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Abstract

Written and verbal language are neurobehavioral traits vital to the development of communication
skills. Unfortunately, disorders involving these traits—specifically reading disability (RD) and
language impairment (L1)—are common and prevent affected individuals from developing
adequate communication skills, leaving them at risk for adverse academic, socioeconomic, and
psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to
hypothesize that these disorders share genetic etiologies. To test this, we performed a genome
wide association study on individuals affected with both RD and LI in the Avon Longitudinal
Study of Parents and Children. The strongest associations were seen with markers in ZNF385D
(OR=1.81, p=5.45 x 10~7) and COL4A2 (OR=1.71, p=7.59x10~'). Markers within NDST4 showed
the strongest associations with LI individually (OR=1.827, p=1.40x10~7). We replicated
association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging
Neurocognitive Genetics study (p=0.00245). We then used diffusion tensor imaging fiber tract
volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a
predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here,
we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of
transcription factor ZNF385D in RD and LI underscores the importance of transcriptional
regulation in the development of higher order neurocognitive traits. Further study is necessary to
discern target genes of ZNF385D and how it functions within neural development of fluent
language.
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Introduction

The development of reading and verbal language skills through early childhood and into
adolescence is vital to a child’s academic performance, self-perception of cognitive abilities,
and development of sociability. Reading disability (RD) and language impairment (L) are
two common language-based learning disabilities with prevalence estimates of 5-17% and
5-8%, respectively (Pennington & Bishop, 2009; Peterson & Pennington, 2012). RD and LI
are characterized by unexplained difficulties in written and verbal language, respectively,
despite adequate intelligence, educational and socioeconomic opportunity (Pennington &
Bishop, 2009; Peterson & Pennington, 2012). RD and LI have lifelong detrimental effects
on communication and language skills, particularly without early intervention. RD and LI
are frequently comorbid; for example, children diagnosed with LI are more likely to develop
RD later in childhood (Pennington, 2006). Additionally, children with RD and/or LI exhibit
deficits in many of the same neurocognitive domains, including phonological processing,
comprehension, fluency, and phonological short-term memory (Catts et al., 2005;
Gathercole & Baddeley, 1990; Pennington, 2006; Pennington & Bishop, 2009; Wise et al.,
2007).

The relatedness between RD and LI goes deeper than similarity in clinical presentation. RD
and LI share numerous risk factors and associated genes, as both are complex disorders with
substantial genetic contributors (Pennington & Bishop, 2009; Scerri & Schulte-Korne,
2010). Linkage, candidate gene association, and rare variant studies have identified genes
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that contribute to RD and/or LI (Graham & Fisher, 2013; Newbury et al., 2009; Newbury et
al., 2010; Pinel et al., 2012; Rice et al., 2009; Scerri et al., 2011). Some of these risk genes,
including DCDC2, KIAA0319, FOXP2, CNTNAP2, and CMIP, contribute to both RD and LI
(Newbury et al., 2011; Peter et al., 2011; Powers et al. 2013; Scerri et al. 2011; Wilcke et al.,
2011). These studies suggest that RD and LI share certain risk genes that influence core
language processes. However, genome wide association studies (GWAS) on reading and
language are limited. Recently, Luciano et al. completed a GWAS on quantitative
performance on reading- and language-related measures (Luciano et al. 2013). The strongest
associations were seen between ABCC13 and nonword repetition. These analyses identified
novel genes and loci for performance on written and verbal language tasks, but do not
address disorder states (i.e. RD or LI) nor the common comorbidity of RD and L1I.

Neuroimaging studies of written and verbal language have identified various brain regions
and measures important for fluent language and altered in impaired individuals (Shaywitz &
Shaywitz, 2008; Vandermosten et al., 2012). Some argue that these imaging differences may
represent a mediatory step between genetic risk variants and the ultimate clinical phenotype
(Eicher & Gruen, 2013). Thus, recent studies have used these neuroimaging measures as
endophenotypes in their analyses. These imaging-genetic studies have associated RD and LI
risk genes—including FOXP2, CNTNAP2, KIAA0319, DCDC2, and C2orf3—with various
brain imaging phenotypes—including brain activation patterns, white and grey matter
volumes, and fiber tract volumes (Cope et al., 2012; Darki et al., 2012; Eicher & Gruen,
2013; Liegeois et al., 2003; Pinel et al., 2012; Scott-Van Zeeland et al., 2010; Scerri et al.,
2012; Tan et al., 2010; Wilcke et al., 2011).

The goal of this investigation is to identify novel genes that contribute to the overlap of RD
and LI by performing a GWAS on subjects with both RD and L1 in an extensively
phenotyped birth cohort: the Avon Longitudinal Study of Parents and Children (ALSPAC).
The large number of neurocognitive assessments in the ALSPAC allows for the
simultaneous analysis of RD and LI. By doing so, we aim to identify new genes that
contribute to both RD and LI. We then replicate our results in the Pediatric Imaging
Neurocognition Genetics (PING) study using oral reading and receptive vocabulary
measures. For replicated markers, we test for associations with fiber tract volumes
previously implicated in language.

Methods and Materials

ALSPAC

Subject recruitment and collection of phenotype and genetic data for the ALSPAC cohort
was completed by the ALSPAC team. The ALSPAC is a prospective population-based, birth
cohort based in the Avon region of the United Kingdom. It consists mainly of children of
northern European descent, born in 1991 and 1992. Children were recruited before birth;
recruitment of their pregnant mothers resulted in a total of 15,458 fetuses, of whom 14,701
were alive at 1 year of age. Details regarding the participants, recruitment, and study
methodologies are described in detail elsewhere (http://www.bristol.ac.uk/alspac) (Boyd et
al., 2012; Golding et al., 2001). The children of the ALSPAC have been extensively
phenotyped from before birth to early adulthood. Ethical approval was obtained from the
ALSPAC Ethics and Law Committee, Local UK Research Ethics Committees, and the Yale
Human Investigation Committee.

Reading and Language Measures

The reading, language, and cognitive measures used for this study were collected at ages 7,
8, and 9 years. Subjects with 1Q < 75 on the Wechsler Intelligence Scale for Children
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(WISC-III) Total 1Q, completed at age 8 years, were excluded from the presented analyses
(Weschler et al. 1992). Reading measures in the ALSPAC include a phoneme deletion task
at age 7, single-word reading at ages 7 and 9 years, single non-word reading at age 9 years,
and reading passage comprehension at age 9 years. The phoneme deletion task measures
phoneme awareness, widely considered to be a core deficit in both RD and LI (Pennington
2006; Pennington & Bishop, 2009). For the phoneme deletion task, also known as the
Auditory Analysis Test, the child listens to a word spoken aloud, and is then asked to
remove a specific phoneme from that word to make a new word (Rosner & Simon, 1971).
Single-word reading was assessed at age 7 using the reading subtest of the Wechsler
Objective Reading Dimensions (WORD). At age 9, single-word and nonword reading were
assessed by asking the child to read ten real words and ten non-words aloud from a subset of
a larger list of words and non-words taken from research conducted by Terezinha Nunes and
colleagues (Rust et al., 1993). Reading comprehension scores were ascertained at age 9,
using the Neale Analysis of Reading Ability (NARA-I1) (Neale 1997). Two additional
language measures, nonword repetition and verbal comprehension tasks, were collected
during clinical interviews at age 8 years. An adaptation of the Nonword Repetition Task
(NWR), in which subjects repeated recordings of nonwords, was used to assess short-term
phonological memory and processing (Gathercole & Baddeley, 1996). Children also
completed the Wechsler Objective Language Dimensions (WOLD) verbal comprehension
task, where they answered questions about a paragraph read aloud by an examiner
describing a presented picture (Weschler 1996). Z-scores were calculated for each subject on
each individual measure.

Case Definitions

We aimed to capture persistently poor performers in various reading and verbal language
domains as RD and LI cases in our case definitions (Table 1). Therefore, we defined RD
cases as having a z-score less than or equal to —1 on at least 3 out of the 5 following tasks:
single word reading at age 7 years, phoneme deletion at age 7 years, single word reading at
age 9 years, nonword reading at age 9 years, and reading comprehension at age 9 years.
There were 527 subjects defined as RD cases. We defined LI cases as having a z-score less
than or equal to —1 on at least 2 out of the 3 following tasks: phoneme deletion at age 7
years, verbal comprehension at age 8 years, and nonword repetition at age 8 years. There
were 337 subjects defined as LI cases. As phoneme awareness is important in both RD and
LI, we chose to include it as part of the case definition for both RD and L1 to reflect clinical
presentation. There were 174 individuals affected with both RD and LI, with a male to
female ratio of 1.7:1. In the further characterization of observed associations, we created
subsets of cases with no comorbidity. There were 163 LI cases excluding those with
comorbid RD, and 353 RD cases excluding those with comorbid LI (Figure 1). For all
analyses, controls were defined as ALSPAC subjects of European ancestry who completed
all the necessary neurobehavioral assessments but did not meet the criteria for case status.

Genotyping and Analysis

Subjects were genotyped on Illumina HumanHap 550 bead arrays (San Diego, CA).
Subjects were excluded if the percentage of missing genotypes was greater than 2% (n=6).
To prevent possible population stratification, only subjects of European ancestry were
included. In our primary analysis of RD and LI individuals, there were 174 cases and 4117
controls. There were a total of 500,527 SNPs genotyped before quality assessment and
quality control. Markers were removed if Hardy-Weinberg equilibrium p<0.0001 (n=93) or
if missingness was greater than 10% (n=19). All markers had a minor allele frequency
greater than 0.01. All genetic analyses were performed using logistic regression in PLINK
v1.07 (Purcell et al., 2007). To correct for multiple testing, we set a Bonferroni corrected
threshold of o = 1.00 x 10~/ = 0.05 / 500,000 markers tested.
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Following our initial analyses examining cases with both RD and LI, we further examined
RD and LI case definitions individually (i.e. LI excluding those with comorbid RD, and RD
excluding those with comorbid L1). These analyses were completed to determine whether a
single disorder (RD or LI) was driving association signals in the comorbid RD and LI
analysis (Figure 1). We also examined the associations of markers within several previously
identified RD and/or LI risk genes, including those recently reported in Luciano et al., in
order to present their results with these phenotypic definitions. These genes included:
ABCC13, ATP2C2, BC0307918, CMIP, CNTNAP2, DAZAP1, DCDC2, DYX1C1, FOXP2,
KIAA0319, KIAA0319L, PRKCH, ROBO1, and TDP2.

Gene-based analyses were performed on each phenotype (comorbid RD and LI, as well as
RD and LI individually) using the VEGAS program, similar to the Luciano et al. study (Liu
et al., 2010; Luciano et al., 2013). To correct for multiple testing, we set a Bonferroni
corrected threshold of o = 2.84 x 1076 = 0.05 / 17,610 genes tested.

PING Replication Analyses

Replication analyses were completed in the PING study. Details on the recruitment,
ascertainment, neurobehavioral, genetic, and neuroimaging methods and data acquisition in
the PING study are described in detail elsewhere, but are summarized briefly below
(Akshoomoff et al., 2013, Brown et al., 2012; Fjell et al., 2012; Walhovd et al., 2012). The
PING study is a cross-sectional cohort of typically developing children between the ages of
3 and 20 years. Subjects were screened for history of major developmental, psychiatric, and/
or neurological disorders, brain injury, or medical conditions that affect development.
However, subjects were not excluded due to learning disabilities such as RD and LI. The
human research protections programs and institutional review boards at the 10 institutions
(Weil Cornell Medical College, University of California at Davis, University of Hawaii,
Kennedy Krieger Institute, Massachusetts General Hospital, University of California at Los
Angeles, University of California at San Diego, University of Massachusetts Medical
School, University of Southern California, and Yale University) participating in the PING
study approved all experimental and consenting procedures. For individuals under 18 years
of age, parental informed consent and child assent (for those 7 to 17 years of age) were
obtained. All participants age 18 years and older gave their written informed consent.

Subjects completed the validated study version of the NIH Toolbox Cognition Battery, in
which two language- and reading-related tasks were completed: the Oral Reading
Recognition Test and Picture VVocabulary Test (Akshoomoff et al., 2013; Weintraub et al.,
2013). In the Oral Reading Recognition Test, a word or letter is presented on the computer
screen and the participant is asked to read it aloud. Responses are recorded as correct or
incorrect by the examiner, who views accepted pronunciations on a separate computer
screen. The Picture Vocabulary Test is a measure of receptive vocabulary and administered
in a computerized adaptive format. The participant is presented with an auditory recording
of a word and four images on the computer screen; the task is to touch the image that most
closely represents the meaning of the word.

Subjects were genotyped on the Illumina Human660W-Quad BeadChip (San Diego, CA),
with markers used for replication analyses passing quality control filters (sample call rate >
98%, SNP call rate > 95%, minor allele frequency > 5%). We constructed a reference panel
as described elsewhere (Brown et al., 2012; Fjell et al., 2012; Walhovd et al., 2012). To
assess ancestry and admixture proportions in the PING participants, we used a supervised
clustering approach implemented in the ADMIXTURE software (Alexander et al., 2009)
and clustered participant data into six clusters corresponding to six major continental
populations: African, Central Asian, East Asian, European, Native American, and Oceanic.
Implementation of ancestry and admixture proportions in the PING subjects is described in
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detail elsewhere (Brown et al., 2012; Fjell et al., 2012; Walhovd et al., 2012). To prevent
possible population stratification, only subjects with a European genetic ancestry factor
(GAF) of 1 were included in genetic analysis of behavior. These 440 individuals of
European ancestry (mean age of 11.5 [standard deviation = 4.8] years, 53.0% male) were
analyzed using quantitative performance on the Oral Reading Recognition and Picture
Vocabulary scores with PLINK v1.07, with age included as a covariate (Purcell et al., 2007).
To correct for multiple testing (20 total tests = 10 SNPs x 2 language measures), we set
statistical thresholds using the false discovery rate with a=0.05 (Benjamini & Hochberg,
1995).

PING Imaging Analysis

PING imaging techniques, data acquisition, and analyses are discussed in depth elsewhere
and briefly below (Brown et al., 2012; Fjell et al., 2012; Walhovd et al., 2012). Across the
ten sites and 12 scanners, a standardized multiple modality high-resolution structural MRI
protocol was implemented, involving 3D T1- and T2-weighted volumes and a set of
diffusion-weighted scans. At the University of California at San Diego, data were obtained
on a GE 3T SignaHDx scanner and a 3T Discovery 750% scanner (GE Healthcare) using
eight-channel phased array head coils. The protocol included a conventional three-plane
localizer, a sagittal 3D inversion recovery spoiled gradient echo T1-weighted volume
optimized for maximum gray/white matter contrast (echo time = 3.5 ms, repetition time =
8.1 ms, inversion time = 640 ms, flip angle = 8°, receiver bandwidth = +31.25 kHz, FOV =
24 cm, frequency = 256, phase = 192, slice thickness = 1.2 mm), and two axial 2D diffusion
tensor imaging (DTI) pepolar scans (30-directions bvalue = 1,000, TE =83 ms, TR = 13,600
ms, frequency = 96, phase = 96, slice thickness = 2.5 mm). Acquisition protocols with pulse
sequence parameters identical or near identical to those protocols used at the University of
California at San Diego were installed on scanners at the other nine sites. Data were
acquired on all scanners to estimate relaxation rates and measure and correct for scanner-
specific gradient coil nonlinear warping. Image files in DICOM format were processed with
an automated processing stream written in MATLAB (Natick, MA) and C++ by the UCSD
Multimodal Imaging Laboratory. T1-weighted structural images were corrected for
distortions caused by gradient nonlinearities, coregistered, averaged, and rigidly resampled
into alignment with an atlas brain. Image postprocessing and analysis were performed using
a fully automated set of tools available in the FreeSurfer software suite (http://
surfer.nmr.mgh.harvard.edu/) as well as an atlas-based method for delineating and labeling
WM fiber tracts (Fischl 2012).

Diffusion tensor imaging

Diffusion-weighted images were corrected for eddy current distortion using a least squares
inverse and iterative conjugate gradient descent method to solve for the 12 scaling and
translation parameters describing eddy current distortions across the entire diffusion MRI
scan, explicitly taking into account the orientations and amplitudes of the diffusion gradient
(Zhuang et al., 2006). Head motion was corrected by registering each diffusion-weighted
image to a corresponding image synthesized from a tensor fit to the data (Hagler et al.,
2009). Diffusion MRI data were corrected for spatial and intensity distortions caused by BO
magnetic field in-homogeneities using the reversing gradient method (Holland et al., 2010).
Distortions caused by gradient nonlinearities were corrected by applying a predefined,
scanner-specific, nonlinear transformation (Jovicich et al., 2006). Diffusion-weighted
images were automatically registered to T1-weighted structural images using mutual
information (Wells et al., 1996) and rigidly resampled into a standard orientation relative to
the T1-weighted images with isotropic 2-mm voxels. Cubic interpolation was used for all
resampling steps. Conventional DTI methods were used to calculate diffusion measures
(Basser et al., 1994; Pierpaoli et al., 1996). Scanning duration for the DTI sequence was
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4:24 min. White matter fiber tracts were labeled using a probabilistic-atlas based
segmentation method (Hagler et al., 2009). Voxels containing primarily gray matter or
cerebral spinal fluid, identified using FreeSurfer’s automated brain segmentation, were
excluded from analysis (Fischl et al., 2002). Fiber tract volumes were calculated as the
number of voxels with probability greater than 0.08, the value that provided optimal
correspondence in volume between atlas-derived regions of interest and manually traced
fiber tracts.

Statistical Analyses

Results

Imaging-genetics analyses were performed in individuals of European genetic ancestry.
Scanner, age, handedness, socioeconomic status, and sex were included as covariates in all
analyses (Akshoomoff et al., 2013; Brown et al., 2012; Fjell et al., 2012; Walhovd et al.,
2012). 332 subjects of European genetic ancestry had completed imaging measures that
passed PING quality control. Fiber tract volumes in 16 tracts of interest were tested by
multiple regression analyses in R using the PING data portal (https://mmil-
dataportal.ucsd.edu).

SNP and Gene-Based Associations

The ten strongest GWAS associations with comorbid RD and LI in ALSPAC are presented
in Table 2. The strongest associations were observed with ZNF385D (OR=1.81, p=5.45 x
10~7) and COL4A2 (OR=1.71, p=7.59 x 10~7) (Table 2). Next, we examined RD and LI
individually—with no comorbid cases included—determining whether one disorder was
driving these associations. The ten strongest associations for RD cases and LI cases
individually are presented in Table 3 and Table 4, respectively. The strongest associations
with LI were with markers in NDST4 (OR=1.83, p=1.40 x 10~/) (Table 3). Markers on
chromosome 10 (OR=1.43, p=5.16x1075), chromosome 8 (OR=1.70, p=5.85x107%), and the
OPA3 gene (OR=1.53, p=6.92x1075) had the strongest associations with RD (Table 4).
Markers with p<0.01 within genes previously implicated in RD and/or LI are presented in
Supplemental Table 1 for each phenotype. The strongest associations with these markers
were seen for KIAA0319 with comorbid RD and L1 (rs16889556, p=0.0005177), FOXP2
with comorbid RD and LI (rs1530680, 0.0001702), CNTNAP2 with LI (rs6951437,
p=0.0000462) and DCDC2 with LI (rs793834, 0.0002679) (Supplemental Table 1a-1c).
Gene-based analyses were completed on each phenotype (comorbid RD and LI, RD
individually, and LI individually), and the ten strongest gene-based associations are
presented in Supplemental Table 2. None of the gene-based associations survived correction
for multiple-testing; however, the strongest associations were seen with: (1) OR5H2,
OR5H6, and RRAGA with comorbid RD and LI, (2) NEK2, DLECL, and NARSwith LI, and
(3) MAP4, OR2L8, and CRYBA4 with RD. Markers with the strongest p-values in discovery
analyses in ZNF385D, COL4A2, and NDST4 were carried forward for replication analysis in
PING. We observed replication of two markers within ZNF385D and performance on the
Picture Vocabulary Test (p=0.00245 and 0.004173) (Table 5). However, markers did not
replicate with the Oral Reading Recognition Test (p>0.05).

Imaging-Genetics of ZNF385D

To follow-up on the replicated associations of ZNF385D, we examined the effects of these
variants on fiber tract volumes previously implicated in written and verbal language. Before
doing so, we determined that fiber tract volume was a predictor of performance on Oral
Reading Recognition and Picture Vocabulary Tests (Figures 2a—2b). Within subjects of only
European genetic ancestry, ZNF385D genotypes were predictors of overall fiber tract
volume and as well as fiber tract volumes in the right and left hemispheres (Table 6).
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ZNF385D SNPs were also predictors bilaterally within the inferior longitudinal fasiculus
(ILF), inferior fronto-occipto fasiculus (IFO), and temporal superior longitudinal fasiculus
(tSLF) in this subset (Table 6). To discern whether these associations between ZNF385D
and fiber tract volumes reflect global brain volume differences among genotype, we next
examined the relationship of ZNF385D with both total brain segmentation and total cortical
volumes. We found associations for both measures with rs1679255 (p=0.00072 and 0.00027,
respectively) and rs12636438 (p=0.000259 and 0.000069, respectively). The effects
appeared to be additive in nature, with heterozygous individuals having intermediate
phenotypes relative to those homozygous for the major allele and to those homozygous for
the minor allele. In fact, when these total brain volume measures were inserted into the
model as a covariate, ZNF385D associations with DTI fiber tract volumes were no longer
present.

Discussion

In this investigation, we sought to identify genes that contribute to the common co-
occurrence of RD and LI. In our discovery analyses, we found associations of ZNF385D and
COL4A2 in comorbid cases, and of NDST4 with LI. Next, we observed associations of
ZNF385D with performance on a vocabulary measure, but not on an oral reading measure,
in PING. Association with performance on a vocabulary measure, although not exactly
recapitulating the comorbidity phenotype, does provide further evidence for the contribution
of ZNF385D to language. To gain functional understanding, we interrogated the effects of
replicated ZNF385D markers on the volumes of language-related fiber tracts. ZNF385D
markers associated bilaterally with overall fiber tract volumes and overall brain volume.

Studies have shown that RD and LI share genetic contributors (Trzaskowski et al. 2013).
However, specific genes that contribute to both RD and L1 have only recently begun to be
examined. These studies have used a candidate gene approach to examine this shared
genetic etiology. Such an approach has been successful in showing the shared contribution
of DCDC2, KIAA0319, FOXP2, CNTNAP2, among others, to both RD and LI (Eicher &
Gruen, 2013; Graham & Fisher, 2013; Newbury et al., 2009; Newbury et al., 2010; Pinel et
al., 2012; Rice et al., 2009; Scerri et al., 2011). In fact, markers within KIAA0319, FOXP2,
and CNTNAP2 (along with BC0307918) showed nominal association with comorbid RD and
LI in our analyses (p<0.01). RD/LI risk genes also showed a tendency to associate with L1
individually (DCDC2, KIAA0319, and CNTNAP2) and with RD individually (CNTNAP2
and CMIP) (p<0.01). The lack of replication for other RD/LI risk genes and differences
between this study and those of Scerri et al. (2011) and Luciano et al. (2013) are likely a
result of different case definitions and numbers, as we designed our case classifications to
capture a wide range of reading- and language-impaired subjects, as opposed to using highly
specific neurocognitive measures.

A glaring omission in the genetic investigations of RD and L1 is the lack of hypothesis-free
methods. These methods allow for discovery of new genes because they do not rely on
preselected candidates. Here, our GWAS analyses indicate that ZNF385D contributes to
comorbid RD and LI. Our study is not the first GWAS on reading- and language-related
traits. Luciano et al. (2013) recently reported a GWAS of quantitative measures of written
and verbal language measures in two population-based cohorts, including ALSPAC. They
found strong evidence that ABCC13, BC0307918, DAZAP1, among others contribute to
performance on these measures, although our analyses did not provide strong evidence for
them. The analytical strategies differed in two ways: (1) the use of dichotomous rather than
quantitative measures to condition genetic associations and (2) examining reading and
language together as opposed to individually. Past association studies of RD and LI have
shown differences in results depending on whether associations were conditioned on
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dichotomous or quantitative phenotypes. For instance, KIAA0319 tends to associate more
readily with quantitative measures, while DCDC2 associates more often with dichotomized
variables (Paracchini et al., 2008; Powers et al., 2013; Scerri et al., 2011). The present study,
which examines comorbidity, and that of Luciano et al., which examined performance on
reading and language tasks individually, conditioned genetic associations on different traits,
which can lead to different statistical associations. Both analytical strategies are valid and
have gleaned separate, yet related insight into the genetic underpinnings of written and
verbal language. They demonstrate the importance of creative and careful examination of
phenotypes when examining neurocognitive and other complex traits.

Following our primary analysis of comorbid RD and LI, we next examined RD and LI
individually to determine whether a single disorder was driving the association signals.
ZNF385D did not associate with either RD or LI individually, indicating that ZNF385D
contributes to processes related to both RD and L1, as opposed to only one of these
disorders. Within PING, we observed associations of ZNF385D markers with performance
on the Picture Vocabulary Test and not the Oral Reading Recognition Test. Measures of
receptive vocabulary (e.g. the Picture Vocabulary Test) are related to both written and verbal
language tasks (Scarborough 1990, Wise et al., 2007), while performance on decoding
measures (e.g. the Oral Reading Recognition Test) appear to be specific to reading.
Therefore, the Picture Vocabulary Test may reflect the comorbid RD and LI phenotype used
in ALSPAC better than the Oral Reading Recognition Test and explain the association
pattern of ZNF385D in PING. In addition to ZNF385D, we observed suggestive associations
of COL4A2 with comorbid RD/LI and NDST4 with LI. Neither of these associations
replicated in PING, but future studies should attempt to replicate these associations,
particularly due to the known involvement of COL4A2 in porencephaly and white matter
lesions (Verbeek et al., 2012, Yoneda et al., 2011).

Gene-based analyses did not reveal any associations that survived correction for multiple
testing. Nonetheless, there were intriguing gene associations that should be investigated in
future studies. For instance, with LI, there were suggestive associations with genes on
chromosome 19—IL411, ATF5, NUP62, and S GLEC11—which may correspond to the
SLI2 linkage peak (Monaco, 2007; SLI Consortium, 2002), Luciano et al. found a similar
accumulation of suggestively associated genes approximately 5Mb away from our genes
(Luciano et al., 2013). Additionally, MAP4, a microtubule assembly gene, was the strongest
associated gene with RD. There is evidence microtubule function plays a key role in reading
development as aberrant neuronal migration is thought to contribute to the etiology of RD
and other RD candidate genes are thought to interact with microtubules (e.g. DCDC2 and
ACOT13) (Cheng et al., 2006). Although intriguing, these suggestive findings must be
validated in an independent cohort.

The strongest observed associations in this study were with markers within ZNF385D.
ZNF385D has previously been implicated in schizophrenia and attention deficit
hyperactivity disorder (ADHD) (Poelmans et al., 2011; Xu et al., 2013). Both schizophrenia
and ADHD are neurobehavioral disorders thought to have core impairments in common
with RD and LI, including comprehension and semantic processing (Gilger et al., 1992; Li et
al., 2009; Willcutt et al., 2005). Additionally, our observed association of ZNF385D on
global brain volume may indicate that ZNF385D influences various neurocognitive traits
through its effect on the entire brain.

There is little known regarding the function of ZNF385D, although its zinc finger domain
suggests it is a transcriptional regulator. The importance of transcriptional regulation in
written and verbal language is not a new concept. The most widely studied language gene,
FOXP2, is a potent transcription factor that has been shown to regulate another language
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gene, CNTNAP2 (Vernes et al., 2007; Vernes et al., 2011). Additionally, in the DY X2 locus,
two risk variants, READ1 within DCDC2 and the KIAA0319 risk haplotype, appear to have
the capacity to regulate gene expression (Couto et al., 2010; Dennis et al., 2009; Meng et al.,
2011) and possibly interact (Ludwig et al. 2008; Powers et al., 2013), although more
evidence is needed to demonstrate these functionalities. ZNF385D variants now join this list
of putative transcriptional variants that influence written and verbal language skills. The
characterization of target genes of ZNF385D and of its transcriptional effects on these
targets will be an important next step. Additionally, the identification of target genes may
generate therapeutic candidates for treatment and remediation of RD and LI. To gain further
insight into ZNF385D, we performed imaging-genetics analyses of ZNF385D and fiber tract
volumes of language-related tracts. ZNF385D appears to modulate fiber tract and total brain
volumes, which may subsequently affect the connectivity and functionality of brain regions
important in the efficient, fluent integration of written and verbal language. Thus,
identification of target genes and how the modulation of their expression during neural
development yields differences in fiber tract and total brain volumes will be vital for
dissecting not only the mechanism of ZNF385D, but also for the development of core
language skills in children.

This study is subject to several limitations. First, although the overall sample size of the
ALSPAC is formidable, the number of cases for each definition is relatively small. This is
expected in a cross-sectional cohort of the general population as the prevalence of these
disorders ranges between 5-17% (Pennington & Bishop, 2009). The ALSPAC cohort would
not be expected to be enriched for RD and/or LI cases. Small sample size could have
hindered our statistical power and ability to identify risk genes with small effect size.
Second, the reading and language measures performed in the ALSPAC and PING studies
were not identical. Phenotypes in PING were treated as a quantitative trait rather than a
dichotomous variable as in ALSPAC. Therefore, attempts to replicate associations observed
in the ALSPAC cohort may have been hampered as reading/language measures in PING
may have captured different skills than those in ALSPAC. However, the associations
observed in the PING indicate that ZNF385D plays a substantial, consistent role in overall
language processes. Third, atlas-derived tract volume measures, like volumes derived from
manually traced fiber tracts, are likely underestimates of true fiber volume for most tracts.
However, fiber tract volumes were derived consistently for all subjects and likely reflect
inter-individual differences. Nonetheless, the strength and independent replication of our
associations and the relationship with brain imaging phenotypes strongly implicate
ZNF385D in core language processes underlying RD and LI.

In conclusion, we identify ZNF385D as a novel gene contributing to both RD and L1, as well
as fiber tract and overall brain volume. The implication of another transcription factor in
communication disorders underscores the importance of transcriptional regulation in neural
development of language domains in the brain. Future studies should aim to further
characterize the molecular functionality of ZNF385D and replicate this association, as well
as our non-replicated associations—NDST4 and COL4A2—in RD, LI, and other related
disorders.
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N=174

Figurel.

Number of RD and LI cases in the ALSPAC cohort following the case definitions in Table
1. There were 174 subjects with comorbid RD and LI. There were 163 subjects with LI
without comorbid RD, and 353 subjects with RD without comorbid L1I.
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Figure 2.

Relationship of total DTI fiber tract volume with performance on (a) Picture Vocabulary
Test and (b) Oral Reading Test. Total DTI fiber tract volumes were predictors of
performance on both Vocabulary (p=0.000602) and Reading (p=0.03596) following
correction for Age, Handedness, Gender, Scanner Device Used, and Socioeconomic Status.
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Table 1

Reading and language measures used to define Reading Disability (RD) and Language Impairment (LI) Cases

Reading Disability (RD) (n=527)°  Language |mpairment (L1) (n=337)""

Phoneme Deletion Age 7 Years Phoneme Deletion Age 7 Years
Single Word Reading Age 7 Years Verbal Comprehension Age 8 Years
Single Word Reading Age 9 Years Nonword Repetition Age 8 Years
Nonword Reading Age 9 Years

Reading Comprehension Age 9 Years

*
RD Cases had a z-score of less than or equal to —1 on at least 3 out of the 5 reading measures

**
LI Cases had a z-score of less than or equal to —1 on at least 2 out of the 3 language measures
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ZNF385D Associations with DTI Fiber Tract Volumes in subjects with 100% European Genetic Ancestry

(n=332)

Fiber Tract rs1679255 rs12636438
Slope P-value Slope P-value

All -33299  goas* 37179 23"
Right All -17314  g39*  -1965 (017"
Left All -16163 0055  -17756 033"
Right ILF -2513 ot 2344 (o016
Left ILF -256.9 goosg** 2546  (009™*
Right IFO -2008 (032" -190 0.041*
Left IFO -221  gp12* 2263  gQ09**
Right SLF -1681  0.06 -206 0.02"
Left SLF -1995  gg2* 2129 (o13*
RighttSLF  -1708  (o11*  -180.7  gQoss**
Left tSLF -1631  g23*  -1699 (o016
RightpSLF ~ -153.1 0079  -1824  gpas*
Left pSLF -112.2 0.18 -125.3 0.131
Right SIFC -148.8 0.052 -165.6 0.029"
Left SIFC -34.54 0.66 -54.3 0.48
CcC -977.1 0.15 -1181.6 0.081

*pS0.0S

*x
p<0.01

Abbreviations: All (All Fiber Tracts), ILF (Inferior Longitudinal Fasiculus), IFO (Inferior Fronto-occipital Fasiculus), SLF (Superior Longitudinal
Fasiculus), tSLF (Temporal Superior Longitudinal Fasiculus), pSLF (Parietal Superior Longitudinal Fasiculus), SIFC (Striatal Inferior Frontal
Cortex), CC (Corpus Callosum)
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