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Abstract

Acetaminophen (ApAP) is an electron donor capable of reducing radicals generated by redox
cycling of hemeproteins. It acts on the prostaglandin H synthases (cyclooxygenases; COXs) to
reduce the protoporphyrin radical cation in the peroxidase site of the enzyme, thus preventing the
intra-molecular electron transfer that generates the Tyr385 radical required for abstraction of a
hydrogen from arachidonic acid to initiate prostaglandin synthesis. Unrelated to this
pharmacological action, metabolism of ApAP by CYPs yields an iminoquinone electrophile that is
responsible for the hepatotoxicity, which results from high doses of the drug. We synthesized
novel heterocyclic phenols predicted to be electron donors. Two of these inhibited the oxygenation
of arachidonic acid by PGHS-1 and myoglobin and also were shown to be more metabolically
stable and exhibited less direct cytotoxicity than acetaminophen. They are leading candidates for
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studies to determine whether they are free of the metabolism-based hepatotoxicity produced by
acetaminophen.
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Acetaminophen (ApAP; Paracetamol), with its analgesic and antipyretic properties, is one of
the most widely used drugs. ApAP works by reducing the protoporphyrin radical cation in
the peroxidase site of the prostaglandin H2 synthases (also know as cyclooxygenases,
COX-1 and COX-2),1,2 thereby decreasing the production of the prostaglandins mediating
fever and pain. We also have shown that acetaminophen can inhibit lipid peroxidation
catalyzed by hemoglobin, myoglobin, and cytochrome c3,4 and that acetaminophen can
protect the kidney from oxidative damage associated with rhabdomyolysis.3 This work
provided the proof of concept that acetaminophen can be used in vivo to protect tissues from
oxidative stress associated with hemeprotein redox cycling.

Unfortunately, acetaminophen is associated with hepatotoxicity, which may be severe,5–7

occurring both in association with intentional and accidental overdose and with
administration to susceptible individuals. It has been implicated in nearly 50% of all acute
liver failure in the United States alone.8 Acetaminophen’s hepatotoxicity is due to its 2-
electron oxidation by the phase I cytochrome P450 (CYP) 2E1 and CYP3A4 in the liver.9–11

This leads to formation of the extremely reactive intermediate metabolite, N-acetyl-p-
benzoquinone imine (NAPQI), which conjugates to glutathione, resulting in glutathione
depletion in the liver.12 After GSH is depleted, NAPQI reacts with proteins13,14 and impairs
mitochondrial function,15 leading to liver necrosis.

Taken together, the data indicate the need for a safer alternative to acetaminophen. In this
letter, we describe the synthesis of acetaminophen analogues lacking the p-aminophenol
structure that leads to formation of the toxic quinone imine electrophile metabolite. We also
present the characterization of 2 lead compounds that are potent inhibitors of COX-1 and of
myoglobin-induced lipid oxidation, but are metabolized by liver microsomes less rapidly
than acetaminophen and do not exert direct cytotoxicity on cells in culture. Several nitrogen-
containing highly potent phenolic antioxidants (1–11) have been prepared recently.16,17

For example, pyrimidinols (Figure 1, 1 and 2) as well as pyridinols (3 and 4) were proven to
be highly effective inhibitors of COX-1.16

A number of trends can be inferred from previously published results for pyrimidinols (1
and 2) and pyridinols (3 and 4)16 as well as recently published vitamin B6-derivatives (5–
11).17 In this letter, we evaluated efficiency to inhibit hemeproteins, cytotoxicity, and
metabolic stability of those nitrogen-containing phenolic heterocycles seeking to identify the
molecular structure motifs that correlate with higher activity and stability and lower levels of
cytotoxicity. Our results provide information necessary for a rational design and synthesis of
novel acetaminophen analogues with improved toxicity and stability profiles.

Cytotoxicity was assessed by measuring total intracellular ATP levels in HepG2 cells. This
represents a good marker of the overall cellular health18,19 as ATP levels are affected by
mitochondrial integrity as well as by changes in cellular metabolism. Metabolic stability was
assessed in vitro using rat liver microsomes.20

In addition to the hepatotoxicity caused by the toxic metabolite of acetaminophen, pyridine
phenols (3–4) may produce direct cytotoxicity, especially in comparison with virtually
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nontoxic pyrimidine phenols (1–2) as we have previously shown.16 This can be explained by
the formation of an unhindered cationic iminium ion (or quinone) and its subsequent
reactivity toward nucleophiles.21,22 Extensive metabolism by liver microsomes may be
further evidence of cationic iminium ion formation. In this regard, significantly lower
toxicity of pyridinols 5 and 7 may be attributed to the vital role of C(5) methyl substituent,17

suggesting that a substituent in C(5) position can hinder this position for nucleophilic attack.

Excessively low ionization potential (IP), which leads to the formation of superoxide is the
most likely cause of the instability and high direct cytotoxicity of compounds 10 and 11 as
well as comparably elevated direct cytotoxicity of compound 6.17 Indeed, it has been shown
that analogue 6 is a more potent antioxidant than 7 due to the higher degree of spin
alignment between the aromatic ring and the adjacent nitrogen.17 High degree of toxicity
shown by compounds 8 and 9 especially in comparison with analogues 6 and 7 can be
partially attributed to their low IP value. This argument is supported by the observation of
large amounts of oxygenation products in the microsome stability assay (Supporting
Information) as well as by the higher electron donating effect of an alkyl chain vs a methyl
substituent.23 Also, long alkyl chains of compounds 8 and 9 might result in a detergent-like
cell membrane disruption, further elevating their toxicity.

The microsome stability assay showed that demethylation was a major metabolic path for
almost all the NHMe or N(Me)2 containing analogues. It also showed rapid metabolic
consumption of the highly potent COX-1 inhibitor 2 by both demethylation and oxidation
pathways. Demethylation may lead to increased toxicity by conversion, for example, from
analogue 7 to 6 and 5, both of which are highly cytotoxic.17

Three pyridinol analogues of acetaminophen (Figure 2) were designed based on the results
described above. All compounds are related to acetaminophen. Their structures are designed
to modulate the donor characteristics of the 6-amino group, similar to acetaminophen, and
fix the geometry of ring substituents by the constraints of a fused ring. A similar structural
motif can be found in uric acid, which is responsible for more than half of human blood
plasma antioxidant capacity.24 Thus, a urea bridge has been chosen to protect the free
amine. This structural feature was intended to modulate the IP value of these novel
analogues to alleviate the metabolic instability and cytotoxicity shown by analogues 10 and
11. Since the presence or the absence of C(2) and C(4) substituents in the heterocyclic
phenol ring did not drastically alter pyridines and pyrimidines toxicity profile, both
analogues 12 (Scheme 1) and 13 have been prepared. The urethane analogue 14 of the urea
analogue 13 was also prepared.

The previously known 2-amino-5-bromo-nicotinonitrile (15)25 has been prepared from
commercially available 2-amino-nicotinonitrile via an efficient nuclear monobromination,
by treatment with N-bromosuccinimide (NBS) in the presence of a catalytic amount of
NH4OAc.26 Reduction by the borane–tetrahydrofuran complex (BH3-THF) followed by
acidic deprotection of the resulting borane furnished the diamino compound (16), which was
converted to the cyclic urea (17) by action of 1,1′-carbonyldiimidazole (CDI). tert-
Butyloxycarbonyl (Boc) protection of exchangeable amide protons is important for success
of the Pd catalyzed borylation reaction–oxidation two-step sequence.27 Therefore, the Boc
protected cyclic urea (18) was reacted with bis-(pinacolato)diboron, and the crude product
was oxidized giving rise to a separable mixture of mono- and di-protected phenols (19 and
20). Either mono- or di-protected phenols (or their mixture) can be deprotected by the
reaction with methanolic solution of hydrochloric acid followed by recrystallization.

The synthesis of analogues 13 (Scheme 2) and 14 originated from commercially available
vitamin B6, which was converted to compound 21 by a highly efficient two-step sequence.17
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Bromination with concentrated hydrobromic acid28 afforded crude 22, which was converted
to compound 23 by reaction with sodium azide. Diazo-substitution furnished compound 24.
Both diazo and azido groups were simultaneously reduced by palladium-on-carbon
catalyzed hydrogenation. Diamine 25 was converted to pyridinol-fused ring analogue 13 via
CDI induced cyclic urea formation. Analogue 14 was produced from compound 21, which
was converted to 6-amino-5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol by a known
procedure29 followed by protection with benzyl chloroformate (CbzCl) and subsequent
cyclization under the basic conditions.

These three analogues have been evaluated for their microsomal stability and cellular
toxicity as described in the experimental section. Analogues 12, 13, and 14 have displayed a
toxicity and stability profile, which is consistent with our structure-to-biological property
relationship analysis described above. All three compounds have no direct cytotoxicity at
concentrations below the millimolar range. Their EC50 values for cytotoxicity are 5 to more
than 10 times higher than that of acetaminophen (Table 1). All three compounds were
metabolized by human liver microsomes to a lesser extent than acetaminophen, suggesting
that in vivo metabolism by microsomes would be less as well.

Next, the efficiency of these ApAP analogues to inhibit hemeprotein-catalyzed lipid
oxidation was tested using COX-1 and myoglobin as reported previously.2,3 As shown in
Table 2, all analogues are able to inhibit myoglobin-induced arachidonic oxidation within
the same order of magnitude, with analogue 14 being the least potent. In contrary, analogue
14 is most potent in inhibiting COX-1 activity followed by ApAP and analogue 12.
Interestingly, analogue 13 was not able to significantly inhibit COX-1 at concentrations up
to 1 mM.

The difference in the myoglobin-induced arachidonic oxidation assay values for analogues
13 and 14 can be explained by their electronic properties. Indeed, more electron-
withdrawing oxygen would somewhat diminish analogue 14’s ability to reduce myoglobin.
While the reverse trend in COX-1 inhibition is a subject of further studies, we can speculate
that it is related to the constrains of the COX-1 binding pocket; interactions with the heme
pocket has been shown to affect bioflavonoid activities.30 This possible mechanism is
supported by the evidence showing that analogue 12 is more active that the dimethyl
analogue 13; the methyl group positive inductive effect would have predicted the opposite
effect. Further computational studies, which are outside of this letter’s scope, may shed
some light on this phenomenon.

In conclusion, we investigated a number of potent phenolic heterocycles with respect to their
efficiency in inhibiting hemeprotein-catalyzed lipid oxidation and also their metabolic
stability and toxicity. Several important structure–stability and structure–toxicity
relationship studies were used for the design of novel heterocyclic acetaminophen analogue
series. Our results indicate that two analogues (12 and 14) may represent a good alternative
to acetaminophen with a similar efficiency and better cytotoxicity profile. These analogues
are promising candidates for studies in animal models of hepatotoxicity to determine
whether they represent lead compounds for development of drugs that could replace
acetaminophen.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Previously known pyrimidinols and pyridinols evaluated for their cytotoxicity and metabolic
stability.
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Figure 2.
Analogue design.
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Scheme 1.
Synthesis of Pyridinol-Fused Ring Analogue 12a
aReagents and conditions: (a) (i) NBS, NH4Ac, MeCN, 0°C to RT, 12 h; (ii) 5% HCl,
NaOH, pH > 10, H2O, 0 °C, 20 min 91%; (b) (i) BH3-THF, THF, 0 °C to reflux, 12 h; (ii)
15% HCl in H2O, 0 °C to reflux, 3 h; (iii) NaOH, to pH > 12, 71%; (c) (i) CDI, DMF, RT;
(ii) H2O, RT to reflux to 0 °C, 20 min, 86%. (d) Boc2O, DMAP, THF, RT, 30 min, 97%; (e)
(i) KOAc, Pd(OAc)2, bis-(pinacolato)diboron, DMF; (ii) NaBO3·2H2O, THF/H2O; (f) (i)
HCl/MeOH, RT to 60 °C, 1.5 h; (ii) NaHCO3, H2O, 0 °C, 5 h, 75%.
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Scheme 2.
Synthesis of Pyridinol-Fused Ring Analogue 13a
aReagents and conditions: (a) Zn, AcOH (Ac = acetyl), reflux, 3 h, 93% over two steps; (b)
2 M HCl in ether, MeOH, reflux, 1 h; (c) HBr reflux, 20 min; (d) NaN3, DMF, RT, 12 h,
66% over two steps; (e) PhNH2, NaNO2, HCl then NaOH; (f) H2, Pd/C, HCl, MeOH, 12 h,
57% over two steps; (g) (i) CDI, DMF, RT, 12 h; (ii) AcOH, H2O, RT, 8 h; (iii) NaHCO3,
20% MeOH/H2O, 3 h, 66%; (h) PhNH2, HCl, NaNO2, NaOH, H2O, 0 °C, 1 h, 95%; (i)
H2,Pd/C, MeOH, RT, 6 h, 90%; (j) CBzCl, NaHCO3; (k) K2CO3, MeOH/H2O.
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Table 1

Stability and Direct Cytotoxicity of Novel Generation of Pyridinolsa

N microsomal stability % left cellular toxicity (EC50, µM ± SEM)

ApAP 65 ± 12 594 ± 147

12 108 ± 12 4760 ± 36

13 87 ± 7 2965 ± 284

14 97 ± 3 >5000

a
Microsomal stability is expressed as % of unmodified compound remaining after reaction. Microsomal stability values represent means ± SD.

Cellular toxicity is expressed as the concentration causing a 50% decrease in total cellular ATP levels in HepG2 cells. Cellular toxicity values
represent means ± SEM.
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Table 2

Inhibition by ApAP of Hemeprotein-Catalyzed Oxidation of Arachidonic Acida

analogue ApAP 12 13 14

Mb (µM ± SEM) 2.3 ± 0.2b 1.2 ± 0.1 2.3 ± 0.4 5.3 ± 0.1

COX-1 (µM ± SEM) 372c 451 ± 35 >1000 198 ± 25

a
The inhibition of the lipid peroxidation produced by myoglobin (Mb) and COX-1 by the different analogues was tested as described

previously.2,3 Values represent the IC50 for each hemeprotein and are expressed as means ± SEM.

b
Value reported in ref 3.

c
Value reported in ref 2.
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