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Abstract

Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also 

provide frequency information that can be derived from the phase of the signal. However, because 

of confounding effects of instrumental and physiological origin, BOLD related frequency 

information is difficult to extract and therefore rarely used. Here, we explored the use of high field 

(7 T) and dedicated signal processing methods to extract frequency information and use it to 

quantify and interpret blood oxygenation and blood volume changes. We found that optimized 

preprocessing improves detection of task-evoked and spontaneous changes in phase signals and 

resonance frequency shifts over large areas of the cortex with sensitivity comparable to that of 

magnitude signals. Moreover, our results suggest the feasibility of mapping BOLD quantitative 

susceptibility changes in at least part of the activated area and its largest draining veins. 

Comparison with magnitude data suggests that the observed susceptibility changes originate from 

neuronal activity through induced blood volume and oxygenation changes in pial and intracortical 

veins. Further, from frequency shifts and susceptibility values, we estimated that, relative to 

baseline, the fractional oxygen saturation in large vessels increased by 0.02–0.05 during 

stimulation, which is consistent to previously published estimates. Together, these findings 

demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency 

shifts and quantitative susceptibility changes.
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INTRODUCTION

The use of the phase of magnetic resonance imaging (MRI) signals has proven very useful to 

investigate human brain anatomy because of the increased contrast between and within the 

gray and the white matter, and the information it provides complementary to magnitude 

signals for quantification purposes [Duyn et al., 2007].

In functional MRI (fMRI), phase in part reflects blood susceptibility, whose changes form 

the basis of the blood oxygenation level dependent (BOLD) effect on magnitude fMRI 

signals. The complementary information it contains could potentially be used to untangle 

changes in blood fractional oxygen saturation from changes in blood volume. Blood 

fractional oxygen saturation is an indicator of oxygen delivery and metabolism, and may 

provide information about tissue function and viability. Current methods employed to 

estimate changes in the blood fractional oxygen saturation rely on the use of sophisticated 

fMRI acquisition sequences and modeling methods [He and Yablonskiy, 2007] or of 

invasive procedures such as positron emission tomography [Ito et al., 2005].

Nevertheless, unlike in structural imaging, the use of phase in fMRI has been very limited so 

far, primarily because of difficulties of its extraction and interpretation. Phase-based fMRI 

activity maps have had limited signal-to-noise ratio and only show robust changes with brain 

activation in the larger veins [Menon, 2002; Nencka and Rowe, 2007]. A problem with 

phase-based fMRI is the presence of large instrumental and physiological noise fluctuations 

over time that obscure changes related to neuronal activity [Petridou et al., 2009; Hagberg et 

al., 2012]. Previous attempts at reducing noise in phase fMRI have included the use of noise 

regressors derived from physiological monitoring [Petridou et al., 2009], the application of 

spatial high-pass filters [Hagberg et al., 2012], or correction of the estimated frequency 

offsets with the simulated phase rewinding method [Hahn et al., 2009].

In this work, we aimed at improving the acquisition and processing of phase-based fMRI 

activity time-courses. For this purpose, we used advanced technology (7 T scanner, array 

detectors) and optimized preprocessing to account for instrumental and physiological noise 

in phase fMRI images acquired during stimulation and at rest. Crucially, we removed the 

background spatial low-frequency phase variation by subtracting spatially fitted polynomials 

on a slice-by-slice basis, and examined the residual BOLD changes in the phase time-course. 

Further, we computed BOLD frequency shifts from phase values, and estimated quantitative 

susceptibility changes in the activated area and large draining veins (for instance the sagittal 

sinus) using methods developed previously for structural susceptibility imaging. Finally, in 

an initial application, we aimed at estimating the functional change in blood fractional 

oxygen saturation in large veins during task performance from BOLD frequency shifts and 

susceptibility values computed from phase signals. Part of this work was previously 

published in abbreviated abstract form (Bianciardi et al., 2011a; Bianciardi et al., 2012).
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METHODS

Experimental Design

Groups of eight (four males, four females, age 30 ± 3 years, Experiment 1) and six healthy 

subjects (three males, three females, 33 ± 3 years, Experiment 2) participated in two separate 

experiments, after giving written informed consent. The human subject protocol was 

approved by the Institutional Review Board (IRB) of the National Institutes of Health 

(NIH).

The first experiment (Experiment 1) was performed to investigate if small BOLD phase 

signal changes can be untangled from confounding noise contributions by optimized 

preprocessing, and to study the signal change dependence on echo time; in the second 

experiment (Experiment 2), we studied the feasibility of computing quantitative BOLD 

susceptibility changes from phase signal changes.

Two conditions were investigated: (1) visual fixation on a central dot during presentation of 

a visual stimulus (black/white checkerboard, flickering at 7.5 Hz, block-design: 34.5 s OFF/

34.5 s ON cycle); (2) resting with the eyes closed.

Image Acquisition

In Experiment 1, multi gradient-echo (GRE) echo-planar imaging (EPI) BOLD-fMRI was 

performed on a 7 T General Electric Signa MRI scanner (GE-Medical-Systems, Waukesha, 

WI), using a 32 channel receive-only coil (Nova Medical, Wilmington, MA) and 

parameters: echo times (TEs) = [15.0, 31.5, 48.0, 64.5, 81.0] ms, repetition time (TR) = 2.3 

s, flip angle = 65°, number of slices = 4, slice orientation = oblique axial/coronal (rotation 

angle with respect to axial orientation ranging between 7° and 33° across subjects), voxel-

size = 2.5 × 2.5 × 2.5 mm3, field of view = 240 × 180 mm2, number of scans = 158, SENSE 

rate = 3. Considering an in vivo measured blood T1 of ~ 2.6 s at 7 T [Rooney et al., 2007], 

the chosen flip angle (65°) maximizes signal (Ernst angle) for the blood compartment. This 

is slightly suboptimal for gray matter (a cortical gray matter T1 of ~ 2.1 s, Rooney et al., 

2007, yields an Ernst angle of 70.4°). Nevertheless, the conservative low value of the target 

flip angle may prevent signal loss in regions with B1 hot spots typical of high field MRI. In 

Experiment 2, data coverage in the z-direction was increased to facilitate the calculation of 

magnetic susceptibility from phase data. For this purpose, the same GRE-EPI parameters as 

in Experiment 1 were employed except for: TEs = 31.5 ms, number of slices = 40, slice 

orientation = coronal. The first image was acquired with flip angle set to zero to estimate 

coil noise levels for image reconstruction. Scans 2–4 (approach to steady-state) were 

discarded and scans 5–7 were used as reference for coil sensitivity mapping. Remaining 

scans were used for brain activity analysis. Head motion was minimized by the use of foam 

pads, placed in the space between the interior coating of the MRI detector array and the 

subject’s head.

A high-resolution gradient-recalled echo image was also acquired (TE = 16 ms, voxel size = 

0.3125 × 0.3125 × 2.5 mm3, TR = 1.2 s, flip angle = 70°, same number of slices and slice 

orientation of GRE-EPI images). Real-time modulation of B0 shims up to the second order 

was applied to compensate for large-scale B0-field fluctuations induced in the head by 
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respiration [van Gelderen et al., 2007]. This was carried out on average across the brain, and 

finer spatial scale was removed retrospectively (see next paragraph). We also recorded the 

timing of physiological cycles by the use of a pulse-oximeter and respiratory bellow 

provided with the MR scanner, at a sampling rate of 250 Hz.

Magnitude and Phase Image Processing

Data processing for Experiments 1 and 2 differed only in a few details which are specified 

below.

In summary, for both Experiment 1 and 2, the data processing stream included: image 

reconstruction; phase data preprocessing; physiological and instrumental noise correction; 

slice timing, and spatial alignment of magnitude and phase data; computation of magnitude 

% signal changes and fractional frequency shifts; computation of stimulus-related and 

resting state activity maps for magnitude, and phase data. In addition to the steps above, for 

Experiment 2 only, susceptibility changes were computed from fractional frequency shifts, 

and activity maps were computed for the obtained susceptibility changes.

For both experiments, multiple coil images were combined to yield complex images (off-

line SENSE image reconstruction), and then magnitude and phase images were computed 

(IDL 8.1, Exelis Visual Information Solutions, Boulder, CO).

For each TE and each voxel, phase images were preprocessed as follows (Matlab 7.13, The 

Mathworks, Natick, MA): the first value of the phase time-course (Φt0) was subtracted from 

each time-point (Φt), resulting in ΔΦ = Φt– Φt0; the phase time-course was then unwrapped 

by assuming time-continuity and the linear drift over time was removed. For each TE, the 

background spatial low-frequency phase variation was fitted for each slice and for each 

time-point with a spatial polynomial function (model orders 2, 4, 6, 8 were investigated). 

Spatial polynomial functions are also used during real time shimming [van Gelderen et al., 

2007]. These signal fluctuations were attributed to drifts over time and to the respiratory 

chest motion (see Results and Table I) and were employed, on a voxel-by-voxel basis, as 

noise regressor (Φnoise-regressor) for both magnitude and phase fMRI data.

Physiological and instrumental noise correction was then applied on both magnitude and 

pre-processed phase images on a slice-by-slice basis, including five different noise sources, 

as follows. (1) Instrumental and physiological drifts over time were accounted for by third 

order polynomials; drifts over time might arise from several sources of instrumental 

(radiofrequency transmit/receive, gradient heating, field of superconducting magnet, etc.) 

instability [Smith et al., 1999] but also from physiological sources of instability [Yan et al., 

2009]; drifts over time were therefore estimated from the regression coefficients of the 

polynomial fitting. (2) Effects of chest motion associated with the respiratory cycle were 

modeled with Φnoise-regressor; the variance explained by Φnoise-regressor was compared 

with that of four respiratory RETROICOR regressors [Glover et al., 2000], employed in 

previous work [Petridou et al., 2009] to reduce noise in phase fMRI signals. (3) Effects 

related to the phase of cardiac cycle were modeled with four cardiac RETROICOR 

regressors [Glover et al., 2000]. Signal fluctuations due to change in (4) the respiratory 

volume rate and (5) cardiac rate [Birn et al., 2006; Shmueli et al., 2007] were accounted for 
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by a dual-lagged model [Bianciardi et al., 2009, 2011b; lags = −2.3s and +11.5 s for 

respiration volume rate regressor, and −23 s and +4.6 s for cardiac rate regressor]. 

RETROICOR, respiration volume rate and cardiac-rate regressors were estimated from 

physiological recordings according to strategies described respectively in Glover et al., 

2000, Birn et al., 2006, and Shmueli et al., 2007. For magnitude images, physiological and 

instrumental noise was regressed out using a design matrix comprising noise regressors 1–5. 

For phase images, noise source (2) was first subtracted and then noise sources (1), (3)–(5) 

regressed out. For Experiment 1, full physiological and instrumental noise correction as 

explained above was performed for six subjects only, because for two subjects, for technical 

reasons, real-time shimming did not run and physiological recordings were not saved. For 

these two subjects, only drifts and Φ noise-regressor were regressed out.

Before further preprocessing was applied, for Experiment 1 we evaluated the contribution of 

each noise regressor to magnitude and phase signal fluctuations, and in particular we 

compared the performance of Φ noise-regressor to that of four respiratory RETROICOR 

regressors as model for noise source (2). To this end, we estimated the variance each noise 

regressor explained in a region of interest in the visual cortex (ROIVC) and in the gray 

matter (ROIGM). ROIVC was defined from the task activation data by thresholded 

correlation of the magnitude images (TE = 31.5 ms) with a stimulus regressor (P < 0.05 

Bonferroni corrected, both positive and negative activations). This was done after running 

the preprocessing [instrumental/physiological noise correction included only noise source 

(1) to avoid bias in the comparison of different correction procedures employed for noise 

source (2)]. ROIGM was identified [see also Bianciardi et al., 2009] from thresholded 

correlation with the whole brain signal (P < 0.05 Bonferroni corrected). For the noise source 

estimation, a set of nested design matrices [see Bianciardi et al., 2009 for details] was used 

including noise sources (1)–(5). The variance explained by each noise source was computed 

at the voxel level as the difference between the coefficients of determination adjusted by the 

degrees of freedom of two consecutive regression models, multiplied by 100. The stimulus 

regressor was included as an additional source of variance for the stimulus session only.

After physiological and instrumental noise correction, further processing of magnitude and 

phase fMRI data included: slice-timing (by FMRIB Software Library, FSL4.1, Oxford, UK), 

motion correction (by custom routines implemented in IDL 8.1 software, Exelis Visual 

Information Solutions, Boulder, CO), and co-registration between different volumes 

(FSL4.1). Finally, fluctuations in signal magnitude were converted to % signal changes 

relative to their time average (M/M0, %) by dividing the signal at each time point by the 

mean signal across time. Fractional frequency shifts (Δω/ω0, ppm) were computed from 

phase signal changes (ΔΦ = Φt – Φt0) according to: Δω/ω0 = (ωt –ωt0)/ω0 = –ΔΦ/

(2π·γTB0TE) (γTB0= 298 MHz; the minus sign before ΔΦ was used to restore the proper sign 

convention for frequency shifts on our MRI system).

For Experiment 2 only, susceptibility values Δχ (Δχ = χt – χt0) were computed for each 

voxel and time-point from Δω/ω0 by means of Fourier-based computation by a masked de-

convolution filter [Shmueli et al., 2009; Wharton et al., 2010], according to:

Bianciardi et al. Page 5

Hum Brain Mapp. Author manuscript; available in PMC 2014 December 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(1)

F(k) was set equal to 0 if |1/3 – k2z/k2|< 0.3. Equation (1) was applied to data of Experiment 

2 only (data volume rotation was not required because of coronal slice orientation). 

Importantly, the de-convolution filter is a linear kernel, because both the direct and inverse 

Fourier transforms are linear functions; this means that the computed susceptibility changes 

(Δχ) on the left side of Eq. (1) represent the difference between the susceptibility at a certain 

time point (χt) and the susceptibility of the first time-point (χt0) of the time-course.

For a voxel containing a combination of capillaries, venules, and veins, the susceptibility 

difference during activation and baseline (ΔχA-B) is related to both blood fractional oxygen 

saturation (γ, range 0–1) and blood volume (CBV) changes according to:

(2)

with Δχoxy-deoxy the susceptibility difference between fully oxygenated and fully 

deoxygenated hemoglobin (0.18 ppm was employed, Weisskoff and Kiihne, 1992), Hct the 

hematocrit value (0.4 was used, Guyton and Hall, 2000), and the subscripts A and B 

representing the active and baseline states respectively.

Stimulus-related activity maps of M/M0 and phase signals (or frequency shifts Δω/ω0 and for 

Experiment 2 only susceptibility changes Δχ) during stimulation were obtained by linear 

regression (Analysis of Functional Neuro Images (AFNI) tool, NIH, Bethesda, MD) of each 

voxel signal with a stimulus regressor (statistical threshold: P < 0.05 Bonferroni corrected). 

The stimulus regressor resulted from the convolution of stimulus functions (based on the 

timing of stimulation events) with the Statistical Parametric Mapping (SPM, London, UK) 

standard hemodynamic response function. M/M0 and phase spontaneous activity maps at rest 

were generated by computing the correlation of the average time series across voxels of the 

magnitude stimulus-related activity map with the signal in each voxel, after temporal low-

pass filtering at fC = 0.07 Hz (P < 0.05 Bonferroni corrected). The degrees of freedom were 

corrected for the number of noise regressors included in the preprocessing (stimulus and 

resting data), and for low-pass filtering (resting data only).

For each TE and voxel, the amplitude of magnitude (AmplitudeM/M0) and phase 

(AmplitudeΔΦ) signal fluctuations was computed as the signal standard deviation over time. 

The amplitudes of magnitude and phase signal fluctuations were fitted linearly with TE, 

according respectively to: AmplitudeM/M0 (%) ≅ −ΔR2
* TE + AmplitudeM/M0 (TE = 0), and 

AmplitudeΔΦ = −2πγTB0 Δω/ω0 TE + AmplitudeΔΦ (TE = 0) (ΔR2
* is the transverse 

relaxation rate change).

Estimation of Changes in Fractional Oxygen Saturation in Large Veins

For Experiment 1, a voxel in the sagittal sinus was identified (see for example Figure 5B, 

blue arrow) by inspection of the high-resolution GRE image. The average signal change in 
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M/M0 (<ΔMA-B/M0>) and Δω/ω0 (<ΔωA-B/ω0>) during stimulation (ON periods) with 

respect to baseline (OFF stimulation periods) was calculated.

Assuming a cylindrical vessel and no partial volume effects, the average change in fractional 

oxygen saturation during stimulation with respect to rest (<ΔγA-B>) was calculated from 

<Δω/ω0> as follows [Ogawa et al., 1993]:

(3)

with: θ the angle between the vessel axis and B0, Δχoxy-deoxy and Hct as in Eq. (2). Equation 

(3) assuming a cylindrical model was used only for large vessels and only for data of 

Experiment 1.

To overcome frequency shifts dependence on vessel orientation, we also computed changes 

in fractional oxygen saturation from susceptibility changes [as obtained from Eq. (1)] in 

Experiment 2 which provided extended brain coverage in the z-direction. The average signal 

change in Δχ (<ΔχA-B>) during stimulation with respect to baseline was calculated in large 

vessels; assuming ΔCBV = 0, CBVB = 1 in Eq. (2), <ΔγA-B> was then computed from 

<ΔχA-B> according to:

(4)

RESULTS

Optimization of fMRI Phase Image Preprocessing

During calculation of the phase, each preprocessing step removed a substantial amount of 

temporal signal instability attributed to instrumental and physiological noise. As seen from 

comparing Figure 1B with A, after subtraction of the first phase image of the time-series, 

voxel-by-voxel unwrapping over time and removal of linear drift over time, phase wraps 

over space and over time and very slow fluctuations are removed: note that the dynamic 

range of phase variation across one slice is decreased by an order of magnitude. 

Nevertheless, low frequency spatial variation of the phase remains, as judged from the 

amplitude and time course of the spatial polynomial fit (Fig. 1C, left and right panels 

respectively). This high temporal frequency variation follows the respiratory cycle (shown 

in Fig. 1C right panel, blue). After subtraction of spatially fitted polynomials, the resulting 

phase image is much more homogeneous (Fig. 1D, left panel), and the time-course has a 

lower content of high temporal frequency fluctuation (Fig. 1D, right panel, black). The 

remaining phase variation resembles that of the magnitude time-course (Fig. 1D, right panel, 

magenta) as well as the stimulus regressor (Fig. 1D, right panel, red).

Between 45 and 50% of the variance of the Φnoise-regressor was explained by drifts over 

time and by the respiratory cycle (Table I). Importantly, the stimulus regressor (block-design 

session only) did not explain a significant portion of variance of the Φnoise-regressor 

(<0.24%).
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The relative contribution of various noise sources and the stimulus regressor in phase and 

magnitude data in ROIVC is shown in Figure 2. Similar results were obtained for 

ROIGM(results not shown). The Φnoise-regressor explained much more (paired t-test, P < 

0.002 for both conditions) variance in phase data (> 64.1%) than the RET-ROICOR 

regressors (< 20.2%), and also higher variance in magnitude data (P < 0.05 for the stimulus 

condition, and P < 0.002 at rest). Therefore, for subsequent analysis, we employed the 

Φnoise-regressor to analyze phase and magnitude fMRI signal fluctuations.

On average across subjects (± s.e.), the voxel-by-voxel drift contributions as a fraction of 

total image intensity were 2.1 ± 0.2% and 1.9 ± 0.1% in magnitude data, on average across 

voxels of ROIVC and ROIGM respectively; drifts produced voxel-by-voxel phase signal 

fluctuations of 0.10 ± 0.02 radians in both ROIVC and ROIGM.

BOLD Activity in Magnitude and Phase Signals

To evaluate whether the correction of physiological noise including the Φnoise-regressor 

increased the sensitivity of phase images to BOLD signal changes, we calculated the 

percentage of commonly activated voxels in phase and magnitude images at several 

processing stages. The rationale was that phase and magnitude images should show activity 

in roughly the same areas, and little overlap would point to the presence of confounding 

signals. Without any correction, only few voxels appeared in phase activation maps (see Fig. 

3A, for instance during visual task, subjects 1–2), and large areas of spurious correlation 

were sometimes seen during rest (see Fig. 3A, subject 1). Correction with only the 

RETROICOR respiratory regressors reduced phase activity to a few isolated spots (Fig. 3B). 

In contrast, when using the Φnoise-regressor, phase activity maps more closely resembled 

the magnitude activity maps (Fig. 3C). This improved noise filtering with the Φnoise-

regressor is reflected in the significantly increased (P<10−5) overlap in activity between 

magnitude and phase images (Fig. 3D). The order of polynomial spatial fitting (used to 

derive the Unoise-regressor) did not significantly affect overlap, and we used fourth order 

polynomials for subsequent analysis. The Φnoise-regressor worked well also for the two 

data-sets acquired without performing real-time shimming (the overlap in activity between 

magnitude and phase images was 22 and 36% during stimulation, and 31 and 43% at rest, 

for the two subjects, respectively). A notable feature in Figure 3A–C is the presence of both 

positive and negative correlations in magnitude and phase images. For the phase images, 

these are expected based on the dipolar nature of field changes associated with point-source 

susceptibility changes; negative magnitude correlations may result from neuronal inhibition 

or an imbalance between blood volume and blood flow effects.

After physiological noise correction with inclusion of Φnoise-regressor, similar time-courses 

were observed for phase and magnitude signals. For the task data both strongly resembled 

the stimulation paradigm, suggesting they both primarily reflect BOLD activity (Fig. 4A). 

The absolute correlation value between magnitude and phase time-courses (averaged across 

voxels, and then average ± s.e. across subjects, TE = 31.5 ms) was 0.52 ± 0.02 and 0.42 ± 

0.01 during visual task and at rest, respectively, P< 10−8 (only time-courses in common 

positive and negative magnitude and phase activity maps were considered, P < 0.05 

Bonferroni corrected).
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As expected for a BOLD dominated contrast mechanism, fractional magnitude and phase 

changes increased approximately linearly with TE (Fig. 4B and C). The slope of a linear fit 

of the amplitude of M/M0 signal with TEs (average ± s.e. across subjects)  of –0.51 ± 

0.05 Hz and –0.27 ± 0.02 Hz, yielded respectively, during stimulation and rest.

Estimation of Changes in Fractional Oxygenation from Frequency Shifts in the Sagittal 
Sinus

For Experiment 1, we inspected more closely Δω/ω0 and M/M0 during stimulation in the 

sagittal sinus (Figure 5B, blue arrow, two representative subjects). The strong anti-

correlation (mean r-value ± standard error across eight subjects 5 20.63 6 0.07, P < 102−16) 

between the Δω/ω0 and M/M0 time-courses (Fig. 5E) confirmed the BOLD origin of Δω/ω0 

signal fluctuations in the sagittal sinus. In the sagittal sinus, <ΔωA-B/ω0 was (−1.6 ± 0.3) ppb 

(mean ± standard error across eight subjects); <ΔγA-B computed using Eq. (3) (θ = (14 ± 3)°, 

mean ± standard error across subjects) was 0.040 6 0.009 (mean ± standard error across 

eight subjects); for each subject, h was measured from the data accounting for the actual 

oblique slice rotation angle.

Quantitative BOLD Susceptibility Changes

Analysis of the data obtained in Experiment 2 revealed widespread susceptibility changes 

(Δχ) for all the subjects (see, in Figure 6A, two representative subjects, TE = 31.5 ms). The 

percentage (mean ± standard error across subjects) of overlapping voxels between Δχ and 

M/M0 activity maps relative to the number of voxels in M/M0 activity maps was 25.1 ± 

2.5%; the percentage of overlapping voxels between Δω/ω0 and M/M0 was 35.8 ± 2.6%. The 

observed quantitative Δχ changes in brain (containing tissue and vessels) are directly related 

to blood fractional oxygen saturation and blood volume changes and overcome non local 

effects and the geometry dependence of Δω/ω0 signals.

For instance, for a large vein with θ 80° (indicated by the blue arrow, in Figure 6A, for 

subject 2) positive intravascular effects and negative extra-vascular effects are present in 

Δω/ω0 signals, in agreement with the expected dipolar fields around areas with susceptibility 

shifts. After deconvolution according to Eq. (1), this dipolar activity pattern in Δω/ω0 signals 

reduces to negative intravascular only effects in Δχ signals. This intravascular decrease in χ 

signals is caused by increased blood fractional oxygen saturation. The effects for a large 

vein (sagittal sinus) oriented parallel to B0 (measured θ = 0°) are shown in Figure 6A, 

subject 1. M/M0 and Δχ [computed using Eq. (1)] time courses extracted from these two 

veins (subject 1 and 2, respectively) displayed a significant negative correlation (P < 10−31, 

Figure 6B), as expected for increases in blood fractional oxygen saturation. In these two 

veins (subject 1 and 2, respectively), the increase in fractional oxygen saturation <ΔΥA-B> 

was 0.042 and 0.015, as computed from Eq. (4) (calculated values for <ΔχA-B> were −3.0 

and −1.1 ppb respectively). Corresponding values for <ΔMA-B/M0> were 5.7 and 6.7%, 

respectively. At the group level, in the sagittal sinus, <ΔΥA-B> computed using Eq. (4) was 

0.048 6 0.009 and <ΔχA-B> was (−3.5 ± 0.6) ppb (mean ± standard error across six 

subjects). The intersubject variability in ΔΥA-B> in the sagittal sinus correlated (P < 0.05, 

see Figure 6C) with the intersubject variability in magnitude signal changes («ΔMA-B/M0«) 

in the visual cortex (for each subject, «ΔMA-B/M0«; was computed averaging <ΔMA-B/M0> 
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across voxels showing positive correlation of M/M0 signal changes with the stimulus 

regressor-P < 0.05 Bonferroni corrected).

Susceptibility changes were not confined only to the largest vessels, but also appeared to 

involve the cortex, probably because of BOLD effects in oriented intracortical and pial veins 

(Fig. 6A). Interestingly, in the visual cortex, the highest absolute <ΔχA-B> and <ΔMA-B/M0> 

occurred for low values of M0 (Fig. 6D). This probably relates to higher blood volume 

fractions in these regions, because blood  is shorter than tissue  and higher blood 

volume fractions result in lower M0. For instance, according to Eq. (2), a <ΔχA-B> = − 3.6 

ppb is expected for a large vein (for instance a pial vein or a sinus) with YA = 0.65, ΔYA-B = 

0.05, CBVB = 1, ΔCBVA-B = 0, while a <ΔχA-B> = −0.18 ppb is expected for few 

intracortical veins contained in the same voxel with YA = 0.75, ΔYA-B = 0.10, CBVB = 0.05, 

ΔCBVA-B = 0.01.

DISCUSSION

In this study we explored the feasibility to use phase signals for the detection of BOLD 

activity and quantify associated changes in tissue susceptibility related to changes in blood 

fractional oxygen saturation and in blood volume.

Optimization of fMRI Φ Image Processing

BOLD susceptibility changes in response to activation can be extracted from phase signals 

by removing confounding effects due to instrumental and physiological sources, which so 

far have limited effective use of phase signals.

We found that instrumental and physiological noise represented a major source of signal 

variance in phase signals (about 94% during stimulation), compared to the contribution of 

BOLD signal fluctuations (about 1%). In contrast, in magnitude data, the contribution of 

noise sources (variance explained of about 24%) was comparable to that of BOLD signal 

changes (25% variance explained). This is in line with previous work [Hagberg et al., 2012] 

showing that noise from physiological and instrumental sources contributes significantly 

more to the phase than to the magnitude signal instability. Our results also indicate the need 

of optimized strategies to disentangle tiny BOLD contributions from large signal 

fluctuations due to noise.

Our optimized preprocessing of phase data was based on a time-point by time-point removal 

of spatial low-frequency variation, estimated from phase images with a spatial polynomial 

function. The spatial polynomial fit accounted mainly for slow signal fluctuations over time 

(signal drifts) and for signal changes related to the phase of the respiratory cycle (Fig. 1, and 

Table 1). Our slice-by-slice approach complements the prospective noise correction 

performed by real-time shimming [van Gelderen et al., 2007], which also employs 

polynomial models of phase variation but on average across the whole brain.

Here, we demonstrated that the MRI signal to noise ratio is adequate to fit low-spatial-

frequency phase variation by a spatial polynomial function to each time-point of phase EPI 

data. We also demonstrated that the resulting time-course obtained from this fit can be 
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employed on a voxel-by-voxel basis as a noise regressor (Φnoise-regressor) both for phase 

and for magnitude fMRI data. The effectiveness of the Φnoise-regressor as a regressor for 

magnitude data does not depend on the sign of the correlation between phase and magnitude 

signal changes (the sign is accounted for in the regression). We found (Fig. 2) that the 

Φnoise-regressor accounted better (>64% of the variance) for the spatially varying phase 

effects of respiration in the brain than regressors (<21% of the variance) derived from 

respiratory recordings [RETROICOR respiratory regressors, Glover et al., 2000]. Its 

performance was favorable compared to that of the RETROICOR respiratory regressors 

even for magnitude images. Previous work [Petridou et al., 2009] has shown that although 

RETROICOR regressors accounted for large-scale effects induced by respiration in phase 

signals, they incompletely accounted for physiological noise in phase signals in the gray 

matter for echo time greater than or equal to 30 ms. The apparently superior performance of 

the Φnoise-regressor may be related to the fact that it treats time-points separately, and thus 

more generally accommodates a broad variety of noise sources irrespective of their temporal 

dynamics, including sources that are not cyclic in nature (like respiratory and cardiac 

cycles). RETROICOR regressors account only for effects related to the phase of respiratory 

(or cardiac) effects. The ability of RETROICOR regressors to capture such sources is 

dependent on the model order used, and may be rather limited with the second order model 

employed in the standard implementation of RETROICOR [Glover et al., 2000] and in the 

current study. The proposed processing method based on the use of Φnoise-regressor was 

also effective in reducing phase noise and unveiling BOLD phase changes for the two data-

sets acquired without real-time B0 shimming. We therefore believe that real-time B0 

modulation may not be necessary to detect BOLD phase variations; rather, such variations 

may be at least partially recovered through the proposed use of Φnoise-regressor or by any 

other effective processing method. Finally, we found that Φnoise-regressor does not remove 

stimulus related variance, since the stimulus regressor explained a negligible portion of its 

variance (Table I). Together, these results demonstrate that the proposed image-based pre-

processing procedure of phase signals allows one to disentangle instrumental and 

physiological noise from signals of interest and is advantageous with respect to previously 

employed methods based on external physiological monitoring.

The results of this work obtained at 7 T may also translate to lower field strength. Although 

the BOLD related phase change will be proportionally smaller at lower field strength, so will 

be the major (nonthermal) noise sources; in addition, the thermal noise contribution may be 

minimized by increasing the voxel size [Triantafyllou et al., 2005]. Thus, depending on the 

scan conditions, the ability to extract BOLD related phase and frequency changes may not 

be substantially different at 3 T or even 1.5 T. Nevertheless, some sensitivity loss may occur 

at low field when considering the partial volume effects that occur when increasing the 

voxel size.

BOLD Origin of Magnitude and Phase Signal Fluctuations

After noise correction including the subtraction of spatially fitted polynomials, we obtained 

phase activity maps that substantially (~40%) overlapped magnitude maps and involved a 

substantial area of the brain. This extends previous work that showed phase signal changes 

confined mainly to large sinuses and largest pial veins [Menon, 2002; Nencka and Rowe, 
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2007]. The distinct spatial distribution of activity in magnitude and phase data may reflect 

the different contribution arising from “randomly” distributed (e.g., capillary networks) 

versus oriented (e.g., large veins, pial, and intracortical veins) vessels to magnitude and 

phase signal changes, respectively.

Similar time-courses were observed for phase and magnitude signals, indicating the same 

BOLD origin of phase and magnitude signals changes, namely variation in both blood 

volume and fractional oxygen saturation. Temperature variations and direct effects of 

neuronal currents on the B0 field are therefore unlikely to explain the observed phase signal 

changes. Moreover, from multiecho magnitude and phase data, we estimated a change in 

transverse relaxation rate > of −0.51 and −0.27 Hz associated to a frequency shift Δω/ω0 

of 0.25 and 0.18 ppb during stimulation and at rest respectively. These values are of the 

same order of magnitude as those reported in the visual cortex during stimulation in 

previous work [Zhao et al., 2007] on animals at 9.4 T (  of −0.87 Hz, and a slope—i.e. 

angular frequency—of 1.86 radians/s for phase changes with respect to TE, which 

corresponds to 0.74 ppb).

Finally, our work demonstrated that BOLD changes in phase signals can be detected with 

comparable sensitivity to those in magnitude signals. This is visible from Figure 4A) (both 

M/M0 and ΔΦ are within the ±5% range around the baseline value), and also comparing 

(Figure 4B and C) the absolute value of  (i.e. 0.51 and 0.27 Hz during stimulation and 

rest, respectively) with the change in angular frequency in the same conditions (equal to 

2π·ΥTB0·Δω/ω0, that is 0.47and 0.34 radians/s, respectively).

Quantitative BOLD Susceptibility Changes

In previous work, information from fMRI phase signals was used to improve the specificity 

of BOLD magnitude signal changes, for example to suppress the signal from large 

vasculature [Menon, 2002], or to increase the sensitivity of BOLD signal changes by 

performing complex based fMRI analysis [Calhoun et al., 2002; Rowe and Logan, 2004; 

Lee et al., 2007].

In this work, we investigated the feasibility of computing dynamic BOLD susceptibility 

changes from phase signal fluctuations; we also investigated the feasibility of estimating 

quantitative information from BOLD frequency shift and susceptibility maps, namely 

changes in the blood fractional oxygen saturation in large vessels during stimulation.

We found significant BOLD susceptibility changes Δχ not only inside large vessels, but also 

in the parenchyma, probably indicating the contribution of oriented pial and intracortical 

veins. According to our calculations (see Results section), changes in blood fractional 

oxygen saturation and blood volume in intracortical and pial veins may induce changes in 

susceptibility ranging from fractions of a ppb to a few ppb. Our data (see also Figure 

6B,C,D) demonstrate that high field MRI has adequate sensitivity to detect such small 

susceptibility variations.

In contrast, blood oxygenation and blood volume changes in capillaries are not expected to 

be easily detectable in susceptibility images because of their pseudo-random orientation. 
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Interestingly, previous work [Lee et al., 2010] on phase structural imaging in rats showed a 

detectable contrast due to intracortical veins; this was not the case for the gray matter 

containing capillaries.

Computation of Δχ has certain benefits compared to ΔΦ and Δω/ω0, since it overcomes their 

geometry dependence and nonlocal effects. This means that the sign of the observed 

quantitative Δχ changes in tissue (for instance containing oriented intracortical veins) may 

directly depend on the counterbalancing effects of blood fractional oxygen saturation and of 

blood volume changes (and not on the vessels orientation with respect to B0). For example, 

negative Δχ changes in tissue may result from increased blood fractional oxygen saturation 

in intracortical veins, this effect dominating the counterbalancing effect of increased blood 

volume changes in the same vessels. Similarly, a shift of this balance could result in positive 

Δχ changes in tissue. Nevertheless, this suggests that it may be difficult to separate the 

contribution of fractional oxygen saturation changes from that of blood volume changes to 

the measured Dv changes in tissue. Δχ [Eq. (2)] is linearly related both to baseline values 

and to changes in blood oxygenation and blood volume (four unknown parameters); this is 

also true for magnitude BOLD signal changes. Untangling these contributions may require 

separate measurement of baseline blood volume and baseline fractional oxygen saturation, 

some modeling of the network geometry, and the combined use of magnitude and phase 

information.

Estimation of Changes in Fractional Oxygenation in Large Veins

In this work, we showed the feasibility of estimating changes in the blood fractional oxygen 

saturation in large vessels during stimulation. The obtained average change in blood 

fractional oxygen saturation (<ΔΥA-B>) in the sagittal sinus and large veins of 0.02–0.05 is 

close to previous findings obtained with PET imaging [Ito et al., 2005], which report a 

change in the oxygen extraction fraction (equal to minus the change in fractional oxygen 

saturation) during motor task with respect to baseline ranging between −0.01 and −0.12, 

depending on the brain area. Previous MRI work [Haacke et al., 1997] using gradient-

recalled-echo images and steady state conditions, reported in pial veins a change of 

fractional oxygen saturation of 0.14 during finger tapping with respect to baseline. Note that 

the change in blood fractional oxygen saturation in the sagittal sinus and large veins is 

expected to be smaller than that in the cortex due to downstream dilution from the activation 

site [Turner, 2002]. For vessels with their axis nearly parallel or perpendicular to B0, the 

estimate of <ΔΥA-B> from ΔωA-B/ω0 is robust (<4% error) provided small estimation errors 

(<10°) in the vessel orientation, but it becomes increasingly dependent on the vessel 

orientation with respect to B0 when it is close to the magic angle (54.74°). Computation of 

susceptibility changes instead overcomes the orientation dependence and local effects of 

«ΔωA-B/ω0«, though the measurement constrains the acquisition to coronal/sagittal slices (or 

to a thick axial slab, with a good z-coverage) and requires the use of procedures to compute 

susceptibility from frequency shifts [Shmueli et al., 2009; Wharton et al., 2010] that are not 

fully developed yet.

The method employed here to estimate the changes in the blood fractional oxygen saturation 

from standard gradient-echo EPI images complements previous work measuring baseline 
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values in large vessels by means of gradient-recalled-echo structural images [Jain et al., 

2010; Fan et al., 2012]. It is also an improvement in terms of temporal resolution with regard 

to previous work measuring changes in blood fractional oxygen saturation in large vessels 

by means of gradient-recalled-echo images under steady state conditions [Haacke et al., 

1997]. Nevertheless, our estimation of blood fractional oxygen saturation is restricted to 

large vessels “containing” the imaging voxel (for instance the sagittal sinus), and therefore is 

limited by the spatial resolution. The employed spatial resolution (2.5 mm isotropic) in this 

work is below the achievable resolution with cutting edge technology (around 1 mm in 

plane, or slightly below), and future work with higher spatial resolution EPIs should 

investigate if this method of estimating blood fractional oxygen saturation changes can be 

applied more locally (for example to pial veins).

CONCLUSIONS

Widespread BOLD-related phase changes, frequency shifts and susceptibility changes could 

be detected at 7 T with sensitivity comparable to that of magnitude signals by the use of 

optimized preprocessing to remove unwanted phase signal fluctuations. The measured 

susceptibility changes do not seem to be confined to venous sinuses, but rather indicate 

widespread involvement of pial and intracortical veins. BOLD susceptibility changes 

obtained from phase images are related to average quantitative susceptibility changes due to 

variation in blood volume and fractional oxygen saturation, and might provide 

complementary information to BOLD relaxation rate changes obtained from magnitude 

images.

We also demonstrated the feasibility of estimating the functional change in blood fractional 

oxygen saturation in large veins during task performance by analyzing BOLD frequency 

shift and susceptibility maps computed from the phase signal in gradient-echo fMRI. With 

activation, fractional oxygen saturation in the sagittal sinus and large veins was found to 

increase by about 0.02–0.05, consistent with estimates reported in literature.
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Figure 1. 
Importance of phase (Φ) preprocessing to remove noise instability. Shown for each of the 

preprocessing steps are: left panel) the phase image acquired at a specific single time-point 

(eighth TR, in this example) during visual stimulation for an example data-set; right panel) 

an example time-course (black curve) extracted from the voxel indicated by the red arrow in 

the top left panel. Preprocessing steps: (A) raw phase data obtained after image 

reconstruction; (B) phase data after subtraction of the first phase image of the time-series, 

voxel-by-voxel unwrapping, and removal of linear drift over time; (C) spatial polynomials 

(sixth model order) fitted on a slice-by-slice basis to the phase image shown in (B): this fit 

accounts for background spatial low-frequency phase variation mostly due to respiration as 

shown in (C), right panel (black: resulting phase time-course from spatial polynomial fitting 

= Φnoise-regressor; blue: respiratory trace sampled at the slice acquisition timing); in (C) 

right panel, we also show a zoomed view (60 s only) of the Φnoise-regressor and of the 

respiratory trace; (D) phase image obtained after subtraction of spatially fitted polynomials 

shown in (C) from phase image shown in (B). In (D), right panel, black: phase time-course; 

magenta: magnitude (M/M0) time-course in the same voxel; red: stimulus regressor 

(arbitrary units and offset). [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 2. 
The contribution of each source of signal fluctuation varies between phase and magnitude 

data, and strongly depends on noise modeling. The pie charts show the fMRI data variance 

explained [%, mean (standard error) across six subjects of averaged values across voxels in 

ROIVC] by different noise sources (see legend). We employed as regressor for effects 

related to the phase of respiratory cycle: (A) Φnoise-regressor; (B) four RETROICOR 

respiratory regressors. Note the much larger amount of variance explained by the Φnoise-

regressor in phase data than in magnitude data, and its larger contribution to the data, 
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compared to that of RETROICOR regressors. Note that variance due to drifts over time is 

accounted before further noise regressor use; therefore, the fraction of the variance 

explained by drifts over time is identical when using different noise regression techniques. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 3. 
The removal of background low-frequency phase (Φ) variation increases the sensitivity to 

BOLD signal changes in phase images and enables the visualization of phase activity maps 

highly co-localized to magnitude (M/M0) activity maps. Magnitude and phase activity maps 

during visual task (P < 0.05 Bonferroni corrected) and at rest (P < 0.005 Bonferroni 

corrected, for display purposes only) for two subjects (two slices shown, red/green = 

positive/negative activity) obtained: (A) without and (B) and (C) with physiological noise 

correction (temporal drifts were removed in (A–C). The same noise regressors were 

employed in (B) and (C), with the following exception: the effects related to the phase of 

respiratory cycle were modeled by (B) four RETROICOR respiratory regressors, and (C) a 

single Φnoise-regressor (derived from spatial polynomial fitting of phase images, 
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polynomial order = 4). In (D), we show the percentage (mean ± standard error across 

subjects) of overlapping voxels between magnitude and phase activity maps relative to the 

number of voxels in magnitude activity maps (P < 0.05 Bonferroni corrected, for both 

conditions) with and without physiological noise correction (see legend). In 1, three to six 

data from eight subjects were pooled, in 2 only six subjects were included because of 

missing physiological recordings for two subjects. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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Figure 4. 
BOLD origin of phase (Φ) and magnitude (M/M0) signal changes. (A) Averaged phase 

(black) and magnitude (magenta) time courses in common positive and negative magnitude 

and phase activity maps (echo time, TE = 31.5 ms, P < 0.05 Bonferroni corrected), for one 

subject during visual task and at rest (before averaging across voxels, timeseries in negative 

activity maps were multiplied by –1). The high temporal correlation between phase and 

magnitude time-courses indicates the same BOLD origin of phase and magnitude signal 

changes. For each condition, we plot respectively in (B) and (C) the amplitude of magnitude 

and phase signal fluctuations versus TE (average ± standard error across subjects) and a 

linear fit to each data-set. For each subject, the amplitude of signal fluctuations was 

measured as the standard deviation of the average time-course across voxels pertaining to 

both magnitude and phase activity maps. The increase in amplitude of signal fluctuations 

with TE was very similar between magnitude and phase data (the correlation between the 

two was 0.94 ± 0.03 and 0.99 ± 0.00 for the visual task and rest data, respectively, mean ± 

standard error across eight subjects). [Color figure can be viewed in the online issue, which 

is available at wileyonlinelibrary.com.]
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Figure 5. 
BOLD changes in magnitude (M/M0) and frequency shifts (Δω/ω0) signals in the sagittal 

sinus. For two subject participating in Experiment 1: (A) M/M0, and (B) Δω/ω0 activity 

maps (red/green 5 positive/negative correlation with stimulus regressor, P < 0.05 Bonferroni 

corrected) overlaid on a magnitude EPI image; (C) magnitude EPI image; (D) high-

resolution gradient-recalled echo image; (E) Δω/ω0 and M/M0 time-courses in the sagittal 

sinus (the sign of Δω/ω0 was inverted for display purposes only). The blue arrow indicates 

the location of the sagittal sinus. In subject 1 and 2, <ΔMA-B/M0> was = 10.5 and 11.0%; 

<ΔωA-B/ω0> was = –2.4 and –2.6 ppb, yielding a <ΔYA-B> of 0.048 and 0.054, respectively.
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Figure 6. 
Quantitative BOLD susceptibility changes. (A) M/M0, Δω/ω0, and Δχ activity maps during 

visual task (P < 0.05 Bonferroni corrected) for two subjects participating in Experiment 2 

(three slices shown, red/green = positive/negative activity) overlaid on a magnitude EPI 

image (showed without overlay on the fourth row). The blue arrow indicates the location of 

large vessels scrutinized in (B). (B) M/M0 (green solid line) and Δχ (blue solid line) time-

courses extracted from large vessels shown in (A) [sagittal sinus for subject 1; large vein for 

subject 2; the sign of Δχ was inverted for display purposes only; Δχ was computed using Eq. 

(1)]. (C) «ΔMA-B/M0« in visual cortex versus «ΔΥA-B« in the sagittal sinus across subjects 

(solid line = linear fit). (D) <ΔχA-B> and <ΔMA-B/M0> signal changes (average difference 

during stimulation with respect to baseline) versus average baseline magnitude values <M0> 

(the sign of <Δχ> was inverted for display purposes only; only voxels showing significant 
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positive M/M0 and negative Δχ signal changes were considered, P < 0.05 Bonferroni 

corrected). Results for subject 1 are displayed. Similar results were obtained for the other 

subjects. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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TABLE I

Variance (%) of the Φnoise-regressor accounted by instrumental noise, physiological noise, and stimulus 

regressor

ROIVC

TASK REST
ROIGM

TASK REST

Drifts 30.10 (7.83)a 25.85 (7.04) 32.09 (8.59) 27.21 (7.49)

Respiratory cycleb 21.42 (4.90) 16.52 (6.77) 20.15 (6.05) 16.16 (6.74)

Cardiac cycle 1.00 (0.73) 0.32 (0.26) 1.65 (0.86) 0.59 (0.43)

Respiratory volume rate 0.67 (0.34) 2.42 (0.71) 0.89 (0.54) 2.44 (0.69)

Cardiac rate 0.86 (0.32) 1.67 (0.55) 0.81 (0.31) 1.59 (0.55)

Stimulus regressor 0.24 (0.12) N/A 0.04 (0.08) N/A

Residual noisec 45.71 (8.50) 53.22 (5.14) 44.37 (8.19) 52.01 (5.61)

a
Mean (standard error) across six subjects of the average value across voxels of each ROI (VC = visual cortex, GM = gray matter).

b
Four RETROICOR regressors were used to model effects related to the phase of the respiratory cycle.

c
Residual noise might include thermal noise, noise related to motion correction (processing step applied afterwards), and residual uncorrected 

signal fluctuations due to instrumental noise, physiological noise, and task related neuronal processes.
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