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Abstract
Computed tomographic colonography (CTC) computer aided detection (CAD) is a new method to
detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection
and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of
colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for
the detection of polyps sized 1cm or larger, lower sensitivities and higher false positive rates occur
when the goal of CAD is to identify “medium”-sized polyps, 6-9 mm in diameter. Such medium-
sized polyps may be important for clinical patient management. We have developed a wavelet-based
postprocessor to reduce false positives for this polyp size range. We applied the wavelet-based
postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of 6-9 mm were
found at segmentally unblinded optical colonoscopy and visible on retrospective review of the CT
colonography images. Prior to the application of the wavelet-based postprocessor, the CTC CAD
system detected 33 of the polyps (sensitivity 73.33%) with 12.4 false positives per patient, a
sensitivity comparable to that of expert radiologists. Four-fold cross-validation (CV) with 5000
bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61%
(p < 0.001), to 5.38 per patient (95% confidence interval [4.41, 6.34]), without significant sensitivity
degradation (32/45, 71.11%, 95% confidence interval [66.39%, 75.74], p = 0.1713). We conclude
that this wavelet-based postprocessor can substantially reduce the false positive rate of our CTC CAD
for this important polyp size range.
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1. INTRODUCTION
Although colon cancer is the second leading cause of cancer death in the US (1), it is also one
of the most preventable forms of cancer. Early detection and resection of colon polyps, small
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growths in the colon lining, are the best form of prevention for colon cancer. CT colonography
(CTC), also known as virtual colonoscopy, is a promising new technique that can identify
polyps on CT scans where computer-aided detection (CAD) systems (2-5) have been suggested
as one way of aided the radiologist in reading these exams. Current CTC CAD systems have
high sensitivities and low false positive rates for detecting polyps 1 cm or larger in diameter,
but tend to detect too many false positives when detecting smaller 6-9 mm polyps (5-7).

One way radiologists interpret CTC cases is by virtually flying through a 3D colon surface
constructed from 2D CT scans. There is evidence suggesting that radiologists improve
interpretation accuracy when navigating endoluminal projections of the 3D colon surface,
compared to examining the original cross-sectional 2D CT slices (8,9). True polyps generally
stand out in the endoluminal projection images, making discrimination easier in many cases.
Features of polyps on endoluminal projection images have not previously been utilized in CAD
systems. The purpose of this paper was to develop a postprocessor that uses wavelet analysis
of the endoluminal projection images to markedly reduce the number of false positives from
a CTC CAD system for the 6-9 mm polyps by mimicking, to some extent, the 3D virtual
flythrough reading process used in clinical interpretation.

2. BACKGROUND
We have previously developed a CTC CAD system which identifies polyps based on geometric
features of the colon surface and volumetric properties of the candidate polyps (6) (Figure 1).
For a set of CT scan images, the CTC CAD system first segments the colon using a region
growing algorithm (10). The colon surface is then extracted by an isosurface technique (11).
Surface smoothing was not used to avoid information loss. For each vertex on the colon surface,
geometric and curvature features are calculated and filtered. Candidate polyps are formed on
the surface from connected clusters of filtered vertices (12). The filtering and clustering are
optimized by a multiobjective evolutional technique (12,13). A knowledge-based polyp
segmentation is performed on the 3D volume data, starting from the identified surface region
(14). Next, more than 100 quantitative features are calculated for each segmented polyp
candidate. A feature selection procedure reduces the number of features to less than 20. The
selected features are presented to a support vector machine (SVM) classifier for false positive
reduction (15,16).

Due to image noise and the fact that many other structures inside the colon such as haustral
folds and residual stool mimic true polyps (14), CTC CAD systems usually produce many false
positives. A number of methods had been proposed for false positive reduction, including
volumetric texture analysis (4,7,17), random orthogonal shape section (18) , training additional
artificial neural networks (19,20), an edge displacement field (21) and using the line of
curvature to detect the polyp neck (22). Depending upon different definitions, the false positive
reduction step is sometimes referred to as a postprocessing step (21). False positives are
eliminated in two steps in our previously developed CTC CAD system (23). First, a set of
thresholds are set for geometric features such as curvature, sphericity and number of vertices
in the cluster, to filter out initial detections on the colon surface (12). Second, the SVM classifier
is used to classify all segmented detections based on volumetric and statistical features derived
from the detections (24). The features used by the SVM classifier include the size of the
segmented candidate, image intensity distribution inside the candidate, colon wall thickness,
etc. A large population study showed that our system achieved high sensitivities and low false
positive rates for detecting larger polyps. However, we found that the sensitivity was lower
and the false positive rate was higher for detecting the so-called “medium-size” polyps, 6-9
mm in diameter (3,6). In this paper, we propose an additional postprocessing method based on
the endoluminal projection of polyp detections in order to further reduce the false positive rate
in detecting 6-9 mm polyps (Figure 1).
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Selecting a good viewpoint for the endoluminal projection is very important component in this
FP reduction process because it directly impacts the texture information contained in the 2D
endoluminal images. Viewpoint optimization has been studied in many applications, such as
object recognition, 3D shape reconstruction and volume visualization. One of the pioneering
studies is the work done by Koenderink et al (25,26), where the concept of “aspect graph” was
utilized to optimize viewpoints for object recognition. Entropy maps have also been intensively
studied for viewpoint optimization in object recognition (27). A theoretic framework for
viewpoint selection for active object recognition had been formulated by Denzler and Brown
based on Shannon’s information theory (28). In the visualization research community,
Takahashi et al (29) used the concept of “viewpoint entropy” (30) to select the best viewpoint
for volume visualization, where the viewpoint entropy was used as the performance metric to
search for a viewpoint along which visible faces for 3D objects were well-balanced. We utilize
viewpoint entropy, which was defined on the polyp candidate surface, as a criterion for our
camera placement task.

Once a viewpoint was established, we then extracted texture features from the Haar wavelet
coefficients of the resulting 2D images. It has been suggested that the wavelet transform mimics
some aspects of human vision (31). Wavelet analysis is a powerful tool for medical applications
(32-34). We utilized a wavelet-based method that was recently developed to identify artists’
uniquely signature pattern of brush strokes from 72 wavelet features (35). This wavelet analysis
was utilized to identify forgeries of valuable paintings.

The wavelet transformation analyzes data by dividing the signal into multiple scales and
orientations in the frequency space. Figure 2 shows one example of a 5-level wavelet
transformation of one polyp detection. We use similar notations Vi(x, y), Hi(x, y), and Di(x, y)
as those in (35) to denote the wavelet coefficients in the vertical, horizontal and diagonal
directions at scale or level i. For the purpose of identifying forgeries in valuable paintings
(35), Lyu et al. applied the 5-level wavelet transformation on each of the paintings been
investigated. They then computed four statistics (mean, variance, skewness, and kurtosis) for
each orientation at levels 1-3, yielding 36 features. They calculated another four similar
statistical features of prediction errors for each of those subbands and then obtained a total of
72 features. The prediction errors are derived from the concept that the magnitudes of the
wavelet coefficients are correlated to their spatial, orientation and scale neighbors. The
magnitude of one coefficient was calculated using the 8 most predictive neighbors through a
linear prediction model. The 8 neighbors were searched using a step-forward feature selection
method and a prediction error was computed for each of the coefficients.

3. METHOD AND MATERIALS
3.1 SYSTEM DIAGRAM OF OUR PROPOSED METHOD

The proposed method consists of four steps (Figure 1). First, we generate a 2D endoluminal
projection image (snapshot) for each polyp detection produced by our CTC CAD system. The
viewpoint location was optimized by calculating the viewpoint entropy along the colon
centerline. The surface was rendered by the open source software Open Inventor
(http://www.coin3d.org) using the Gouraud shading model (36). The lighting direction was set
to be the same as the camera direction. Second, we extract wavelet texture features for these
images. Third, we use a feature selection algorithm to identify a set of useful features. Finally,
we used the selected features with an SVM committee classifier to classify the CTC CAD
detections as polyps or non-polyps.
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3.2 STEP 1: GENERATING 2D IMAGES FOR POLYP DETECTIONS
In virtual colonoscopy, a virtual camera flies through the inside of the colon to examine the
inner colon surface while the colonic surface is rendered on a computer screen by endoluminal
projection. If a suspicious region is found, radiologists can adjust the camera’s view angle and
distance to further examine the polyp candidate. In this paper, we use a snapshot of the polyp
candidate, at an optimized camera position and analyze this snapshot image through a wavelet
method, trying to mimic the radiologist’s reading process.

3.2.1 TAKING SNAPSHOTS OF POLYP CANDIDATES—Figure 3 shows a
representation of a colon segment that has a polyp candidate arising from the colon wall. In
order to obtain a 2D image that contains as much of the polyp surface information as possible,
there are two important parameters that should be optimized: position of the camera (viewpoint)
and direction of the lighting. Optimality of camera position and lighting direction for polyp
recognition is not, in general, a well posed problem. One approach to help solve this problem
is to use maximized entropy to optimize both viewpoint and lighting direction (30,37).

We produced color images for the detections, where each vertex on the colon surface was preset
to be a constant color value (pink). We convert the color images to gray level images as

where I is the intensity of the gray image, R, G, B are intensities of red, blue and green
components in the color image.

3.2.2 VIEWPOINT ENTROPY—Intuitively, the quality of a viewpoint is related to how
much object information is contained in the resulting image, as represented by Shannon’s
entropy. Here, we evaluate viewpoint optimality using the viewpoint entropy formulated by
Vazquez et al. (30). The original definition of viewpoint entropy is based on perspective
projections. However, the formulation can be extended to also handle orthogonal projections
(29). Thus, we use the orthogonal projection for efficiently calculating viewpoint entropy.
Figure 4 shows the orthogonal projection of one object represented by a 3D triangular mesh.

For a projection direction , the viewpoint entropy is defined as

(1)

where Nf is the total number of faces in the given 3D mesh, Ai is the visible projection area of
the ith face, A0 denotes the background area, and S the sum of the projected area. Note that

 becomes larger when the viewpoint balances face visibility. The task of viewpoint
optimization is to find the viewpoint that achieves the maximum value of viewpoint entropy.

3.2.3 EFFICIENT ALGORITHM FOR LOCATING A GOOD VIEWPOINT—We
determine the camera position in two steps. The best camera direction is found first followed
by the appropriate camera distance. Lighting direction also has a big effect on the recognition
accuracy for the detections. We tried to optimize the lighting direction based on the image
entropy criterion (37), which is a measure of the amount of information contained in the image.
Different lighting directions produce different shadows that lead to different values of image
entropy. An image having a uniformly distributed intensity histogram has the maximum image
entropy. However, our experiments showed that the image entropy criterion is not relevant to
recognition accuracy because of the complicated surroundings of the candidate polyp. The
background in the 2D snapshot images usually contributed more to the image entropy than that
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of the polyp area in the images. We thus set the lighting direction as the same as the camera
direction to keep a consistent lighting condition for all detections.

In finding the optimal viewpoint, the view sphere surrounding the object is usually uniformly
sampled, and the viewpoint entropy for each viewpoint on the sphere is calculated to identify
the optimal viewpoint that maximizes entropy. For a particular viewpoint, the viewpoint
entropy is usually obtained by utilizing graphics hardware (38): the projected area of a face
can be obtained by counting the number of pixels belonging to that face after the object is
drawn into the frame buffer. Different faces are discriminated by assigning different colors for
each face to establish a one-to-one correspondence between the faces and the colors.

We sped up the viewpoint optimization for our task by calculating the viewpoint entropy
directly on triangle faces of the polyp candidate mesh. The polyp candidate usually includes
less than 100 vertices so that traveling all faces in the mesh is very efficient. We also limited
the camera position to be either along the colon centerline (39) or along the average normal to
the polyp candidate surface. This further reduced the viewpoint search space and follows what
is commonly done by radiologists, at least as a first step, in endoluminal review. The colon
centerline has been successfully applied for path planning in virtual colonoscopy and it has
been shown that observing polyps from the centerline is satisfactory (40). We realize that
limiting the viewpoint to this space may not always provide a viewpoint that matches that of
the radiologist, but it does minimize potential blind spots since the polyp can be viewed ahead
or behind and our technique substantially reduces the search space. Figure 5 shows our
viewpoint optimization method, and an outline of our algorithm is shown in Figure 6. We will
detail each step of the algorithm in the rest of this subsection.

Step A: The polyp centroid C is obtained by averaging the coordinates of all the vertices in
the surface of the polyp candidate. The nearest point D on the centerline to the point C is
identified by evaluating the Euclidean distance from C to all points on the centerline. It is
possible that the nearest point on the centerline does not see the polyp candidate when the colon
makes a sharp bend. In order to avoid this situation, we only evaluate the centerline points that
are on the positive side of the detection. We form a vector that points from the detection’s
centroid to the centerline point under evaluation. If the angle between the vector and the average
normal is less than 90°, the centerline point is considered to be located in the positive side of
the detection and therefore is a valid centerline point. Otherwise, we skip this centerline point.

Step B: To locate a good viewpoint along the centerline, we extend the search space from point
D to points B and E which are located approximately ± 5cm about D. We quantized the line
between B and E into 100 equally spaced points. From our experiments, we have found that
the 100 centerline points are enough to find a good viewpoint along the centerline.

Step C & D: To save computation time, we use two stages for searching the optimal viewpoint.
We start the search with a coarse resolution, i.e., the viewpoint entropy is calculated for every
fifth centerline point from B to E and the point with maximal entropy is defined as the coarse
optimal viewpoint Pc. After Pc is located, we refine it to Pf by evaluating the viewpoint entropy
of the four closest centerline points on either side of Pc and choosing the one with the maximum
entropy.

Figure 7 shows how the viewpoint entropy is calculated, where the 3D triangular mesh

represents a candidate polyp surface that consists of a set of vertices  and faces .
The entropy of one viewpoint, Pc, is calculated using Equation (1), where the projected area
Ai for the ith face is,
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(2)

where Aoi, C and  are the area, polyp centroid, and normal of face i, respectively. In the case
that the ith face is not visible in the resulting image, we set Ai = 0. Note that Ai is the orthogonal
projected area of the ith face because we do not consider the relative location of face i and the
centroid C.

Recall that in equation (1), A0 denotes the background area. Here, we define A0 = St - S, where
St is the total area of the polyp 3D mesh and S the total projected area of the polyp 3D mesh.
By this definition, only the detected 3D mesh of the polyp are involved in the viewpoint entropy
calculation; the undetected triangle mesh representing nearby background are not considered
during the viewpoint optimization.

Step E: We also evaluate the viewpoint entropy at the point (PN), which is 1 cm long along
the average normal of the candidate polyp. The final optimal point is identified as either Pf or
PN whichever achieves the maximum viewpoint entropy.

Step F: We determine the camera distance, camDist, by the size of a bounding box calculated
for the candidate polyp. We use the principal component analysis method to calculate a 3D
bounding box for each candidate polyp, and use the maximum dimensional size Lbounding of
the box as the initial estimation of the camDist, i.e., camDist = Lbounding. It is possible that the
initial polyp candidate is either smaller or bigger than the true polyp. We then set camDist =
0.9cm if Lbounding is less than 0.9cm, and set camDist = 1.1cm if Lbounding is greater than 1.1cm.
Given these parameter settings of the camera, the resulting snapshot will cover a square area
with a length from 7.5 to 9.1 mm for each side such that the viewable area can accommodate
polyps in the 6-9 mm size range of interest.

Step G: We take a snapshot of the polyp candidate from the optimized camera position.When
taking the snapshot, we set the focal distance of the camera as the camera distance, the height
angle as 45°, the near distance and the far distance as 0.1cm and 10cm respectively, and the
aspect ratio as 1 (Figure 8).

3.3 STEP 2: FEATURE EXTRACTION
An experienced radiologist can fairly easily discriminate false positives from real polyps by
examining the projected 2D images of the colon surface, because false positives and true
detections contain different shape or texture patterns. We proposed one texture analysis method
for this discrimination purpose by extending the idea proposed by Lyu et al., who used a wavelet
feature extraction method to identify forgeries in valuable paintings (35).

3.3.1 WAVELET-BASED POSTPROCESSOR—We enhanced Lyu et al.’s feature
extraction method (35) in the following three aspects. First, we used a piecewise linear
orthonormal floating search (PLOFS) algorithm to find the 8 most predictive neighbors (41).
Compared to the step-forward search, the PLOFS algorithm can provide a more accurate
prediction model. The PLOFS algorithm was successfully applied in our previous work for
regression (41) and classification problems (16). Second, we compute energy and entropy
features for each subband. For the vertical subband Vi(x, y), for example, we calculated

(3)
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(4)

Where, , and Lx, Ly are the dimensions of subband Vi(x, y). Third, we
calculate mean, variance, skewness and kurtosis for coefficients at levels 4 and 5. We therefore
obtain 150 features in total for one image, including 96 (=16×6) statistics of the coefficients
in all subbands (each subband has 6 features, there are 16 subbands in total), and 54 (=9×6)
error statistics for the subbands in level 1-3 (each subband has 6 features, and there are 9
subbands in level 1-3). Our previous work showed that this wavelet-based postprocessor is
statistically better than the Lyu’s method (42) for the task of characterizing polyp candidates.

3.4 STEP 3: FEATURE SUBSET AND COMMITTEE SELECTION
We have 150 features for each detection image computed by the wavelet-based postprocessor.
However, some of these features are based on heuristic techniques and were eventually found
not to be useful. Irrelevant or redundant features increase complexity and can lead to
overtraining (43). We use a wrapper type feature selection method, where an SVM classifier
(see the description in the next subsection) is utilized for fitness evaluation to limit the number
of features. The fitness value of a feature vector is defined as the average of the sensitivity and
specificity of the involved SVM. If we want to select m features for each SVM classifier in the
committee, a group of vectors with m features are first randomly generated. During the selection
procedure, each feature in the vector is replaced with a new feature where the substitution is
kept only if it improves the fitness value. The process is iterated on each feature in the vector
until no further improvements are found. It has been shown that this algorithm can perform
similarly to a genetic algorithm in some situations (16). The feature selection algorithm
generates a large number of vectors with m features each. We retain the top 1000 such feature
vectors according to their fitness values. In the SVM committee selection procedure, if it is
determined that a committee classifier with n SVM members is good for the given data, the
best committee classifier with n SVM members (i.e., having the highest fitness value) is then
found among those 1000 combinations.

3.5 STEP 4: POLYP CANDIDATES CLASSIFICATION
We utilize an SVM committee classifier for polyp candidate classification. Recent work
showed successful applications of committee classifiers in medical imaging research such as
breast cancer screening (44,45), bone abnormality detection (46) and colonic polyp
identification (15,47). The reason for using a committee of classifiers is that this approach can
often achieve a better performance than that of its individual committee members. This is
because a committee having members with diverse properties is less likely to sustain the same
error in a majority of its members. Another advantage is that the behavior of outliers can be
better controlled.

Given a set of data pairs , where xp ∈ RN is the feature vector extracted from a polyp
candidate image, ip ∈ {+1, −1} is a class label (true polyp, true negative) associated with xp.
An SVM defines a hyperplane, f (x) = WT ϕ (x) + b = 0, to separate the data points onto 2
classes, where w and b are the plane parameters, and ϕ(x) is a function mapping the vector x
to a higher dimensional space. The hyperplane is determined using the concept of Structural
Risk Minimization (48). After the hyperplane is determined, a polyp is declared if f(xp) > 0,
otherwise a non-polyp is declared. In order to combine the outputs from the different committee
members we utilize a method suggested by Platt (49) to transfer the SVM output, f (xp), to a
posterior probability by fitting a sigmoid
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The parameters A and B were fit using a maximum likelihood estimation from a training set
{f(xp), ip} by minimizing a cross-entropy error function (49).

There exist many ways to combine the outputs of committee members. Theoretic analysis
showed that the sum rule (simple average) outperforms other combination schemes in practice
though it is based on the most restrictive assumptions (50). The sum rule is superior because
it is most resilient to estimation errors. Therefore, we use the simple average method to combine
the posterior probability output of each SVM member to form the final decision. The SVM
committee classifier utilizes the LIBSVM software package
(www.csie.ntu.tw/~cjlin/libsvm/).

4 EXPERIMENTS
We applied the enhanced wavelet method to 44 patient data sets, based on four-fold cross-
validation (CV) and free-response receiver operation characteristic (FROC) analysis (51), to
determine if it could significantly reduce the false positives produced by our CTC CAD system.

4.1 DATA SELECTION
Supine and prone CTC was performed on 44 patients with a high suspicion of colonic polyps
or masses. These patients were chosen from a larger cohort who underwent CTC with fluid
and fecal tagging. All 44 patients had at least one polyp 6 mm or larger and each polyp was
verified by same-day optical colonoscopy. The polyp size was measured at optical colonoscopy
using a calibrated guide-wire.

If polyps could not be found on the supine and/or prone views, it is not possible to train on
them or to confirm whether CTC CAD detected them. Consequently, we computed sensitivity
using only the polyps that were visible on retrospective review of the CT colonography (6).
There were 45 6-9 mm polyps that were colonoscopy confirmed and retrospectively visible on
CT images. 32 of them were retrospectively visible on both the prone and supine views; the
other 13 polyps were visible on either the prone or supine view but not both. A polyp was
considered to be detected if CAD located it on the supine, prone or both supine and prone
views.

We chose two operating points on the FROC curve at which to evaluate the effectiveness of
the wavelet-based postprocessor. For each operating point, the SVM classifier produces a series
of detections. We took a snapshot for each detection using the techniques described in Section
3.2. Features were then extracted from the each snapshot and then feature selection, committee
classifier selection and false positive reduction were performed.

4.2 CLASSIFIER CONFIGURATION
The wavelet-based postprocessor produced 150 wavelet features. We used an SVM committee
classifier for our classification task. There were seven committee members and each committee
member consisted of three features. Our previous work showed that this configuration was
adequate for our CTC CAD system; adding more members to the committee did not make a
significant difference (52). We follow the same classifier configuration in our false positive
reduction experiments in this paper.
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4.3 FEATURE AND COMMITTEE SELECTION
We applied a forward stepwise feature selection algorithm to select a set of 3 features from the
150 computed features for each detection image, where a SVM classifier was used to evaluate
features. A fitness value was defined as the average of sensitivity and specificity of the
particular SVM. Sensitivity denotes classification accuracy for positive cases whereas
specificity represents classification accuracy for negative cases. First, a group of 3 feature
vectors were randomly generated. Then one feature in the vector was substituted by a new
feature. If the substitution improved the fitness value, the new vector replaced the old one. The
process was iterated on each feature in the vector over and over until no further improvement
was found. The feature selection algorithm generated a group of 3 features, we kept the best
1000 such combinations according to their fitness values. The best SVM committee with 7
members was then searched among those 1000 combinations, and the best resulting SVM
committee was identified. Once the best SVM committee is obtained, we directly apply it to
new data cases using the selected features.

4.4 CROSS-VALIDATION
We utilized four-fold cross-validation (CV) to evaluate the effectiveness of our false positive
reduction strategy. In four-fold CV, we first randomly divided the 44 patients into 4 equal-
sized patient cohorts. Each of the four cohorts was held out as a test set. The remaining three
cohorts were used for the SVM committee training based on the selected features which led to
a trained SVM committee model. This model was then applied to the held-out set to provide
test results, and the test results were put into a pool. The training and testing procedures were
repeated four times so that each cohort was used as a test set only once. At the end, we generated
an FROC curve based on the test results pool. We calculated the sensitivity on a per-polyp
basis. If there were multiple detections for one polyp, any correctly identified detection of the
polyp was considered as correctly classifying the polyp.

In the four-fold CV procedure, the trained committee classifier outputs a probability value
(score) for each detection. Ideally, a good classifier will assign a value close to “1” for a true
polyp detection while a value close to “0” for a false positive. We analyze the causes of low
scores on true polyps.

4.5 STATISTICAL ANALYSIS METHODS
We used bootstrapping to calculate the 95% confidence interval (CI) and error bars with one
standard deviation length for sensitivity and false positive rate for each operation point on the
FROC curves (53). In the four-fold CV, we put the test results from each CV into the pool. We
then bootstrapped patients in the test results pool 5000 times to obtain error bars (± one standard
deviations) on our estimates.

5 RESULTS
5.1 CAD PERFORMANCE PRIOR TO APPLICATION OF WAVELET-BASED
POSTPROCESSOR

The CTC CAD system detected 38/45 polyps (84.44% sensitivity) with 101 false positives per
patient prior to both SVM classification and wavelet-based postprocessing. An FROC curve
showing the performance of the SVM classifier is shown in Figure 9. We chose two operating
points (operating point 1 and operating point 2 in Figure 9) on the FROC curve at which to
evaluate the effectiveness of the wavelet-based postprocessor (Figure 9). At these operating
points, prior to the wavelet-based postprocessor, the sensitivities were 82.23% and 73.33% and
the false positive rates per patient were 26.54 and 12.4, respectively. The operating points were
chosen to be those having the lowest false positive rates at the given sensitivity.
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5.2 ENDOLUMINAL IMAGES
Figure 10 and Figure 11 show endoluminal images of true and false positive detections,
respectively, obtained using the viewpoint optimization techniques described in Section 3.2.
Figure 2 shows an endoluminal image of a polyp and its 5-level wavelet decomposition.

5.3 FROC CURVES OF FALSE POSITIVE REDUCTION
FROC curves indicating the performance of the wavelet-based postprocessor for operating
points 1 and 2 in Figure 9 are shown in Figure 12 and Figure 13, respectively. Both curves
show that false positives can be reduced markedly at the cost of a small degradation in
sensitivity. We also chose three points B, C and D in Figure 12 and one point in Figure 13 for
further analysis using the bootstrap techniques. Again, these points were chosen to be those
having the lowest false positive rates at the given sensitivity.

5.4 BOOTSTRAP AND STATISTICAL ANALYSIS
Figure 14 shows the original FROC curve together with the bootstrap error bar estimates for
the four chosen points. It is observed that we can reduce the false positives at all four operating
points. We are most interested in operating point A in Figure 14 because the false positive rate
(5.38 per patient) is in the desired clinically-acceptable range. Comparing operating point A
in Figure 14 with its associated operating point 2 in Figure 9, the sensitivity was 71.11% [95%
CI: 66.39%, 75.74] versus 73.33% for operation point 2 (p=0.1713). The mean false positive
rate was 5.38 [95% CI: 4.41, 6.34] per patient at operating point A. This corresponds to a
56.61% reduction compared to operating point 2 (p < 0.001).

5.5 TRUE POLYPS WITH LOW SCORES
Figure 15 shows the true polyp that had the lowest classifier score (0.09) after the wavelet
based postprocessing in the experiment shown in Figure 12. The 56.61% reduction in false
positive rate at operating point A is at the cost of sacrificing the detection of the polyp shown
in Figure 15. Figure 16 shows the 3 true polyp images having the next lowest scores in the
same experiment.

5.6 COMPUTATION TIME AND OPTIMAL VIEWPOINT
The computation time for a single CTC data set (a supine or prone scan) on a PC with AMD
Athlon MP 2800+ (2.13-GHz clock rate), 2-GB RAM, using Microsoft VC++ 6.0, was less
than 1 minute on average for the chosen operating point. There are about six polyp detections
per data case, where the average computation time for locating the viewpoint for each detection
is 0.1 s, and for the wavelet analysis of the endoluminal image of one detection is eight seconds.

We randomly selected 533 polyp detections to test how many of them chose the optimal
viewpoint along the colon centerline vs. along the average normal of the detection. In 54.4%
(290/533) detections, the optimal viewpoint was along the colon centerline. In the remaining
45.6% (243/533) of detections, the optimal viewpoint was along the average normal of the
detection.

6 DISCUSSION
In this paper, we found that the application of a wavelet-based postprocessor markedly reduced
false positives by 56.61% for detecting clinically significant polyps in the medium-size
category at the expenses of losing only one true polyp detection. The resulting 5.38 false
positives per patient are in the clinically acceptable range. In addition, the sensitivity of the
CAD system is similar to that of the expert radiologists who made the original interpretations
without CAD (54,55). Detecting these medium-sized polyps at a low false positive rate could
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substantially enhance the utility of CTC. Our approach, inspired by the way radiologists
interpret CTC images using an endoluminal fly through, is a new idea for false positive
reduction in CTC CAD systems (8).

The ultimate goal is to attain a clinically acceptably low false positive rate. It would be
reasonable to assume that a CTC CAD system should have less than 10 false positives per
patient for detecting 6-9 mm polyps, although there is no consensus yet for an acceptable
number. Following application of the wavelet-based postprocessor, the CAD system indeed
had a false positive rate below the threshold of 10 per patient.

In a related method, Zhao et al, characterized polyp surface shape by tracing and visualizing
streamlines of curvature (22). For polyps, they found that streamlines of maximum curvature
directions exhibited a circular pattern. Their CAD algorithm searched for such circular patterns
to identify polyp candidates. In our method, it is difficult to identify with certainty which
specific information was extracted from the surface images by the wavelet coefficients, but
most likely it was shape information, including surface curvature.

Recently, Hong et al. proposed a CAD method that bears some similarities to ours in that it
also converted the 3D polyp detection problem to a 2D pattern recognition problem (17). They
first flattened the segmented colon by conformal mapping. They next identified polyp
candidates by analyzing volumetric shape and texture features of the flattened surface.

It is usually not possible to provide performance comparison among different CTC CAD
systems on the same data set because software developed by other research groups is often not
available publicly. Table 1 lists false positive reduction results reported in literature on different
data sets. False positive reductions in the first four algorithms are the overall false positive
reductions in the corresponding systems. False positive reductions in the last three algorithms,
including the one developed in this paper, are obtained by designing another discriminating
system attached to the original CAD systems, adding an additional stage of false positive
reduction. The last two algorithms have comparable results and are better than the one
developed by Suzuki et al. (19). Note that comparing the final sensitivities and false positive
rates, which are listed for reference, for different systems is not possible because of the
differences in data sets, lack of data selection criterion information, different polyp size ranges
and if contrast fluid is present, etc. The data sets we utilized contain contrast fluid and the polyp
size range we aimed to identify is 6-9 mm, both of which make detecting polyps more difficult.

The texture information in the generated 2D snapshot in our method is highly dependent upon
many parameters, including surface generation techniques, surface smoothing methods,
viewpoint location of the virtual camera, lighting direction and surface rendering methods.
Preliminary experiments suggested appropriate choices for these parameters (56).

The wavelet-based postprocessor worked as a second classifier to further reduce CAD polyp
detections. Ideally, all polyp images should score high while all false positives should score
low. Some possible explanations for the low scoring polyps include poor colon surface
segmentation (Figure 15), polyps touching a fold or the air-fluid boundary and shadows (Figure
16(a-c, respectively).

The Haar wavelet transformation is not scale and rotation invariant. Different scales and
rotations for one image will lead to different wavelet coefficients and thus different wavelet
features. We believe that rotation will have a smaller effect on true polyps than false positives
because most of the polyps appear round. Different viewpoints result in different 2D images,
however, a round polyp should look similar even with different camera angles. We utilized the
Haar wavelet transformation because it is simple and it was found to achieve good performance.
There are some techniques for rotation invariant wavelet transformation (57). Further research
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is needed to find out if the scale and rotation invariant wavelet transformation can better
distinguish true polyps from false detections.

The proposed method has a potential advantage in that it is relatively insensitive to whether a
polyp is or is not on a fold. The camera viewed polyp detections either from the centerline or
from polyp candidate average normal direction, and the camera distance was adjusted to view
a 7.5 to 9.1 mm square area on the colon surface. This left only a small area in the resulting
image for the background if the detection was a true polyp. We can see this from Figure 10,
where the first and the fourth images in the first row are true polyps on folds, but the percentage
of fold in the image is small. Only one polyp on a fold (Figure 16(a)) obtained a lower score.

Our proposed wavelet-based postprocessor will be incorporated into a CAD system that also
identified polyps 10 mm and larger. Detections of possible medium-sized polyps would be
subjected to the additional wavelet-based postprocessing to further reduce false positives. In
practical usage of CTC CAD systems, the optical colonoscopy polyp size is not available; size
classification would be done instead by automated size measurement which has been shown
to be an accurate substitute (58).

7 CONCLUSION
In summary, we have designed a postprocessing method for reducing false positives for our
CTC CAD system by transforming the 3D polyp classification problem to a 2D texture analysis
task. This work was inspired by the way radiologists interpret CTC data in endoluminal
flythrough reading. We first took a snapshot of each CTC CAD detection by rendering the
colon surface using a set of optimized parameters. We then used an enhanced wavelet analysis
method to extract a set of features for each resulting snapshot. Finally, we utilized a feature
and committee selection algorithm to identify a set of good features, and used the selected
committee classifier to discriminate false positives from true polyps. The proposed methods
reduced false positives by 56.61% from 12.4 to 5.38 false positives per patient at a sensitivity
of 71.11% for 6-9 mm colonic polyps. This post-processing method may lead to improves for
CAD performance and enhance the ability of CAD to assist radiologists reading CTC.
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Figure 1.
A block diagram representation of our CTC CAD system and the proposed wavelet-based
postprocessor for false positive reduction. The proposed method is shown as the second
classifier above.
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Figure 2.
Left: one original true polyp image. Right : wavelet decomposed images (5 level), where Vi,
Di and Hi denote the vertical, horizontal and diagonal directions at level i.
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Figure 3.
Process for taking snapshots of polyp detections. The camera and lighting source locations are
adjusted to maximize polyp surface information in the resulting image.
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Figure 4.
Viewpoint entropy of ran object with a 3D mesh representation, where the lower part is the
projection result of the 3D mesh under the specified projection direction.
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Figure 5.
The search path to efficiently locate a good viewpoint. The dotted line represents the colon
centerline, C is the polyp centroid, D is the nearest centerline point to C, and PN is the average
normal of the polyp surface. We first locate D and extend D to B and E, the beginning and end
search points. We then perform a coarse search for the optimal centerline viewpoint Pc between
B and E. Finally, we refine Pc to Pf using a higher resolution search.
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Figure 6.
Algorithm outline for locating the optimal viewpoint along the colon centerline.
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Figure 7.
Viewpoint entropy caculation. C is the polyp centroid, Pc is a viewpoint which determines the
projection direction, Vi represents one vertex on the mesh and Fi is one face in the mesh.
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Figure 8.
Camera parameters setting
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Figure 9.
FROC curve of our CTC CAD system before application of the wavelet-based postprocessor.
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Figure 10.
CTC CAD detection samples: Polyp images.
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Figure 11.
CTC CAD detection samples: False positive images
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Figure 12.
FROC curve for the operating point 1 in Figure 9 following false positive reduction using the
wavelet-based postprocessor. B, C and D are three chosen points that will be further analyzed
in the bootstrap experiment (see Figure 14).
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Figure 13.
FROC curve for the operating point 2 in Figure 9 following false positive reduction using the
wavelet-based postprocessor. A is the chosen point that will be further analyzed in the bootstrap
experiment (see Figure 14).
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Figure 14.
Original FROC and bootstrap results for the four chosen operating points. The length of the
error bars are twice the standard deviation associated with the corresponding operation point.
Point A was chosen on the FROC in Figure 13 and points B, C, D were chosen on the FROC
curve in Figure 12.
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Figure 15.
A 6 mm polyp with the lowest score (0.09) given by the committee classifier in the wavelet-
based postprocessing experiment for the chosen point A in Figure 13. There was a hole in the
colon surface due to poor colon surface segmentation. A score close to ‘0’ indicates a detection
that is unlikely to be a polyp while a score close to ‘1’ denotes a detection that is very likely
to be a true polyp.
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Figure 16.
Three polyps having relatively low scores in the wavelet-based postprocessing experiment for
the chosen point A in Figure 13. Polyps touched (a) a fold, (b) an air-fluid boundary or (c)
shadows.
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