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Summary

We propose a multiple imputation estimator for parameter estimation in a quantile regression

model when some covariates are missing at random. The estimation procedure fully utilizes the

entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n

consistent and asymptotically normal. To protect against possible model misspecification, we

further propose a shrinkage estimator, which automatically adjusts for possible bias. The finite

sample performance of our estimator is investigated in a simulation study. Finally, we apply our

methodology to part of the Eating at American’s Table Study data, investigating the association

between two measures of dietary intake.
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1. Introduction

In many regression-type applications, some observations are missing. Ignoring the missing

data will undermine study efficiency, and sometimes introduce substantial bias. There is a

large literature dealing with missing data; see Little & Rubin (1987) for an early and still

fundamental treatment. Quantile regression (Koenker & Bassett, 1978) has been an

increasingly important modelling tool, due to its flexibility in exploring how covariates

affect the distribution of the response. However, combining quantile regression with missing

data is not a well-developed topic. In this paper, we consider a linear quantile regression

model, where for τ ∈ (0, 1),
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(1)

Here (x, z) are both covariate vectors, but x may be missing, while z is always observed. We

assume that z contains the constant 1, so the intercept term is not written out separately. We

use n for the total sample size, and assume that n1 of these n observations are complete,

while the remaining n0 of them have x missing. Thus, observations can be summarized as

{(yi, xi, zi) : i =1, …, n1} and {(yj, ·, zj) : j = n1 + 1, …, n}. To avoid trivial situations, we

assume 0 < limn→∞ n0/n1 = λ < ∞. We make a missing at random assumption that

conditional on z, missingness and x are independent. The main interest of this paper is in

estimating the regression parameter  given the assumed missing data

mechanism. This research is motivated by the Eating at American’s Table Study (Subar et

al., 2001), an important study in nutritional epidemiology. In § 5, we describe how this study

fits our model framework.

It is not difficult to see that since missingness depends only upon the observed covariates z,

using the complete data only yields a consistent estimate of βτ. However, since a part of the

data is completely excluded from the analysis, this practice can be highly inefficient. The

main goal of this paper is to propose a multiple imputation method to include the incomplete

data, so as to improve estimation efficiency. Since additional assumptions on (x, z) are

needed to facilitate the imputation procedure, the method risks being inconsistent and we

propose a shrinkage estimator to attenuate this risk. The final estimator has an automatic

data-driven shrinkage parameter, which guarantees that the resulting estimator is consistent

regardless of the correctness of the additional assumptions, and at the same time is more

efficient than using the complete data only.

Most existing methods handling missing data are likelihood-based, and hence cannot be

applied to quantile regression directly, since there is no likelihood function for quantile

regression. Lipsitz et al. (1997) considered an inverse probability approach for longitudinal

data with drop-outs. For the same type of data, Yi & He (2009) extended the inverse

probability weighted generalized estimating equations proposed by Robins et al. (1995) to

correct for the bias from longitudinal drop-out. Our setting is different from those methods,

since we are dealing with missing covariates, rather than missing outcomes.

Throughout the paper, we write Qτ (y) as the τth quantile of a random variable y. We write

β(τ) as the quantile coefficient process for τ ∈ (0, 1), and βτ as the quantile coefficient

specifically at the τth quantile. In addition, we use ‖x‖ to mean Euclidean norm, and write g′

(x) as the first derivative of an arbitrary function g(x). If x and y are two random variables,

then E(x,y){g(x, y)} stands for the expectation of g(x, y) over the joint distribution of (x, y).

2. Estimation with multiple imputation

2·1. Method

In this section, we propose a multiple imputation estimator of the quantile coefficient

 in the linear quantile model (1). The method has the following steps.
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Step 1. Perform quantile regression with the complete data only. Run a quantile regression

using the complete data only and write the resulting coefficients as β̂
τ. That is, for a set of τ

values in (0, 1), obtain , where ρτ (r) = r {τ − I (r <

0)} is an asymmetric L1 loss function. In practice, τ is typically chosen to be evenly spread

and sufficiently dense grid points on (0, 1).

Step 2. Impute the missing x based on f (x | y, z). The main challenge is to estimate the

conditional density of f (x | y, z). The density f (x | y, z) ∝ f (y | x, z) f (x | z), so it can be

determined uniquely from the two densities f (y | x, z) and f (x | z).

Step 2a: Estimate the conditional density f (y | x, z). Under the assumption that the linear

quantile model (1) holds for all quantile levels τ, we can write the conditional density f (y | x,

z) as a function of the quantile coefficient process, that is, f {y | x, z; β0(τ)} = F′{y | x, z;

β0(τ)}, where F{y | x, z; β0(τ)} = inf {τ ∈ (0, 1) : (xT, zT)β0(τ) > y} and β0(τ) is the true

quantile coefficient process. We write the conditional density f (y | x, z) as f {y | x, z; β0(τ)}

to indicate its dependence on the quantile coefficient function β0(τ).

Although the unknown coefficient function β0(τ) is of infinite dimension, it can be well-

approximated by a natural linear spline expanding from a series of estimated β̂
τk at a fine

grid of quantile levels (τk). Specifically, we choose quantile levels τk = k/(Kn + 1) (k =1, …,

Kn), where Kn is the number of quantile levels. We then define β̂(τ) as a p-dimensional

piecewise linear function on [0,1], which satisfies β̂(τk) = β̂
τk and β̂′ (0) = β̂′ (1) = 0. Under

the conditions in Wei & Carroll (2009), β̂(τ) converges uniformly to the true quantile

coefficient process in probability. The quantile function is the inverse distribution function,

so the density function can be expressed as the reciprocal of the first derivative of the

quantile function at the corresponding quantile level. Consequently, we can approximate the

conditional density function by

Here f {y | x, z, β̂(τ)} is the previously defined density function that is induced from the

estimated conditional quantile function (xT, zT) β̂(τ).

Step 2b: Estimate the conditional density f (x | z). The remaining problem is to estimate f (x |

z). We model x given z parametrically as f (x | z, η). The missing-at-random assumption

facilitates the estimation of η based on the complete data. We write the estimate as η̂, and

the estimated conditional density of x given z as f (x | z, η̂).

Step 2c: Estimate the conditional density f (x | y, z) and impute the missing x accordingly.

The estimated conditional density function is f̂ (x | yj, zj) ∝ f̂{yj | x, zj, β̂(τ)} f (x | zj, η̂). For

each j =n1 + 1, …, n, we simulate the missing xj from f̂(x | yj, zj) by randomly drawing a

Un(0,1) random variable, and inserting it into the quantile function F̂−1(u | yj, zj), for u ∈ (0,

1) that is derived from the estimated f̂(x | yj, zj). Let uℓ be the ℓth generated Un(0,1) random
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variable. We then define x̃j(ℓ) = F−1(uℓ | yj, zj), the ℓth imputed x associated with (yj, zj).

Consequently, x̃j(ℓ) ~ f̂(x | yj, zj).

Step 3. Re-estimate β including the imputed data. We assemble a new objective function

including the completely observed data and the ℓth imputed dataset as

and define β̂
*(ℓ) = argminβ Sn(ℓ)(β) as the estimated coefficient using the ℓth assembled

complete data. We repeat this imputation-estimation step m times, and the multiple

imputation estimator is .

2·2. Large-sample properties of the multiple imputation estimator

In this section, we establish the consistency and asymptotic normality of the multiple

imputation estimator β̃
τ. Let δ = 0 when x is missing and δ =1 otherwise.We first reiterate

the assumption on the missingness mechanism.

Assumption 1. For all z, pr(δ =1 | x, y, z) = pr(δ =1 | z) > 0.

Assumption 1 ensures that, conditioning on z, the event that x is missing is independent of x

and the response y. We then introduce two identifiability conditions.

Assumption 2. There exists a β0,τ ∈ ℝp such that β0,τ uniquely minimizes the objective

function S0(β) = E(y,x,z)[ρτ {y − (xT, zT)β}].

Define S̃
0(β) = E(y, x̃,z)[ρτ {y − (x̃T, zT)β}], where, given (y, z), x̃ follows the conditional

distribution f̂ (x | y, z). Since f̂ is estimated from completely observed data, this expectation is

also conditional on the n1 completely observed data. We then make the following

assumptions.

Assumption 3. There exists a compact set Ω ∈ Rp, and , such that

.

Assumption 4. The covariate x has bounded support . The true conditional density f (x | z)

= f (x | z, η =η0), where f (x | z, η) is a continuous function of η uniformly for (x, z) in a

neighbourhood of η0 and is bounded away from zero and infinity for all (x, z).

Recall that for any x and z, (xT, zT)β0(τ) defines the conditional quantile function of y given

x and z. We further define a functional , which is the density of

y given x and z at the τth quantile. We call this the conditional quantile density function. Its

reciprocal is known as the sparsity function (Welsh, 1988; Koenker & Xiao, 2004). With

these definitions, we now introduce the smoothness conditions on β0(τ).

Assumption 5. The true coefficient functions β0(τ) are smooth functions on (0, 1), and for

any x ∈  and z,
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i. 0 < h(τ; x, z) < ∞, and limτ→0 h(τ ; x, z) = limτ→1 h(τ; x, z) = 0;

ii. there exist constants M and ν1, ν2 > −1 such that the first derivative of h(·) satisfies

(2)

Assumption 5 is similar to Assumption 3 in Wei & Carroll (2009). Assumption 5(i) implies

that the conditional density f (y | x, z) is continuous, bounded away from zero and infinity

and diminishes to zero as τ converges to 0 and 1, while Assumption 5(ii) is on the tail

behaviour of f (y | x, z), since h′ (τ; x, z) determines how smoothly the density function

diminishes as the quantile level converges to 0 or 1. Smaller ν1 and ν2 indicate heavier tails

of the conditional distribution of y given x and z. Assumption 5(ii) covers a wide range of

distributions, such as the exponential, Gaussian and the Student t-distributions.Assumption

5, together with Assumptions 2 and 4, ensures the uniform convergence of β̂(τ) over the

intervals [1/(kn + 1), kn/(kn + 1)], which in turn ensures consistent estimation of f (y | x, z).

Assumption 6. The matrix , is positive

definite, where ϕτ (r) = τ − I {r < 0}.

In addition, we also make the definitions

With these assumptions and notation, we now present the asymptotic behaviour of β̃
τ. Recall

that 0 < limn→∞ n0/n1 = λ < ∞.

Theorem 1. Under Assumptions 1–6, for Kn→ ∞ and Knn−1 → 0, the multiple imputation

estimator  in distribution, where Σ = (λ + 1)−1 V1 + (1 +

1/λ)−1[m−1V0 + {(m − 1)/m}U0].

The proof of Theorem 1 is provided in Appendix A1, while estimates of ψτ and Σ are

provided in Appendix A2.

Remark 1. Throughout, we use the phrase complete-data analysis to mean an analysis based

only on the completely observed data. The asymptotic variance of the estimator using the

completely observed data only is . Comparing with the estimation variance

 of the imputed estimator, we see two sources of difference. First, the multiple

imputation estimator has an effective sample size n, larger than that for the complete-data

analysis, which helps to improve its efficiency. Second, the multiple imputation estimator

has additional sources of variability, including the sampling variability from multiple

imputation, the inherited variability from using the complete-data estimated parameters and

their correlations. Hence, the multiple imputation estimators might be less efficient than the
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complete-data estimator. Such phenomena are common for multiple imputation estimators;

see Tsiatis (2006, Ch. 14). In practice, one could assess the variabilities of both estimators to

decide which to use; see Appendix A2.

3. Shrinkage estimation

The estimator β̂
τ using the complete data only is consistent, but has a potential loss of

efficiency. The multiple imputation estimator βτ̃ is generally more efficient, as will be

demonstrated via simulations in § 4. However, imputation may cause bias when the

parametric likelihood for x given z is misspecified. There are many ways to balance the two

estimators, including test-pretest estimation after testing for the parametric model, but a

simple and general strategy that we adopt is a shrinkage estimator, as follows. Let θ̂τ = β̂
τ −

βτ̃ be the componentwise differences of the multiple imputation and complete-data

estimators, respectively, with elements (θ̂
1,τ, …, θ̂p,τ)T. Let V be the covariance matrix of θ̂τ

with diagonal elements (υ11, …, υpp). Then Chen et al. (2009) suggest the estimator

(3)

where K is a diagonal matrix with jth . Recall that the

asymptotic variances υjj (j = 1, …, p) are quantities of order n−1. The idea behind this

method is that if there is no bias, then  and the shrinkage factor K is between 0

and I, so that the multiple imputation estimator and the complete-data estimator both receive

weight, although emphasis is on the former. Conversely, if there is a bias, then ,

and the elements of K → 0, so that the complete-data estimator asymptotically has weight 1.

Details of implementing the shrinkage estimator are given in Appendix A2. In Appendix A1,

we show that the complete-data estimator and the multiple imputation estimator have linear

expansions, based on which we outline in Appendix A2 estimation of the joint covariance

matrix of (β̂
τ, β̃

τ). The results enable us to estimate V easily and also mean that the formulae

in Chen et al. (2009) are applicable, so that we can construct an estimator of cov( ). The

general theory for such shrinkage estimators is given by Chen et al. (2009), although

constructing the estimate of Σ is nontrivial because of our context.

4. Simulations

Here we investigate the performance of our multiple imputation estimator β̃
τ and shrinkage

estimator  based on Monte-Carlo simulations. We first consider two models.

(4)

(5)

where the errors ei1 and ei2 are independent and standard normal, and the covariates (xi, zi)

are jointly normal with mean vector (4, 4)T, variances (1, 1)T and correlation 0·5. In model
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(4), the true intercept at the τ th quantile is 1+Qτ (z), where z is a random variable with a

standard normal distribution, and both coefficients associated with xi and zi equal 1 at every

quantile. In model (5), the true intercept equals 1 at every quantile level, but the two slope

coefficients vary across the quantiles, both equal to 1 + 0·5Qτ (z) at quantile level τ. In both

models, we further assume that xi is missing with probability pr(xi is missing | zi) = max[0,

{(zi − 3)/10}1/20], which results in approximately 25% missing xis. We then apply the

multiple imputation estimation and shrinkage estimation procedures to the simulated data

from the two models above. In both settings, the density f (x | z) is estimated by maximum

likelihood estimation correctly assuming a joint normal distribution. When the covariates x

and z are negative, there is an identifiability issue in model (5) since the distribution of ei1 is

symmetric around 0. To avoid this trivial situation, we only kept the pairs (x, z) satisfying x

+ z > 0 in model (5). Because the probability of x + z < 0 is very small, the resulting true

joint probability density function of (x; z) is very close to the joint normal distribution which

we used in the imputation procedure. We choose m =10 in the multiple imputation

estimation algorithm. The sample size was n = n0 + n1 = 200. The shrinkage factor is

estimated following Appendix A2.

Table 1 displays the means and the standard errors of the estimated quantile coefficients in

models (4) and (5) from 500 simulations at τ = 0·1, 0·5 and 0·9, using the three estimation

approaches. The upper half of Table 1 displays the coefficients from model (4), while the

bottom half shows those from model (5). All three methods are nearly unbiased. However,

as expected from the theory, the variances of the multiple imputation estimators are smaller

than the complete-data estimators, especially in the coefficient associated with zi. Such

efficiency improvement is more evident for the heteroscedastic model (2). For example, for

estimating the zi slope at the 0·9th quantile, the relative efficiency of multiple imputation

estimation compared with using the complete data only, i.e., the ratio of their variances, is

217%, and that of shrinkage estimation is 149%. To investigate the performance of our

methods in various model settings, we also allowed higher missing proportions, and weaker

or stronger correlation between the covariates x and z. The resulting estimated coefficients

and their standard errors are included in the Supplementary Material. On the basis of those

tables, the proposed estimators performed well across various model specifications.

The results in Table 1 are obtained when f (x | z) is estimated from the correct model. To

investigate the potential bias that could be induced from misspecified f (x | z), we simulate

covariates (xi, zi) as xi = (0·18ui,1, + 0·68ui,2) + 3·14, and zi = (0·68ui,1 + 0·18ui,2) + 3·14,

where ui,1 and ui,2 are two independent  random variables. We choose the constants, 0·18,

0·68 and 3·14, such that (xi, zi) have mean 4, variance 1 and correlation of approximately

0·5, as in the earlier simulation. After simulating the nonnormally distributed covariates, we

then generate the responses from model (2). For each generated sample, we allow xi to be

missing completely at random with probability 0·25. We apply the same estimation

procedures as above, pretending that (xi, zi) is jointly normal. Table 2 presents the mean

squared errors and standard errors for the resulting estimated coefficients at τ = 0·1, 0·5 and

0·9. As a comparison, we also re-estimate the coefficients using the imputation method, but

use the exact density f (x | z) in the algorithm. On the basis of Table 2, the mean squared

errors from the multiple imputation estimators with the exact f (x | z) are the smallest. As
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expected, when f (x | z) is misspecified, the mean squared errors are inflated, and the

shrinkage estimates have smaller mean squared errors due to the bias correction. Since the

complete-data approach only uses part of the data for estimation, its mean squared errors are

even larger than the multiple imputation estimator with misspecified f (x | z). Finally, the

difference between the multiple imputation estimators using exact and misspecified densities

are small relative to their standard errors, indicating that the multiple imputation estimator is

also fairly robust against the misspecification of f (x | z).

5. Application

We illustrate the performance of our methods using part of the Eating at American’s Table

Study (Subar et al., 2001). The dataset consists of 1418 subjects who participated in this

study from September 1997 to August 1998. They were required to complete a 24-hour

recall on their dietary intakes, and they also completed a dietary history questionnaire. It is

commonly thought that the 24-hour recall is an unbiased measure of dietary intake, but is

expensive in cohort studies because it must be administered multiple times, and thus costs

far more than the dietary history questionnaire. In measurement error modelling of diet and

disease, the regression calibration method (Carroll et al., 2006) is to regress the 24-hour

recall on the dietary history questionnaire. Since the distributions of nutrition intakes are

commonly skewed, quantile regression is a desirable tool for this modelling.

Here we model carbohydrate intake, with yi being the 24-hour recall for the ith person, xi1

the dietary history questionnaire measurement, xi2 body mass index, xi3 the participant’s

age, xi4 an indicator of Caucasian ethnic status and xi5 the gender. The model can be written

as

(6)

There are 453 randomly selected subjects among the 1418 who do not have measurements

of body mass index and did not complete the dietary history questionnaire, because the study

was a designed experiment with some participants randomly assigned to complete an

alternative questionnaire. Therefore, those covariates are missing completely at random.

Here we apply our multiple imputation estimation methodology to obtain the estimate of the

βs, with x as the carbohydrate intake in the dietary history questionnaire and body mass

index, and z as gender, ethnicity and age.

In these data, we found that the carbohydrate intake measured in the dietary history

questionnaire and body mass index are essentially uncorrelated, with partial correlation

0·0084 conditional on the subject’s age and gender. We can thus estimate the conditional

density of carbohydrate intakes in the dietary history questionnaire and body mass index

separately based on the two Box–Cox transformation models
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Here Λ(u, λ) is the Box–Cox transformation function, i.e., Λ(u, λ) = log(u) if λ = 0, and Λ(u,

λ) = (uλ − 1)/λ for λ ≠ 0. We used maximum likelihood estimates of the transformation

parameters, these being close to 0 and −1, respectively, which suggests that logarithm and

reciprocal transformations are needed for carbohydrate intake in the dietary history

questionnaire and body mass index, respectively. In the Supplementary Material, we present

the quantile-quantile plot of the residuals from the above two models with their respective

best fitted powers, which shows that the transformed variables are approximately normally

distributed.

On the basis of the estimated models, the conditional density of the untransformed

carbohydrate intake in the dietary history questionnaire is f̂c(υ) = (υσ̂
1) −1 φ[{log(υ)− γ̂

10 −

γ̂
11x3 − γ̂

12x4 − γ̂
13x5}/σ1̂], where φ is the density function of standard normal. The

conditional density of body mass index is f̂b(υ) = (υ2σ2̂)−1φ[{1/υ − γ̂
20 − γ̂

21x3 − γ̂
22x4 −

γ̂
23x5}/σ̂2].

Following our multiple imputation algorithm, we estimated model (6) at 50 evenly spaced

quantile levels using the completely observed data only in the first step. On the basis of the

resulting quantile coefficient process, and the estimated conditional densities f (x | z) using

the models above, we imputed the missing carbohydrate intakes and body mass index m =

10 times. In Table 3, we listed the multiple imputation estimators at τ = 0·1, 0·5 and 0·9, as

well as their standard errors. To illustrate the improved efficiency from multiple imputation,

we calculated the relative efficiency. In addition, we also constructed the shrinkage

estimator following (3). The shrinkage factors are estimated following Appendix A2.

Table 3 shows that the multiple imputation estimators are fairly consistent with those using

the complete data only, but have much smaller standard errors for the estimates associated

with age, ethnicity and gender. Those variables are completely observed when the dietary

history questionnaire carbohydrate intakes and body mass index are missing. The multiple

imputation estimators make full use of those observations, which improves their efficiency.

The shrinkage estimator is generally consistent with the complete-data and multiple

imputation estimators; while its standard errors are slightly larger than the multiple

imputation estimators, they are still much smaller than those of the complete-data

estimators.

6. Discussion

The validity of our multiple imputation method relies on a correct specification of the

conditional density f (x | z), which we model parametrically. To further protect against the

possible misspecification of f (x | z), a shrinkage estimator was proposed. One could also opt

to estimate f (x | z) nonparametrically, which will automatically yield a consistent estimator

without an additional shrinkage step. However, nonparametric conditional density

estimation is very complex, especially when z is multivariate, and the slow rates of

convergence would undermine the usefulness of such an approach.

The missing covariate problem in the quantile regression context is challenging, because the

conditional density of y given the covariates is unspecified under a typical quantile

Wei et al. Page 9

Biometrika. Author manuscript; available in PMC 2014 June 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



regression setting. Consequently, classical likelihood-based approaches cannot be applied

directly. Here, we adopted a joint modelling approach similar to Wei & Carroll (2009) to

circumvent this difficulty. However, the proposed method is different from Wei & Carroll

(2009) in many aspects. First, the objectives are different. This paper handles missing

covariates, while Wei & Carroll (2009) handle mismeasured covariates. Second, the

estimation approaches are different. Wei & Carroll (2009) is based on constructing unbiased

estimating equations; while this paper uses a multiple imputation approach. Consequently,

the estimation algorithms are different; the former involves iterative estimation, while the

estimation procedure in this paper does not. Finally, the asymptotic properties are obtained

in a very different fashion.

We assumed the conditional quantile functions to be linear at all quantile levels. This

assumption holds for location-scale models, i.e., Y = XTβ + XTγe, where e is a random error

with Qτ (e | X) = 0. If needed, one can easily relax the linear quantile function to an arbitrary

nonlinear or even nonparametric function. The algorithm remains largely unchanged, with

the minimal adaptation of setting the linear function to be the new regression function in the

check function ρτ. Although the method is presented for an independent sample, it can also

be extended to longitudinal data using the so-called working independence construction. For

a longitudinal sample (yi,j, xi, j, zi, j), if the quantiles of yi, j is linear in (xi, j, zi, j), then we can

estimate the quantile coefficients using a similar algorithm with the longitudinal quantile

regression objective function . The estimation of the

conditional density f (x | z) also needs to be adapted for the longitudinal data. The resulting

estimators would still be consistent, but the limiting distribution would need to be derived

separately.
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Appendix

A1. Technical arguments

Recall that x̃j(ℓ) is the ℓth imputed x associated with (yj, zj), based on the estimated density f̂

(x | yj, zj). We define a partial objective function with the imputed proportion of the data
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and define its minimizer .

We say that β̂
0,(ℓ) is the estimated coefficient using the ℓth imputed portion of the data only.

In later steps, we show that the multiple imputation estimator β̃
τ can be written as a linear

combination of β̂
τ and β̂

0,(ℓ)s. Hence, to find the asymptotic distribution of β̃
τ, a key step is

to find the asymptotic distribution of β0̂,(ℓ) as n = n0 + n1 → ∞, and 0 < limn n0/n1 =λ < ∞.

To do that, we first show that

(A1)

in probability as n1 → ∞. Here S̃
0(β) and S0(β) are the two expected objective functions

defined before Assumptions 2 and 3.

Recall that f̂{y | x, z, β̂(τ)} is the estimated conditional density of y given x and z using the

complete data only. We first decompose the difference between the estimated density f̂{y | x,

z, β̂(τ)} and its true value as

where

Following the definition of f̂{y | x, z, β̂(τ)}, and since for any given value of y, it can only be

contained in one of those subintervals {(xT, zT) β̂
τk, (x

T, zT) β̂
τk+1}, we have

Following the uniform convergence of β̂
τ, readily available from the result in Wei & Carroll

(2009) by considering in their context a special case where the measurement error variance

is zero, the convergence  holds uniformly for any k.

Consequently, we can rewrite the upper bound as
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By the mean value theorem, there exists a τ* ∈ (τk, τk+1) such that (τk+1 − τk)/{(xT, zT)

(β0,τk+1 − β0,τk)} = h(τ*, x, z). On the other hand, let τy be the quantile level of y with respect

to true quantile function (xT, zT)β0(τ) for y ∈ [(xT, zT) β̂
τk, (x

T, zT) β̂
τk+1), then f {y | x, z,

β0(τ)} = h(τy, x, z) by definition. Since the true quantile function (xT, zT)β0(τ) is a

continuous function that satisfies the Lipschitz condition, the quantile level of (xT, zT) β̂
τk+1

with respect to the true quantile function is . Moreover, due to the

uniform convergence of β̂(τ), the quantile level of (xT, zT)β̂
τk is , for any

k. Therefore, together with the monotonicity of quantile function, we have

. Following these arguments, we have

The last step follows from Assumption 5(i) and the fact that Kn/n → 0. Consequently, for

any given values of y and z, as n1 → ∞ and Kn → ∞, we have

(A2)

Let D0(y, z) = ∫ x f {y | x, z, β0(τ)} f (x) dx, and Dn1 (y, z) = ∫x f̂{y | z, x, β̂(τ)} f (x) dx. Since f

(x | z) is an integrable function, the convergence (A2) also implies that

(A3)

It follows that, for any y and z,
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(A4)

The last step is implied by (A2), (A3), together with the facts that D0(y, z) > 0 for any (y, z),

and the density f (x) is bounded away from infinity under Assumption 4. Moreover, the

distance between the two objective functions can be written as

where g(y, x, z) = supβ∈Ω ρτ {y − (xT, zT)β} f (y, z). Since x has bounded support, and Ω is a

compact set, under the assumptions that E(y) < ∞ and E(z) < ∞, the function g(y, x, z) is

integrable, i.e.,

(A5)

On the other hand, due to the uniform convergence of β̂(τ), there exists a constant C1, such

that for large enough n1, f̂{y | x, z, β̂(τ)} ≤ h(τy, x, z) + C1. Following Assumption 5(i), the

quantile density function h(τ, x, z) is bounded for any τ, x and z, it follows that f̂{y | x, z, β̂

(τ)} is bounded for any (y, x, z).Moreover, since f (x) is bounded with bounded support,

Dn1(y, z) is also bounded. Consequently, the estimated density f̂(x | y, z) is bounded for any

(y, x, z). Following the dominated convergence theorem, the convergence (A4), the

integrability (A5) and the boundedness of f̂(x | y, z) together imply the convergence supβ∈Ω |

S ̃
0(β) − S0(β)| = 0p(1) as n1 and Kn → ∞.
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Since S0(β) is a continuous function, and uniquely minimized in β0,τ, following the

arguments in Amemiya (1985, pp. 106–8), the convergence (A1) suffices for

, where  is the minimizer of S̃
0(β). Recall that

 is the objective function which is minimized at

β̂
0(ℓ). Of course,

Then, following standard arguments for M-estimation (van der Vaart, 1998, 44–7), the

estimator β̂
0(ℓ) converges to  in probability, conditioning on the completely observed data.

Therefore,

(A6)

as n0 + n1 → ∞. Thus, we have shown the consistency of β̂
0(ℓ).

We now use a Taylor expansion to derive the asymptotic normality of β̂0(ℓ). Define the

directional derivative function of  as

.

Arguments similar to those used in proving He & Shao (1996, Lemma 4.6) yield the uniform

convergence result

(A7)

for any descending sequence δn. Combining (A6) and (A7), we have

(A8)

Since , we Taylor expand  in (A8) around β0,τ, so that

and thus β̂
0(ℓ) has Bahadur representation
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(A9)

where . Since the

conditional density of f̂(x | yj, zj) converges to the true density f (x | yj, zj) as n1 → ∞ for any

x, the joint distribution of (yj, x̃j(ℓ), zj) converges to the joint distribution of (yi, x̃i, zi) as n1 →

∞. Consequently, using Assumption 1 and the dominated convergence theorem, we have

that  converges to ψτ in probability as n1 → ∞, and

 converges to V0 as n1 → ∞. It follows that β̂
0(ℓ) is

asymptotically normally distributed with mean β0,τ and covariance matrix . This

finishes our analysis of β̂
0(ℓ).

We now define

as the estimated coefficient using the ℓth assembled complete data. Following similar lines

in proving (A9) by treating the observed xi as an imputed value using the true density

function f (x | z, η0), we have

(A10)

where . Using the law of large

numbers, the matrix ψn1,τ converges to ψτ in probability. On the other hand, recall that β̂
τ is

the estimated coefficient based on n1 complete data only. For any τ, β̂
τ has the Bahadur

representation (Koenker, 2005, Equation (4.4),

(A11)

Combining (A9)– (A11), and using , we

obtain
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(A12)

where

It follows immediately from the central limit theorem that n → N(0, V1) in distribution. On

the other hand, conditioning on the complete data, n(ℓ) converges to N(0, Vn) in

distribution, where . Since Vn converges to V0

with the increase of the total sample size, n(ℓ) converges to N(0, V0) in distribution as n

goes to infinity by Slutsky’s theorem. Because N(0, V0) does not depend on the complete

data, this is also the limit of the marginal distribution of n(ℓ). Moreover, it is easy to show

that E( n n(ℓ)) → 0 and cov( n(ℓ), n(ℓ′)) → U0. It follows that

, where Σ = (λ + 1) −1V1 + (1 + 1/λ)−1[m−1V0 + {(m −

1)/m}U0], as claimed.

A2. Implementing the shrinkage estimator

Define . Let Γ be the estimated covariance matrix of ℬ̂, which is derived on a

case-by-case basis. Then θτ̂ = (θ̂
1,τ, …, θ̂p,τ)T = β̃

τ − β̂
τ. Let V̂ be the estimated covariance

matrix of θ̂
τ, with diagonal elements (υ̂1, …, υ̂

p). Define
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and define G = (K, Ip − K). Then the shrinkage estimator is β̂
s(τ) = Gℬ̂. Its estimated

covariance matrix is côv{β̂
s(τ)} = GΓ̂ GT.

We estimate the covariance matrixes of β̃
τ and βτ̂ based on their Bahadur representations

(A11) and (A12), respectively. That requires the estimation of the variance component

matrices, ψn1,τ, ψn0,τ, the variances of n and n(ℓ) and the covariance of n(ℓ) and n(ℓ′).

In what follows, we provide sample estimation of those variance component matrices. First,

, where

Here hτ is the bandwidth chosen by the method of Hall & Sheather (1988). Compared with

the density estimator that we used in the estimation procedure, here we incorporated a

bandwidth selection hτ to improve the stability of f̂i (τ). Of course,

. Following similar

lines, we approximate this last term by

where the estimated density function is

Following the linear expansions of β̃
τ and β̂

τ, we first estimate var( n) and var( n(ℓ)), and

cov( n(ℓ), n(ℓ′)) using sample variances, i.e., we define the estimator

Let Qℓ be sample covariance matrix of . The

variance component matrix var( n(ℓ)), for any ℓ, can be estimated by

For any ℓ ≠ ℓ′, we define Q(ℓ, ℓ′) as the sample covariance matrix between
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We define

for any (ℓ, ℓ′). With the considerations above, we have

where λ̂ = n0/n1. Consequently, the estimated covariance matrix of β̃
τ is

, and the estimated covariance matrix of β̂
τ is

. Since n and n(l) are asymptotically independent and

have means zero, we have that E( n n(ℓ)) = o(1).We can estimate the covariance between

βτ̃ and β̂
τ by . Assembling these components together, we

obtain
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