striking: The estimated effects of the true causal variants with respect to a given
trait were centered at 0.03—off by 40%. Similarly, the “effects” of the variants on the wrong
trait (of the two traits, the one that the variants did not affect) were centered at —0.02. In a
situation where it is important to distinguish miniscule effects from zero, a spurious effect of
0.02 cannot be considered trivial. Although more thorough numerical and analytical
investigations are certainly worthwhile, this example illustrates that researchers performing
GWAS of behavioral traits should be aware of the consequences of selection bias.

Table 2 includes the sample statistics for the Multidimensional Attribute Battery (MAB) and
NEO personality inventory, two instruments used in our study that have detailed population
norms. Compared to the norming samples for the MAB, our participants show much higher
means and smaller standard deviations, suggesting that cognitively able individuals were
more likely to participate in the study. The relationship between the NEO personality traits
and study participation is more complex. Our study participants show conspicuously higher
levels of Openness than the norming samples. The trait of Openness is defined by a
willingness to examine new ideas and try new activities, and thus it is plausible that higher
levels of this trait may be a cause of volunteering for scientific research. Our study
participants also show consistently lower levels of Neuroticism and higher levels of
Agreeableness. (Interestingly, our study participants are more variable than the norming
samples, perhaps because people with higher cognitive ability are more variable in their
responses to personality questionnaires.38) Furthermore, the fact that students were
overrepresented among our participants indicates that the selection bias may have already
operated extensively at an earlier point. That is, even if we could have taken a random
sample of all students attending the top 200 colleges (say), the process of college admissions
would still have exerted considerable selection bias distinguishing this special population
from its larger age cohort. As a reasonable attempt to control for selection bias, then, we will
use general cognitive ability, Openness, Neuroticism, and Agreeableness as additional
covariates whenever a novel SNP-trait association shows a significant p-value. Without
doing this, we might spuriously find, for example, that a gene associated with greater

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chabris et al.

Results

Page 10

Openness was also negatively associated with all the traits that are correlated with
Openness, such as political liberalism (see below).

As can be seen in Table 3, we found at least a marginal signal for all SNPs previously found
to be associated with eye color, hair color, freckling, and skin color 19:37:39-42 (with the
exception of one study that digitally quantified eye color3) and that were either present in
our cleaned set of genotyped SNPs or represented by a proxy SNP with an r2 > .60. Note
that despite our relatively small sample size, the effects of the intronic SNP rs12913832 in
HERC2 on eye and hair color were statistically significant at the stringent, standard GWAS
threshold.

A meta-analysis has identified over 180 genomic regions containing a variant affecting
height.** Due to the weak effect of each individual variant, however, we did not replicate
any of these loci with genome-wide significance. However, of the 94 loci either present in
our set of SNPs or represented by a proxy, 65 loci had estimated effects with the correct sign
and 29 did not (binomial test p < .0001). There is also an enrichment of low p-values;
whereas only nine or ten p-values less than .10 were expected under the null distribution, we
observed 16 (significantly more, according to a binomial test, p < .05). These trends are
consistent with most of these loci being true positives despite our inability to extract a strong
signal from them. A selection of the height variants showing marginal significance in our
data is shown in Table 4A, along with the nonsynonymous SNP rs1815739 in ACTN3 that
has been found to affect athletic performance.*®

Another recent meta-analysis has identified 32 genomic regions containing a variant
affecting body mass index (BMI).46 BMI, even more than height, seems to be affected by
many loci of small effect. Consistent with this view, 11 of the 17 known BMI loci
represented in our data had estimated effect sizes of the correct sign; however, the wrong-
signed loci were the most statistically significant.

Table 4B shows our results for a selection of SNPs previously reported to be associated with
general cognitive ability,4’-51 personality,>2:>3 working memory,>* and episodic memory,>®
all of which we measured extensively. We observed little evidence for these associations in
our own data. In concordance with a previous study,?® we failed to replicate a reported
association between a common SNP in the gene KIBRA and episodic memory, despite a
putative functional validation in the original study both by an analysis of gene expression
and by fMRI.5° This suggests that most of the SNPs reported in earlier association studies of
behavioral traits may either have been false positives or have overestimated effect sizes.
Applying a threshold of 5x1078, we did not observe any loci significantly associated with
the traits in Table 4B.

We did find a significant association between political conservatism and rs10952668 (Table
5). This SNP lies in LOC642355, a pseudogene on chromosome 7. Not surprisingly, the
SNP also showed an association with the highly correlated trait of Democrat vs. Republican
(B =.260, p<.02). We also observed a significant association between rs1402494, which
lies in a gene desert on chromosome 4, and gambling frequency. These are the only two
novel associations that reached genome-wide significance, and besides these, only eye color
and hair color also produced significant associations.

Interestingly, the SNP associated with political conservatism, rs10952668, also showed
marginal evidence for association with the personality traits Openness (f = .142, p< .06)
and Agreeableness (f = .130, p<.08), which are correlated positively with political
liberalism.57 Since the correlation is positive, contrary to findings from political psychology
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that conservatives tend to be less Open and Agreeable (in the sense of compassionate®8),
these results raise the possibility that the association between rs10952668 and conservatism
may be attributable to selection bias rather than the gene causing the personality traits
typical of conservatives. (Since to our knowledge this potential selection artifact has not
been discussed in the genetic epidemiology literature—although it has parallels in the effects
of natural selection on linkage disequilibrium—uwe explore it at some length in the
Discussion below.) After we added general cognitive ability, Openness, Neuroticism, and
Agreeableness as covariates in an attempt to control for selection bias, the association of
rs10952668 and conservatism diminished and fell short of significance. The association of
rs1402494 and gambling frequency appears robust against our attempts to control for
selection bias. We conclude that both of these associations must be replicated in much larger
samples before they are accepted as true positives.

Discussion

The contrast between pigmentation and the other phenotypes examined in this study is
striking (Tables 3-4). Given a significance threshold of 5x1078, our study had statistical
power approaching 0.80 to detect any locus accounting for more than 10% of the variance in
any trait. We retained some power (0.12) for loci accounting for as little as 5% of the
variance. The fact that we measured so many phenotypes implies that we should have
obtained several hits if a large proportion of the phenotypes were indeed affected by such
loci. Because we only obtained at most two new hits, however, loci with effects of this
magnitude on the non-pigmentation traits we studied must be uncommon. In agreement with
previous studies,11:53:59.60 we conclude that cognitive ability, personality dimensions, social
attitudes, and most other traits of interest to behavioral scientists are affected by numerous
loci of small effect. In this respect the behavioral traits we studied resemble height and BMI
rather than pigmentation.

How can we explain the differences in genetic architecture between the pigmentation traits
and the other physical and behavioral traits? One possibility is that the architecture hinges
on the length of the causal chain between gene and phenotype. Pigments, after all, are
molecules, and you can change a molecule, thereby giving a person a different eye color, by
changing a single gene. It’s not as easy to make a person more intelligent, utilitarian,
altruistic, or impulsive by changing one gene, owing to the greater complexity in the
mechanisms that lead a person to be intelligent or altruistic in the first place. With gross
physical traits like BMI and height, the problem may be that there are foo many ways that
genes can directly affect the phenotype; indeed, it may be hard for a genetic change notto
affect them, just as most changes to the features of (say) a car or laptop computer have
consequences for its size and weight, which engineers have to trade off with many minute
compensations.

The other explanation invokes the evolutionary model of the causes of genetic architectures
we outlined earlier, which relates the effect size of genetic polymorphisms to the magnitude
and recency of changes in the adaptively optimal level of the trait. After the loss of body
hair in our lineage, pigmentation probably came under strong stabilizing selection in our
ancestors, who needed protection from the African sun. More recently, the out-of-Africa
migrants ancestral to Europeans and East Asians experienced a sudden and drastic shift in
the optimal level of pigmentation—perhaps because of the need to sustain cutaneous
synthesis of vitamin D in northern climates,5! although others have implicated sexual
selection or as-yet unidentified evolutionary pressures.52-64 In any event the result was that
several depigmenting mutations of large effect increased rapidly in frequency.%5-67 Table
4A lists those mutations that have not yet reached fixation and are thus still polymorphic in
Europeans.
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No such recent environmental change—one with clear consequences for the direction and
magnitude of the optimum—is apparent for other phenotypes such as height, BMI, and the
behavioral traits we examined. Though differences in climate and food availability may
select for different optima in body size and shapes, they fluctuate rapidly across space and
time and may not show the consistent selection pressure that changes in latitude, altitude,
and cloud cover apparently exerted on pigmentation. Intelligence is a highly general and
universally adaptive trait, which can translate into fitness benefits (via successful problem-
solving) in any environment. If human populations have long been at the optimum, then
existing mutations are likely to be small in effect. Such variants are likely to be small in
effect even if the optimum has changed over time—as may have happened in the cases of
intelligence®.69 and religiosity’%>—so long as the change occurred very gradually. In
particular, intelligence may be a highly general and universally adaptive trait, responding
more to coevolutionary pressures exerted by language and sociality than to any sudden
change in the physical environment. Personality traits, too, are far less predictably correlated
with physical environments than are pigmentation traits.

Evolutionary game theory has established theoretical rationales for the persistence of
multiple behavioral phenotypes (e.g., hawk and dove strategies) in the same population.’:72
Analogously, the selective environment for personality may consist of the local distributions
of the personalities of other people,’? and the mixture is unlikely to have changed in a
systematic way with recent shifts in the human population.

Even if selection has acted on these traits since the dispersal of homo sapiens from Africa,
the new optima could have been quickly reached by small shifts in allele frequency at many
minor loci, leaving any major mutants at the low frequencies determined by the interaction
of mutation, drift, and stabilizing selection.”® As discussed above, the result of such
dynamics would be the observed absence of common variants with large effects.

Our two proposals for explaining the pattern in Tables 3-5 lead to the following suggestions
for future GWAS of behavioral traits. First, to understand the causal chain between genetic
and phenotypic variation, we should try to narrow the chasm from both sides. Doing so
requires seeking and validating endophenotypes that lie closer on the causal chain to genetic
variation than the coarse and easily measured phenotypes we are used to. Second,
researchers seeking variants of large effect should ideally study populations where
directional selection may have recently produced a phenotypic change that is large relative
to the initial standing variation. Recent studies of altitude adaptation in Tibetans exemplify
both of these suggestions.’#~76 The genes successfully associated with red blood cell count
and hemoglobin concentration in these studies would have been more difficult to identify if
the phenotype had been characterized at a level as abstract as “altitude tolerance.” Moreover,
the recent and rapid divergence of Han Chinese and Tibetans in altitude tolerance after the
latter began to occupy a highland environment was plausibly driven by a selection
differential large enough to pull variants of large effect away from the boundary of
frequency zero. It is, however, an open question how many social-science traits can be
studied by looking for recent directional selection.

As for traits with more typical evolutionary histories, the expectation of small effect sizes
requires that much larger samples be ascertained than are common in social-science genetics
research. We see two promising approaches. One is for researchers to take advantage of the
potential for large sample sizes by allying with the burgeoning field of personal genomics, in
which a large base of volunteers or consumers provide genotype and phenotype
information.37.77.78 |t is crucial, though, to check these samples for selection biases, because
many phenotypes of interest are likely to be causes of participation in personal genomics
itself. For example, an individual with a liability to a particular disease may be strongly
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motivated to participate in a personal genomics study by self-interest or altruism;
participants also must be wealthy enough to afford the service. We conjecture that our
findings of elevated cognitive ability and intellectual openness among research volunteers
will generalize to future studies. If so, it is prudent to collect reliable measurements of these
traits in all GWAS that are not based on population samples and to note any unusual sample
distributions on these traits when reporting SNP-trait associations.

The other approach is the traditional epidemiological study, which attempts to minimize the
impact of personal characteristics on study participation by recruiting a population-based
sample. This will remain an important complement to volunteer- and consumer-driven
approaches.

Recall that Chabris et al. consulted three population-based studies and found that only one
out of 12 published genetic associations with general intelligence could be replicated within
them, and that one only one out of three times.1! One explanation is that the original
associations came from small convenience samples similar to the one we studied here.

There is, however, a tradeoff inherent in using large population-based studies for gene
discovery. Most of these projects are directed towards medical outcomes rather than social-
science traits (with some notable exceptions, such as the Health and Retirement Study, the
Wisconsin Longitudinal Study, and the English Longitudinal Study of Aging; the first of
these now has GWAS data available, and the others may soon). Data collection in these
surveys, although often face-to-face and longitudinal, distributes time and effort across
many phenotypes that are measured with short questionnaires (or even single questions).
The disadvantage of such studies is that whenever the underlying trait of interest is
continuous, quick or brief measures are inherently less reliable (i.e., are subject to more
measurement error) than are more detailed ones.

Genetic association studies, then, present researchers with a tradeoff between using high-
quality or high-technology (e.g., neuroimaging) measures of each phenotype, which are
often only feasible for small samples, and having a large sample in which the phenotype is
measured poorly. In social science research, this dilemma is commonly resolved in favor of
smaller samples with higher quality measures—and perhaps for this reason, that is the
strategy in most of the social-science genetic association studies conducted to date,
including the one we reported here. But because the genetic architecture of behavioral traits
is likely to feature very weak genetic associations, our intuitions regarding the appropriate
research strategy may not be correct when carried over from non-genetic social science
research, where effect sizes are typically much larger. There is as yet no straightforward way
to calculate an expected effect size for genetic associations in social science, so the best we
can do is to assume that effects will be similar to those found for other complex (polygenic)
traits—tiny.

Figure 3 displays the results of a set of power calculations that quantify the tradeoff. The
phenotype is assumed to be normally distributed. The y-axis shows effect sizes in terms of
R2, the fraction of variance in the phenotype explained by variation in a single genotype,
ranging from 0 to 0.01 (one percent) in increments of 0.001 (one-tenth of one percent). The
x-axis is the sample size. Each curve graphs the locus of effect-size/sample-size pairs that
gives 50% power to detect the association at p = 5x1078 for a given phenotype reliability.
The phenotype reliability is measured in terms of the test-retest correlation, i.e., the
correlation between two independent measurements of the phenotype. We consider the cases
where reliability is equal to 1.0, 0.8, 0.6, 0.4, and 0.2.

For the very small effect sizes that can be expected for behavioral traits, Figure 3 indicates
that it will generally be better to sacrifice phenotype quality in favor of larger sample sizes.
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For example, consider an effect size of /2 = 0.001 (0.1% of the variance). This is the size of
the association found in a meta-analysis of the association between cognitive ability and
variation in the COMT gene in 67 independent samples, and it is likely to be biased upward
because the meta-analysis found evidence of publication bias.”® Since cognitive ability is
among the most reliably measured social science traits and since the meta-analysis found
evidence of publication bias, such an effect size is likely to be representative of the largest
associations we can expect for a behavioral trait. Given A2 = 0.001, for a perfectly-measured
phenotype (reliability = 1.0), 50% power requires a sample size of 30,000 individuals. This
is far too large a sample to obtain high-quality measures of behavioral traits, which generally
requires bringing the research subjects into a laboratory and conducting repeated tests
spanning many minutes or hours. In contrast, for a phenotype with test-retest reliability of
0.6—which is typical of behavioral phenotypes measured by brief questionnaires—50%
power requires a sample size of 50,000 individuals. Samples at least this large have recently
become feasible. Medical datasets that have already collected GWAS data could much more
easily add brief behavioral questionnaires to their ongoing data collections than onerous
laboratory sessions. Since such medical datasets in aggregate comprise hundreds of
thousands of participants, such a research strategy should be possible.*

Conclusions

We conducted a Genome-Wide Association Study on more than 100 carefully measured
phenotypes in more than 400 subjects, but found very few loci of large effect associated
with any trait other than the pigmentation of eyes and skin. This includes a substantial
proportion of the traits that have been of theoretical interest to behavioral scientists in recent
decades. Four points emerge from our analysis:

1. The genetic architecture of trait variation cannot be taken as constant across traits,
particularly the expectation that a single gene or a small number of genes will have
a noticeable effect on the trait. First, the shortness of the causal chain between the
DNA and the trait matters a great deal, with single-gene effects being more likely
for traits generated by a single protein or regulatory shift. Second, the genetic
architecture of a trait is intimately intertwined with its evolutionary history. The
implications flow in both directions: the discovery of an association between a gene
and a trait can illuminate the evolution of our species, and the evolutionary process
determines which associations we can most readily discovered. In particular,
stabilizing selection of moderate strength, which permits a substantial background
of weak or rare variants, supplies the fuel for polygenic adaptation and may obviate
the need for mutations of large effect to arise after a sudden environmental change.

2. Many psychological traits of interest to researchers are themselves plausible causes
of participation in scientific research, which raises the potential of spurious
associations. Measuring such traits (e.g., cognitive ability and personality) and
incorporating them into analyses is one strategy for dealing with this issue.

3. If there are two ways to measure a trait—a high-reliability measure that can be
performed only on a small sample because of the required time, effort, and
resources, versus a lower-reliability brief measure that can be administered to a
large sample—power analyses suggest that using the lower-reliability measure with
the larger sample size is likely to be the best strategy. Researchers interested in the
genetic architecture of behavioral traits should therefore consider working with
large-scale survey datasets such as the HRS, WLS, and ELSA, as well as medical-
genetic studies that are willing to conduct social science surveys among their
participants.
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4. Genetic associations with behavioral traits have proven notoriously difficult to
replicate. This is not because the relevant traits are not heritable or the original
studies were poorly designed or knowingly underpowered; researchers at the time
lacked the resources for conducting more genotyping and assembling larger
samples, and they were hoping to find common alleles with large effect size. Our
discussion of Fisher’s model, and the empirical experience accumulated in the first
fifteen years of social science genetics, suggest that individual gene effect sizes for
traits not under strong selection are likely to be extremely small, and therefore
require extremely large datasets to be detected.

The fact that faster, cheaper, and more powerful methods of genotyping have led to fewer,
smaller, and less reliable findings on the connection between genes and behavior, despite the
near-certainty that such connections exist, stands as one of the disappointments of 21st
century science. To make progress, we should shift away from the traditional model of
epidemiology via statistical significance testing, in which large significant correlations are
the standards of success and worthy of newspaper headlines, while negative results are
considered a failure and destined for the file drawer. It has become increasingly clear that
this practice has led to mischief both in epidemiology and in social science,8%:8 and it may
also be preventing the discovery of important scientific insights. If we have learned that
behavioral genetic variation is caused by many genes with effects that are too small to
currently measure, then we have also learned something important about the physiology and
evolutionary history of such traits. With nature as with people, the Yiddish expression may
apply: No answer is also an answer.
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Figure 1.

R.A. Fisher’s geometric model of adaptation.2 A is the current mean phenotype of the
population, A" is the mean phenotype that would result if the mutation denoted by the arrow
were to be instantly fixed, and O is the new optimum favored by natural selection. The
narrow distribution of trait 1 values around A is the situation that would prevail under strong
stabilizing selection, while the broad distribution would prevail under weak stabilizing

selection.
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Examples of directed acyclic graphs containing a “collider” (the common effect of two or
more causes).33 Conditioning on observing a collider alters the apparent covariation among
the causes; for example, two independent causes that are uncorrelated when all observations
are considered can appear to be negatively correlated when only observations containing the

collider are considered.
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R2 vs. Sample Size (50% Power)
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Figure 3.

An illustration of how the reliability (measurement error, denoted here as Rho) of a
phenotype affects the relationship between effect size of a genetic association and the
sample size required to achieve 50% statistical power to detect the effect at the genome-
wide significance threshold of 5x1078. For example, if one expects a genotype to explain
0.4% of the variance in a trait (R? = .004), then a sample of about 10,000 subjects is required
to achieve 50% power when reliability is 0.80, but a sample of 20,000 subjects is required if
reliability is 0.40. That is, with a sample of 20,000 instead of 10,000, instruments that are
only one-quarter as reliable provide the same power to detect the effect.
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Table 1

Heritabilities of Selected Medical, Physical, and Behavioral Traits

Phenotype Heritability —Source
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Medical and Physical Traits:
Lipoprotein A level (age 17)
LDL Cholesterol level (age 44)
HDL Cholesterol level (age 44)
Heart rate (age 17)
Respiration rate (age 44)
Testosterone level (age 17)
Males
Females
Birth weight
Height (ages 16—adult)
Behavioral Traits:
Problem behavior (age 3)
Externalizing
Males
Females
Internalizing
Males
Females
Personality Traits (adults)
Neuroticism
Extraversion
Openness to Experience
Agreeableness
Conscientiousness
General Cognitive Ability (age 18)
Boredom susceptibility (age 18)
Anxiety (age 18)
Depression (age 18)
Males
Females
Smoking (yes/no, at age 18)
Males
Females
Alcohol Use (yes/no, at age 18)
Males
Females

Sports Participation (age 18)
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95%
69%
67%
44%
61%

66%
41%
10%

80% *

49%
73%

61%
66%

48%
54%
57%
42%
49%
81%
50%
54%

39%
53%

66%
32%

48%
75%
47%

Boomsma et al.®2
Boomsma et al.82
Boomsma et al.&2
Boomsma et al.82
Boomsma et al.82

Boomsma et al.82

Boomsma et al.82

Visscher et al 83

Boomsma et al.82

Bouchard84

Boomsma et al.82
Boomsma et al.82
Boomsma et al.82

Boomsma et al.&2

Boomsma et al.82

Boomsma et al.82

Boomsma et al.82
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Phenotype
Religiosity (adults)

Specific religion practiced (age 18)
Conservatism (adults)
Risk Attitudes
General willingness to take risk
Willingness to take financial risk
Risk aversion
Portfolio volatility
Cooperation
Trust
Trustworthiness
Income (single year)
Income (single year)
Men
Women

Education (years)

Heritability
38%

0%

55%

21%
26%
34%
25%

15%
18%
38%

37%
28%
28%

Source

Bouchard®*

Boomsma et al.,82 Bouchard84
Bouchard®

Cesarini et al.8

Cesarini et al 86

Cesarini et al.&

Taubman?88

Benjamin et al.*

Taubman88

Behavioral Traits — Estimates Corrected for Measurement Error:

Risk Attitudes
General willingness to take risk
Willingness to take financial risk
Risk aversion

Income (20-year average)
Men

Women

35%
37%
54%

58%
46%

Cesarini et al.8>

Benjamin et al.*

*
Estimated from genome-wide SNP data from twin and sibling pairs in Australia.

Page 24

Notes: Estimates are averages of male and female heritabilities except when heritabilities are provided separately for both sexes (these are cases in
which heritability differs by a large amount between males and females). Except in the third section, heritability estimates are not adjusted for
differences in measurement error, longitudinal stability, or test-retest reliability of the phenotypes. Heritabilities may also vary with age; e.g.,
general cognitive ability becomes more heritable with age. Summaries of heritabilities of these and other phenotypes may be found in Plomin et

al.,89 Boomsma et al.,82 Bouchard,84 and Barnea et aLI.90
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Table 2

Characteristics of the sample in age, sex, general cognitive ability (MAB scales), and personality traits (NEO
Five-Factor Inventory scales).

Trait mean SD

age (years) 25.2 6.44

sex 67.6% female

MAB Arithmetic 797 (0) 836 (1)
MAB Similarities 1.054 (0) 601 (1)
MAB Vocabulary 1.386 (0) .891 (1)
NEO Neuroticism (college, female) 21.90(25.83) 8.38(7.59)
NEO Neuroticism (adult, female) 18.71(20.54) 9.13(7.61)
NEO Neuroticism (college, male) 18.53 (22.49) 10.04 (7.92)
NEO Neuroticism (adult, male) 18.84 (17.60) 10.46 (8.61)
NEO Extraversion (college, female) 30.10 (31.27) 6.89 (5.64)
NEO Extraversion (adult, female) 29.19 (28.16) 7.55(5.82)
NEO Extraversion (college, male) 29.08 (29.22) 6.10(5.97)
NEO Extraversion (adult, male) 29.70 (27.22) 8.64 (5.85)
NEO Openness (college, female) 34.02 (27.94) 6.57(5.72)
NEO Openness (adult, female) 34.42 (26.98) 5.57 (5.87)
NEO Openness (college, male) 31.79 (27.62)  6.57 (6.08)
NEO Openness (adult, male) 31.36 (27.09) 7.04 (5.82)
NEO Agreeableness (college, female) 33.80(31.00) 5.51(5.33)
NEO Agreeableness (adult, female) 34.42 (33.76) 4.71 (4.74)
NEO Agreeableness (college, male) 31.46 (28.76)  6.05 (5.24)
NEO Agreeableness (adult, male) 32.00(31.93) 5.70(5.03)

NEO Conscientiousness (college, female)  33.64 (31.02)  7.40 (6.53)
NEO Conscientiousness (adult, female) 32.29 (35.04) 7.15(5.78)
NEO Conscientiousness (college, male) 30.17 (30.21) 6.54 (7.19)
NEO Conscientiousness (adult, male) 33.33(34.10) 8.04 (5.95)

The summary statistics reported in the respective manuals are given in parentheses next to the corresponding sample statistics. The MAB scores
were scaled as standard normal using the tables in the MAB manual.91 The NEO summary statistics were calculated for participants between the

ages of 18 and 22 for purposes of comparison with the college norms in the NEO manual92 and for participants age 30 and over for comparison
with the adult norms.

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



Page 26

Chabris et al.

‘puRJIS PJeMIO} 3U} U0 S8YBUIPI00I 9E PlINg 19N 03 Buipiodde
Papo2 a.e sa|a)e |1V "dfa][e Joutw ayy Jo Adoo jeuonippe yoes Jad anfeA ety ui abueyd paroadxa ay) se pauiodal ae SHes SNOWOJ0YdIP-UOU J0) SBZIS 109)48 ||V "S8[eds 1u10d-G U0 PapI0dal 8IaMm Ssausep
urys pue Buipyoai "o1yel Sppo Ue se paniodal si 9ZIS 109)49 SH PUB ‘JEL) SNOWOI0YIP B SB Pap.02al Sem Jiey pay *a1eds Julod-6 U0 PapIodal Sem SsaudIep J1eH "9Jeds ulod-g e Uuo pauiodal sem ssausep a4k

diIsv L0 99T~ 80T 860° v GOBGTISI  SSAaUMIEp UDYS
HAL €0’ 81T - LTV iz v ¢09Cr0TSI  SSauXIep uys
SIONW S00 L9¢- JAd% 9.0° 1 L00S08TSI  SSauMJep unjs
diIsv qT 8.T 80T 860° v G986T9S! Bur|xoauy
ZONE L0 6ET - €L ¥8¢’ O  6V6 CrL9TVTSI TL2ESTCS) Buryxoaiy
H AL S00 €ce- LTV Ve v ¢09¢v0TsA Burjxoauy
HIOW  9-01x9 €19’ T 9.0° 1 £00508Ts! Buipsioauy
diIsv 60 105 €eT 8LC 1 C9ESTOTSA Jiey pal
HION 9-0Tx¢ L yAdn 9.0° 1 L00S08Ts! ey pal
OTLIM €0’ ¢Se- [44% S60° o] 9G¢TZ8CTSI  SsaudJep Jiey
pvr2o7S  -01%6 cLE 80€” 09¥° v o ory 0€85.0Ts4 66€968CTSI  SSaudJep Jiey
ZOYFH  e1-0TxT ove’ 80¢ €T v CEBETBCTS!  ssawjiep drey
IddAL 1 S60° 00€” €Te 1 66.80VTSI  ssaulep ke
AL <0’ a1 - 6T 992 v 0SEEBETS!  ssauep aka
v#2O1S €00’ L9T 80¢’ 09%" Vv G19°  0€8S.0TS! 66£9682TSI  ssawylep aka
COYTH  89-0T%C 866° 80¢° 444 v Z€BETHLTS!  ssaudiep afe
aueb anpend azs1eype dvINdenwdeH dvaldues apje Joulw 2l dNS Axoud  dNS pelodeu e

'sadA10ouayd uoneluawbid 1oy S1 NS UOITRIJNOSSY

€9lgel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



Page 27

Chabris et al.

*9]e0s Ju10d-G € Uo papiodal sem yIBUBNS . '8SIND S, JBUUIM,, BU) JO 8SNBIa] Pale|jul 8q 0} PUB) SBZIS 10848 83U 1eyl 10N "SHUN UOIRIASP piepuels Ul pauodal aie 1yBiay 1oy soz1s 10843

ENLOV 900° (414 8GY’ 8¢y’ v T ¥/80%5S. 6€LGT8TSI y1Buans
ZYONWH oT 0cT - LTS 667" 1 €86 28989651 ¥6ETGETS!  BIay Buipuels
8418z oT e €87’ 8¢y’ ) 91OvZLst  biay Bupuess
Tdw3+43 0T x¥ S0€" - QLT 8¢e 1 G/9T6.€81  WB1ay Buipuels

SETINS/GAVLY 600° 88T - GLE oV 9 86 2€00686S1 6TPY9.€s)  biay Buipuess
g68CNIT [40) [7A% Y9¢ [435 o] T §9069¢€s1 8£66G./s)  biay Buipuess

IvEINZ L0 orT - L9¢C ¥0¢ vV 269 €8TETCESI 1187281 Wbay Buipuels

rgog oT ver - GLE LYE 1 ¥10688s!  Iub1ay Buipuels

LPH0ED €0’ 16T - €8T’ 10¢ 1 19T6€r9s)  ybiay Buipuess

IX4INZ Y0’ SLT 80¢” e v evLL€zst  WBIBY Buipuels

Go914ds L0 88T - LT YET o] 06009%/s1  biay Buipuess
awb anpend azsiepe HdvNdenwdeH dywajdurs 8| Joulw 2l dNS Axoid NS pe1iodal e

NIH-PA Author Manuscript

Vv 9|qeL

NIH-PA Author Manuscript

NIH-PA Author Manuscript

'sadAjouayd [ea1sAyd 10J S1 NSal UOIRIJOSSY

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



Page 28

Chabris et al.

"paniodai Asnoinaid usaq pey Jeym o1 snsoddo ubis e pey Apnis Ino Ui 108448 PaIRLWISS 8] Jey) S81BOIPUL XSLIBISE U/ "SHUN UOIRIASD paepuels ajdwes u pauiodal aie sezis 198143

LWOO L L20° L15 24 A 08911 Aoeindoe oeg-g
vyan LE G990 19C 8€E’ 1 GYT0L0LTS!  uomuBodas dyelo0sse-palted
oanvw a8’ *V10'- LT€ oty v ¥8€€88CTSI wis1onoInaN
ZTVNLYM 09’ 80— 807" oov’ v 1€09/2G¢s4 $S9USNONUBIISUOD
IdEaNLd cL *«EE€0°— 6T 96T" o] T9209/81 Anige anmuboo [esauab
asito 0L *1G0"- €80 €80 v TLSLTS) Annige anmuboo [essuab
S5Z-dVNS A 120- Sl 4d 9 0S0€9¢€s! Anjige aanubod [essusb
SIWEHO cL 9¢0 L9V Yor’ 1 059¥¢ces! Auige saniuboo |essush
IVGHa1v 44 *xC90’ LT€ 91¢" 9 8TT09.¢s! Anige anmuboo [essuab
awb anpead azs1weye d4vVINdendeH 4vIA9|dwes dNS paiiodal en

NIH-PA Author Manuscript

'SANS pauodai Ajsnoinaid yum sadAiouayd [eioiAeyaqg ay) J0J S1NSal UONRIJOSSY

av slqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



Page 29

Chabris et al.

'854NJ S, JBUUIM 3] JO 1NSal © Se pajesul 8 AW Sa1ewiIsa 109440 Jeyl aloN “Ajjeonayiuaied uaalb ale ssaua|qesslby pue
‘wsionolnap ‘sssuuadQ ‘Aujige aaniubod jesauab oy Juswisnipe Jaye sanfea-d pue sazis 198443 "9[eds Julod-G e uo pauodas sem Aguanbaiy Buljques "ajeas wuiod-2 e uo parodal Sem aAIBAISSUOD SA [elaglT]

(6-0Tx9) 0T x€  (9/27) 8.2 e 90T 9 Y6720v TSI AKouanbaly Burjqued
(0T xT)g0Tx2 (8/t) 255" 6¢ 861" 1 899¢S60TSI  SAIRAIBSUOD SA [elsql|
aneA-d azs10ie 4V dendeH 4y nodwes ap|e Joul  dNS polJode s el

NIH-PA Author Manuscript

NIH-PA Author Manuscript

'sadA1ouayd [elo1neyaq 10} S1NSaJ UOIIRID0SSE [SAON

G 9lgel

NIH-PA Author Manuscript

Am J Public Health. Author manuscript; available in PMC 2013 October 01.



