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Abstract

Transcriptome-based biosensors are expected to have a large impact on the future of 

biotechnology. However, a central aspect of transcriptomics is differential expression analysis, 

where, currently, deep RNA sequencing (RNA-seq) has the potential to replace the microarray as 

the standard assay for RNA quantification. Our contributions here to RNA-seq differential 

expression analysis are two-fold. First, given the high cost of an RNA-seq run, biological 

replicates are rare, and therefore, information sharing across genes to obtain variance estimates is 

crucial. To handle such information sharing in a rigorous manner, we propose an hierarchical, 

empirical Bayes approach (R-EBSeq) that combines the Cufflinks model for generating relative 

transcript abundance measurements, known as FPKM (fragments per kilobase of transcript length 

per million mapped reads) with the EBArrays framework, which was previously developed for 

empirical Bayes analysis of microarray data. A desirable feature of R-EBSeq is easy-to-implement 

analysis of more than pairwise comparisons, as we illustrate with experimental data. Secondly, we 

develop the standard RNA-seq test data set, on the level of reads, where 79 transcripts are 

artificially differentially expressed and, therefore, explicitly known. This test data set allows us to 

compare the performance, in terms of the true discovery rate, of R-EBSeq to three other widely 

used RNAseq data analysis packages: Cuffdiff, DEseq and BaySeq. Our analysis indicates that 

DESeq identifies the first half of the differentially expressed transcripts well, but then is 

outperformed by Cuffdiff and R-EBSeq. Cuffdiff and R-EBSeq are the two top performers. Thus, 

R-EBSeq offers good performance, while allowing flexible and rigorous comparison of multiple 

biological conditions.
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1. Introduction

Next generation sequencing generally refers to the massively parallel identification of the 

bases that make up nucleotide sequences and has revolutionized the way we can look at 

biology. Obtaining the sequence of a human genome once cost on the order of $100,000,000 

dollars and took years; now, with next generation sequencing techniques, we obtain such a 

sequence for on the order of $10,000 to $1,000 in days/weeks [1–5]. This rate of cost 

decrease is amazingly exceeding that of Moore’s law for semiconductors [5].

One application of next generation sequencing is transcriptomics, where an entire set of 

mRNAs is sequenced [6,7]. This application is known as RNA-seq, and the process, from 

cells to data and differential expression analysis, may be thought of as a pipeline, as shown 

in Figure 1. Although a wide variety of next generation sequencing platforms exist, they are 

generally based on slight variations of this core pipeline.

The process, of course, starts with cells, from which mRNA is extracted. Note that, due to 

the biological variability, the extracted mRNA levels may differ considerably among 

different biological samples. Then, a so-called library is created from the isolated mRNA. 

The library typically consists of nucleic acid fragments, but can also consist of full-length 

nucleic acid molecules [2,8]. It is this library that is the direct input to the next generation 

sequencer. During library generation, the samples are subject to both fragmentation and 

amplification variability and bias [2,9]. Because the library generation protocol is 

sequencing platform-specific, these forms of variability and bias will be platform-dependent 

(and, even, non-existent in some cases).

A subset of the library molecules is then sequenced, producing what are called reads or 

DNA sequences. Because only a subset of the library molecules is chosen for sequencing, 

there is variability and potential bias in the selection process [9]. Furthermore, due to the 

nature of the sequencing process, the identity of each nucleotide in the read is only known in 

a probabilistic sense, resulting in variability and bias, due to base-calling errors [2].

With this sample of reads, one can either align them to a reference genome or perform a de 

novo assembly and, subsequently, count the number of reads that align to particular genes. 

Such aligned reads are also termed mapped reads. Regardless of which of these two are done 

(alignment or assembly); however, there will inevitably be uncertainty in assigning a read to 

a particular gene; a single read may well align to multiple genes.

Some researchers consider these count data to be the final product of an RNA-seq 

experiment. However, such count data are not usually linearly proportional to the original 

number of full length transcripts for two main reasons. First, longer transcripts generate 

more reads simply due to their length. Second, because a single gene typically codes for 

multiple transcripts with different lengths, a gene’s expression in terms of the expected 
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number of counts may remain constant even while the number of transcripts being produced 

from that gene changes. Moreover, since one eventually wants to compare the results of two 

or more different sequencing runs, it is also necessary to correct for the total sequencing 

depth, which is related to how large the subset of the sequenced library molecules is. These 

reasons are why many people take an additional step to transform these gene counts to units 

of reads (R) or fragments (F) per kilobase of transcript length per million mapped reads 

(RPKM or FPKM), which are linearly proportional to original transcript levels [6,7].

Finally, one can assign an FPKM value to each individual transcript for every gene. This 

transcript assignment process also introduces uncertainty, because only reads that happen to 

contain exons or exon-exon boundaries that are unique to particular transcripts can inform 

this transcript assignment process and such reads may be rare [7]. It is with these FPKM 

data for individual transcripts that we would like to perform differential expression analysis.

In what follows, we first analyze the RNA-seq process described by Figure 1 in a statistical 

sense, to determine how it may be best modeled. Next, we propose a new empirical Bayes 

framework for differential expression testing, which uses the well-known and established 

Cufflinks software [7,9] to generate FPKM measurements, and, subsequently, couples to a 

modified version of the EBArrays framework, which was originally developed for 

microarray data analysis [10,11]. The advantages of this so-called R-EBSeq approach are (1) 

a rigorous treatment of information sharing across genes, which allows for better variance 

estimates, given the fact that one rarely has biological replicates, due to cost considerations; 

and (2) the ability to do simultaneous differential expression comparisons with arbitrary 

many expression patterns. Unlike another EBArrays-based method for the RNA-seq analysis 

[12], ours works with FPKM measurements, which seem more appropriate for the across-

gene information-sharing framework of EBArrays. To illustrate the advantages of our 

approach, we compare R-EBSeq method with three other established differential expression 

methods: FPKM-based Cuffdiff and count-based DESeq and BaySeq [7,9,13,14].

2. Methods

2.1. EBarrays

The method developed in [10,11] characterizes the distribution of expression measurements 

for a single gene (or transcript) in a certain condition. Here, we present a brief overlook of 

the idea behind the framework and how we adapt it to our problem. Similar empirical-based 

approach, but for count-based RNA-seq analysis, has been recently developed in [12]. We 

refer to their software documentation for additional EBArrays model details.

Let j indicate j-th transcript and xj = xj1, …, xjI be the expressions in the particular condition 

denoted: x, where I is the number of expression measurements we can take in this condition. 

The method treats xj as a random sample with a transcript- and condition-specific mean. 

Thus, we have that Xij/μj are iid with a pdf given as fXij/μj (xij). To allow information sharing 

among all transcripts and conditions, a prior distribution, π, is assumed on μj.

In a simple setting, if we investigate differences in expression between only two conditions, 

the index set {1, …, I} is partitioned into two subsets, s1, s2, each containing indices for a 
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corresponding condition (xj = (xjs1, xjs2 )). For each transcript, we aim to investigate a null 

hypothesis that assumes equivalent expression (EEj) among conditions, against the 

alternative that a transcript is differentially expressed (DEj) in one of conditions.

The pdf in each expression pattern (‘EE’ or ‘DE’) can be written as follows:

EEj:

(1)

DEj:

(2)

Let p and 1 – p denote the fraction of all genes that are differentially expressed and 

equivalently expressed among conditions. Then, the pdf for xj takes the following form:

(3)

Using Bayes’ formula, we can write the pdfs for each hypothesis:

(4)

(5)

The form of both the conditional distribution of xj and its conjugate prior to the mean are 

usually known. EBarrays uses the EM algorithm to compute the estimates of parameters for 

both distributions, as well as mixing proportions of genes supporting the investigated 

hypothesis.

This method is easily generalized for more than two expression patterns. A pattern 

corresponding to the null hypothesis, where each sample has the same underlying mean, is 

always distinguished. Consider m DE patterns, which yield a total of m+1 patterns 

(including the null pattern—Equivalent Expression).

The formula for the marginal distribution of xj, corresponding to Equation (3), is:

(6)
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where fk is density corresponding to the k-th pattern, as in [10], and pk is the fraction of 

genes supporting the corresponding pattern (hypothesis). Consequently, the posterior 

probability of expression pattern, k, for gene, j, is:

(7)

2.2. EBarrays Model for Cufflinks-Processed Data

Usually, Cufflinks-processed data does not have replicates. To use the EBarray framework, 

replicates need to be generated from the Cufflinks-specified normal distribution [7] for 

gene- or transcript-specific FPKM values (see below for discussion of normal 

approximation). They are then fed into EBarrays. The number of replicates to use is a free 

parameter of R-EBSeq, and its effect of differential expression analysis is explored in the 

main text. Since expression measurements approximately follow a normal distribution, the 

conjugate prior distribution for means is also normal. Thus, it is natural to assume a normal-

normal model for the EBarrays estimation procedure:

(8)

In this setting, π ~ N(μ0, τ0) and an n-dimensional input for gene j, after evaluating the 

integral as detailed in [11], follows a marginal pdf, f, which is the pdf of a normal 

distribution with mean, μ = (μ0, …, μ0), and covariance matrix:

(9)

where  is an identity matrix and Mn×n is a matrix of ones.

We adapted the EBarrays R code to account for the normal-normal model with modified 

variances by modifying the previously built-in LNNMV model (available as Supplemental 

File). This normal-normal model with modified variances code was created using the tools 

provided in EBarrays R package [10,11].

2.3. Justification for a Normal Distribution Model for Transcript Abundances At

According to Equation (15), the transcript abundance, Ât, is a product of two maximal 

likelihood estimates and is approximated in the model by a Gaussian variate. Here, we 

derive a brief justification, which works for any products of asymptotically Gaussian 

estimators. Consider two parameters, θ and η, with their respective estimates, θ̂n and ηn̂, 

which satisfy jointly the multivariate CLT, that is, as n → ∞

in distribution, where BV N(0, σ1. σ2, ρ) is a bivariate normal random variate with zero 

marginal means, marginal standard deviations, σ1 and σ2, and the correlation coefficient, ρ. 
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In the case of the abundance model, At considered in the paper, the vector, (θn̂, η̂
n) = (X̂

g, γ̂
t), 

is a joined MLE and the convergence above follows from the general theory of the 

likelihood-based estimation (see, e.g., [15] Chapter 4), where, now, n stands for the 

sampling depth (or the overall number of transcripts). Since

and η̂
n → η in probability, therefore, due to Slutsky’s theorem (see, e.g., [15] chapter 1), we 

see that in distribution,

where N(0, γ) is a zero mean normal variate with the standard deviation, γ, such that

2.4. Simulating Data Sets for Use with R-EBSeq

In order to evaluate the performance of our method, we investigated its ROC plots for 

several different parameter settings under the normal-normal model assumption. The control 

dataset was created by generating a 1, 000 × n measurement matrix, according to the 

Normal-Normal model—reflecting 1,000 transcripts under one condition with n replicates. 

The number of replicates is also referred to as the sample size.

The treatment dataset was created in the same way, but expression values for 10% of the 

transcripts (randomly chosen) were generated with altered parameters in order to simulate 

the differential expression. Only over-expression was considered.

To make the simulations as close to real data as possible, the parameters in the control 

setting (the mean and the variance) for the generation from the normal-normal model were 

taken from real data (we have chosen a fixed sample of 1, 000 transcripts from Cufflinks-

processed yeast data [16]).

The following three settings were investigated:

Mean difference in expression:

Fixed: variance—taken from Cufflinks, sample size: 10

Investigated: influence of difference in expression in 10% of transcripts 

(“treatment” group). Different levels of differential expression were generated 

according to the following: 5% of transcripts had x mean difference, and the 

remaining 5% had 2x mean difference in expression from the “control” group. The 

value of x was varied from 0, 5, 10, …, 50, and these different values yield ten 

ROCs visible in Figure 2(A).
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Variance:

Fixed: mean difference in expression for DE pattern: 5% of transcripts: 50, 5% of 

transcripts: 100. Sample size: 10

Investigated: influence of variance. For the whole “treatment” dataset, we created 

the ROCs for different additional variance levels. The cufflinks variance was 

increased by x ∈ {0, 5, …, 50}, yielding 10 ROCs in Figure 2(B).

Sample size:

Fixed: Mean difference in expression for DE pattern: 5% of transcripts 50, 5% of 

transcripts 100. Variance: Cufflinks variance

Investigated: Influence of the sample size. The sample size n was investigated at 10 

values: n ∈ {2, 4, …, 22}, each corresponding to a line in Figure 2(C).

2.5. Generating an RNA-Seq Benchmark Dataset for Comparing Various Differential 
Expression Testing Methods

In order to make comparisons between methods, we needed a benchmark dataset that would 

provide a common base for all methods. To ensure similarity with experimental conditions, 

we started with real data published in [13,16]. The control (sam file format) dataset is 

Tophat processed SRA output [7]. For annotation, we used a GTF file provided by a UCSC 

database, and to facilitate a direct comparison of various software packages operating on 

transcript or gene level, we only included in the modified dataset transcripts matching 

uniquely to particular genes.

The treatment (sam file format) dataset was created by first randomly choosing 100 reads 

from the control (sam) file. Each of those reads was replicated a number of times 

corresponding to its order: the first read was copied once, the second twice, and so on, until 

the 100th was copied 100 times.

To retrieve count datasets for DESeq and BaySeq methods, the created control and treatment 

files (sam file format) have to be further processed. We used the HTSeq software [17] 

recommended for DESeq, with default settings. To ensure that all methods will be capable 

of detecting replicated reads, we have been choosing only reads that had NH:i:1 flag in the 

sam file, which indicates unique mapping to a particular transcript [18].

The final step of creating the datasets was adding different level of noise to the reads, as 

described in the following section.

2.6. Adding Noise to the RNA-Seq Benchmark Dataset

For the benchmark datasets, to reflect real data, we are adding noise to the RNA-seq data by 

considering separately reads mapping uniquely to gene, g. For each read in this subset, we 

replicate this read yg times, where yg is taken from a negative binomial distribution, that is, 

yg ~ NB(rg, pg). The new noisy number of reads for a particular gene, Xg, given that this 

gene had N original reads, is therefore given as:
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(10)

It is well-known that a sum of independent negative binomial random variables is itself 

negative binomially distributed, with a new r parameter that is equal to the sum of the 

individual r parameters. Therefore:

(11)

Given this, along with the properties of expected values and variances of random variables, 

we have the following:

(12)

(13)

It can be shown that when V ar(Xg) = E(Xg):

(14)

Thus, given this negative binomial noise generation model, we can determine the mean and 

then choose rg < rc for underdispersion or rg > rc for overdispersion. Because RNA-Seq 

data are typically overdispersed (V ar(Xg) > E(Xg)) [13,14,19], to ensure it, for each gene, g, 

we used the following scheme for obtaining proper pg, rg parameters:

1. Generate pg uniformly from distributions U [(0.9, 1)].

2. Use pg to generate appropriate rc uniformly, according to distribution U [(1.2, 2)].

3. Results and Discussion

3.1. Gene Count as a Negative Binomial Random Variable

Most of the existing models for RNA-seq analysis employ some form of a parametric 

distribution of gene counts, typically a gamma-Poisson or a negative binomial, like, e.g., 

Bioconductor software [20] suites: edgeR, DSS, DESeq or BaySeq). Below, we briefly 

explain the main reasons for this particular model.

We begin by exploring what an appropriate description of the gene count data may be, and 

we focus first on the capture step, where members of the library are chosen for sequencing. 

Let the total number of molecules in a library be N, the total number of mapped reads, n, and 

the number of molecules in the library corresponding to the gene, i, be mi. If the capture 

process is unbiased (we consider capture bias and its variability later), then the probability of 

Wesolowski et al. Page 8

Biosensors (Basel). Author manuscript; available in PMC 2014 December 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



capturing a molecule that corresponds to gene i, which we denote as the probability of 

success for gene i, is pi = mi/N. Because by experimental construction the library size is very 

large compared to the total number of mapped fragments (N ≫n) and only in very 

exceptional circumstances is an expressed biological entity represented very few times in the 

library (mi ≫ 1), then for all practical purposes, the probability of success is constant for all 

capture events. Thus, from the viewpoint of gene i, one can cast this RNA-seq experiment as 

a series of n trials, where in each trial, there is some probability of success, pi. Now, if we 

denote by xi the number of reads that map to gene i, given the properties of the RNA-seq 

experiment as outlined above, the probability of gene i having xi reads follows a binomial 

distribution [21].

Given the large number of genes in any organism, in general, pi ≪ 1. Since the mean and 

variance of this aforementioned binomial distribution would be, respectively, μ = Npi and σ2 

= Npi(1 – pi) [21], the Fano factor (σ2=μ = (1 –pi)) would be approximately one for most 

genes, similar to that predicted by a Poisson distribution (mean equals variance). Therefore, 

in a situation where the same library is sequenced multiple times with the same total number 

of mapped reads n, a Poisson distribution should be an adequate representation for most 

gene counts. This was indeed found to be the case for 99.5% of genes from human tissue 

samples [19].

This binomial model also suggests that as the mean number of counts, or, analogously, pi, 

increases, then the Fano factor should decrease, leading to so-called “underdispersion” 

relative to a Poisson model. However, technical replicate data from sequencing runs using 

the same library show that the opposite is true; as the mean number of counts increases, so 

too does the Fano factor (Figure ) [ 3 19]. This is not evident for the majority of genes with 

relatively low means (Figure (A)), but becomes apparent 3 when higher mean genes are 

considered (Figure (B,C)). Thus, even when one considers only capture 3 variability, a so-

called “overdispersion” relative to a Poisson model is evident. Such overdispersion is likely 

due to bias in the capture process that varies from run to run.

A negative binomial model can adequately capture such overdispersion [13,14], and it 

describes the probability of needing a particular, but random total number of trials to get a 

fixed number of failures, given a constant probability of success in each trial. Thus, for a 

negative binomial model, the experimentally-fixed total number of mapped reads, N, has no 

clear physical interpretation. Therefore, the negative binomial distribution may be thought of 

as giving an empirical description of RNA-seq count data.

3.2. An Empirical Bayes Framework to Detect Differential Expression from RNA-Seq Data

One goal of an RNA-seq experiment is to determine what transcripts (or genes) have 

significantly different expression levels between various biologically-meaningful conditions. 

In developing a new method for differential expression analysis, we kept in mind the 

following three key features of current RNA-seq experiments. First, because count data are 

not always linearly proportional to the original number of transcripts in the biological 

sample, converting counts to FPKM measurements for the purposes of differential 

expression testing is warranted when information sharing across genes is desired, and we 

wish to remove the size effect. Second, the monetary cost of a single RNA-seq run is high, 
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so having a large number of biological replicates is unlikely. However, differential 

expression analysis relies on a precise estimate of a transcript’s variance, which is 

problematic with few replicates and impossible with no replicates. Therefore, information 

sharing across transcripts to improve variance estimates is necessary. Third, often, one 

would like to compare more than two biological conditions, so it is preferable to have the 

ability to do more than pairwise comparisons. Here, we integrate two previously developed 

software packages, Tophat-Cufflinks [7,9] and EBArrays [10,11], to create an empirical 

Bayes framework for differential expression analysis of RNA-seq data. We call this hybrid 

software R-EBSeq, as it incorporates these three key features mentioned above. Since the 

EBarrays software employs a Bayesian hierarchical model, it may be used with limited 

(possibly a single) biological replicates. We note that most other methods of differential 

expression analysis for microarray data, like limma or SAM [20], rely on in-sample variance 

estimation (limma’s moderated t-test) or permutation testing (SAM) and are, therefore, more 

vulnerable to the small sample size effects.

Before formulating an empirical Bayes approach to differential expression analysis, we must 

first consider how to convert the raw RNA-seq data into FPKM. The Tophat-Cufflinks 

pipeline is well-suited for this task, taking into account all the forms of bias and variability 

shown in Figure 1 with a rigorous, model-based formulation [7,9]. Cufflinks returns an 

estimated expression value, Ât, in FPKM for each transcript, t, which is given as:

(15)

where Ct is a normalizing constant for transcript, t (which includes the total, genome-wide 

number of mapped fragments and adjusted transcript length), X̂
g is the number of fragments 

mapping to gene, g (to which transcript t belongs), and γ̂
t is the fraction of X̂

g attributable to 

transcript, t (0 ≤ γ̂
t ≤ 1). Cufflinks also returns an estimated confidence interval for Ât, from 

which, based on the approximately normal behavior of At (see [7] and Methods), the 

variance of At, which we denote as VAt, can be estimated. Thus, by using the Tophat-

Cufflinks pipeline, we obtain estimates of the mean and variance of each transcript’s 

expression level (in FPKM).

A concern of some researchers is that transforming discrete count data into continuous 

FPKM data results in a loss of information related to the magnitude of the number of counts. 

To illustrate this concern, consider the case when transcript a with length 1 kb has two 

counts in Condition 1 and four counts in Condition 2, whereas transcript b with length 5 kb 

has 10 counts in Condition 1 and 20 counts in Condition 2. If Condition 1 and Condition 2 

have the same number of total, genome-wide mapped reads, then in terms of FPKM, the 

expression patterns of transcript a and b are identical. However, on the level of counts, the 

differential expression of transcript b is clearly more significant than that of a. This is 

consistent with the well-known fact that there is a length bias for detecting differential 

expression in RNA-seq experiments [22,23], which could possibly interfere with the 

information sharing across transcripts in the EBArrays model. Unfortunately, when 

converting counts to FPKM, the only way to retain the read length information is to 

propagate the variance of Xg into the variance of At, and Cufflink’s estimate of this variance, 

V̂
At, indeed does this [7].
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A previously developed software package called EBArrays uses a hierarchical, empirical 

Bayes model to analyze differential expression analysis in microarray studies [10,11]. This 

model is described in detail in [10,11] and also in the Methods. Conveniently, this software 

and model address the last two key features mentioned above: information sharing to 

improve variance estimates and the ability to do more than pairwise comparisons between 

arbitrary many expression patterns. Thus, by combining the Tophat-Cufflinks pipeline for 

generating FPKM along with the EBArrays software, we can obtain a hybrid package that is 

suitable for analysis of RNA-Seq data given the three key features listed above.

The output of the Tophat-Cufflinks pipeline for every condition are estimates of the mean 

and variance of At for each transcript t (Ât and V̂
At ), which specify an associated normal 

distribution. However, these parameters cannot be used as a direct input to EBArrays, as it 

expects expression values for various conditions. Therefore, to couple these two pieces of 

software, for each transcript, we generate M replicates from a normal distribution with 

mean, Ât, and variance, V̂
At, and, then, use these replicates as the input to EBArrays (see 

Methods). As indicated already above, we call this combined pipeline R-EBSeq.

To evaluate how R-EBSeq performs, we generated a test data set according to the 

underlying empirical Bayes model, imposed differential expression on a subset of transcripts 

from this data set and, then, calculated the performance of R-EBSeq in terms of true positive 

and false positive identifications (see Methods). Such plots of the false positive rate vs. the 

true positive rate are called receiver operator characteristic (ROC) curves. An ROC curve 

along the x = y line implies a very poor algorithm that performs no better than random 

choice, whereas an ROC curve that peaks high above the x = y line, at low x values, implies 

a very good algorithm. We investigated how three characteristics of a transcript affect the 

ROC curves: the difference of means between two conditions (Figure 4(A)), the variance of 

the transcript expression level (Figure 4(B)), and the number of replicates, M, used as input 

to the software (Figure 4(C)). In general, we see that R-EBSeq is capable of very good 

behavior in terms of the ROC curves. As expected, as we increase the difference of means 

between two conditions and/or decrease the variance, the ability of R-EBSeq to identify 

truly differentially expressed genes improves. Increasing the number of replicates, M, also 

improves the performance of R-EBSeq, likely because R-EBSeq is able to get a better 

estimate of a transcript’s variance.

3.3. Comparison of the R-EBSeq Approach to Published Differential Expression Software

There are several packages that currently exist for performing differential expression 

analysis on RNA-seq data. One method that is also based on FPKM is Cuffdiff, which is 

part of the Cufflinks pipeline [7]. We also want to consider count-based methods; two 

highly-used ones are DESeq [13] and BaySeq [14]. To determine how R-EBSeq compares 

to these three established methods, we need a common benchmark data set where the 

differentially expressed transcripts are known. However, generation of such a data set is not 

a trivial task, because using Cuffdiff requires altering a data set on the level of sequencer 

reads, whereas the input to count-based methods simply require a table of counts. To our 

knowledge, there is no publicly available benchmark dataset for such purposes. We have 

therefore modified a previously published RNA-seq dataset on S. cerevisiae [16] at the level 
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of reads so as to create a new dataset in which the differentially expressed transcripts are 

precisely known (Table 1).

Before comparing the four software packages, we had to select operating parameters for R-

EBSeq. Although above idealized data (i.e., those not coming from sequencing reads), we 

found that increasing the number of “replicate” (model parameter reflecting our confidence 

in Cufflinks variance, not to be confused with technical or biological replicates of RNASeq 

data) used for R-EBSeq always resulted in better performance; with this real data, there is an 

optimum number of “replicates” (Figure S1). Decreasing the number of replicates allows for 

better performance in detecting strongly differentially expressed transcripts (at the 

beginning/left part of the curves) at the expense of detecting weakly differentially expressed 

transcripts (at the end/right part of the curves). This optimum number depends on the level 

of noise (compare Figure S1(A) to S1(B)); and in our specific example, it is found to be 

≈1,000 replicates for noise-free data and ≈100 replicates for noisy data. We reasoned that 

this behavior is likely due to mismatch between the assumed normal model for FPKM 

values and the actual distribution, which can be skewed particularly when transcript 

fractions, γt’s, are close to 1 (truncation effects). Most of the investigated differentially 

expressed transcripts have γt = 1 (data not shown). Thus, a potential direction for future 

work with R-EBSeq is to improve the normal distribution assumption for FPKM data. 

However, changing the normal assumption may slow down the software significantly, since 

using the normal distribution allows for a clean analytic solution of the posterior distribution 

in the EBArray model and, therefore, fast computation. It is not clear whether appropriate 

changes to the FPKM distribution assumption would also be solvable analytically. In a 

practical setting, we recommend that one selects the number of replicates based on some 

self-consistency test, like e.g., the cross-validation Shao [15].

Another item to consider before comparison is filtering; that is, throwing away lowly and 

highly expressed transcripts that are likely to “confuse” EBArrays software, as the 

differential expression model could become unstable for very low or very high values of p 

and limited biological replicates [11]. Although we could not apply such filtering for 

Cuffdiff (it is done internally), we could apply filters to R-EBSeq, DESeq and BaySeq. We 

set these filters to remove 1% of the most lowly expressed transcripts and 0.1% of the most 

highly expressed transcripts and verified that changing these filter levels only served to 

degrade performance (data not shown). While these levels are arbitrary and may be dataset-

dependent, such a thresholding is a necessary part of differential expression analysis, and 

future research in this direction is warranted.

After determining the number of replicates to use for R-EBSeq and the filtering parameters, 

we proceeded to compare the performance of these four software packages (Figure 4 ). We 

first considered the case of noise-free data (Figure 4(A)). Cuffdiff performs the best and is 

followed closely by R-EBSeq. For the top 100 selected transcripts (right plot), DESeq 

performs very well for slightly over half of the differentially expressed transcripts, but 

struggles finding the others. Additional simulations showed that this inability of DESeq is 

actually due to a problem with the conversion of the read level data to count level data with 

the software HTSeq, as opposed to that of DESeq itself, in that HTSeq simply failed to 

convert a subset of transcripts (data not shown). When we eliminated transcripts based on 
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the ability of HTSeq to process them, DESeq performs markedly better (data not shown); 

however, eliminating transcripts in such a biased manner is undesirable, and we therefore 

proceeded without this elimination. Importantly, we also tested these software packages with 

noisy data, ensuring that such noise is overdispersed, as is typical for RNA-seq data (see 

Methods). Although the noise clearly had an effect on the total number of transcripts that 

could be identified within the top 1,000, this noise did not change the relative performance 

of the four methods. Thus, we conclude that Cuffdiff offers the best performance, and R-

EBSeq is a very close second. The count-based methods, DESeq and BaySeq, did not 

perform as well as the FPKM-based methods.

3.4. Application of R-EBSeq to Experimental Data-Illustration of Multiple Conditions 
Comparison

A convenient feature of R-EBSeq that was inherited from EBArrays is the ability to easily 

specify patterns for multiple condition comparison. We illustrate this feature here using 

RNA-seq datasets for a DNA damage response with or without tp53, a gene that is lost in 

over 50% of human cancers and is a central player in the DNA damage response (reviewed 

in [24]). RKO colon carcinoma cells, which are wild-type for p53 protein (WT), or RKO 

cells where both copies of tp53 have been knocked-out (KO) were treated with etoposide, a 

DNA-damaging agent, or DMSO (control) and then assayed for gene expression via RNA-

seq [25]. One biological question of interest is to identify which genes change as a function 

of etoposide without regard to p53-status and which genes are p53-dependent without regard 

to etoposide-status. It is difficult to identify such genes with traditional pairwise differential 

expression analysis, particularly because etoposide is used to upregulate p53 expression 

[26–29].

To determine potential p53- and etoposide-specific genes, we first specified “patterns”. 

Pattern specification is the aspect of R-EBSeq (and formerly EBArrays) where one defines 

how many unique population means we expect and which sample we would expect which 

population mean to correspond to. In our case, we have four samples and three different 

conditions we are interested in: p53-specific, etoposide-specific and non-specific (null). To 

specify these conditions, we consider two different population means, 1 and 2, which are 

distributed as “patterns” among the conditions according to Table 2. For the pattern 

etoposide, we require that a gene have a different mean in all etoposide-treated samples. For 

the pattern, p53, we require that a gene only have a different mean in the WT cells (upon 

etoposide treatment, which increases p53 levels that are otherwise negligible). For the 

pattern null, we require that genes have the same mean in all populations. Running R-EBSeq 

with this setup results in each gene having a posterior probability for each pattern. Thus, the 

higher the posterior probability, the more likely a gene belongs to a particular pattern.

To analyze the results, we first identified genes having greater than 0.99 posterior 

probability of belonging to either the etoposide or p53 pattern (Supplemental Table S1). We 

then compared the high posterior probability gene lists to those in the MSigDB to find those 

which exhibited significant overlap [30]. The top two hits for the etoposide pattern are 

PEREZ TP53 TARGETS and PUJANA ATM PCC NETWORK. Although it may seem 

illogical that a list of p53 targets have significant overlap with a list of etoposide-specific 
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genes, this is actually not that surprising and, in fact, expected. There are many proteins that 

have functional redundancy with p53, so if p53 is not there, it is likely other proteins serve 

to provide a compensatory effect in the presence of etoposide. Because many p53 targets 

have been defined as those which respond to DNA damage and many of these targets are 

likely regulated by compensatory actions, one would expect a large overlap. For the second 

hit, ATM is a well known DNA-damage related protein, and therefore, its presence is 

understandably etoposide-related. Some top hits for the p53 pattern are UV response sets 

(DACOSTA UV RESPONSE VIA ERCC3 UP and ENK UV RESPONSE KERATINOCYTE 

UP) and stem cell related sets (NUYTTEN EZH2 TARGETS DN and BENPORATH NANOG 

TARGETS). The presence of the UV sets imply that there may be some distinct pathways 

that are utilized in response to etoposide-mediated DNA damage vs. UV-mediated DNA 

damage and that p53 allows response to both types. The presence of the stem cell sets are in 

line with current thoughts that p53 plays a large role in stem cell function (reviewed in [31]). 

Thus, by performing this multiple condition comparison with an appropriately chosen 

pattern, we were able to find a p53 function related to stem-cells that did not depend on 

DNA damage.

4. Conclusions

Here we have investigated several aspects of RNA-seq differential expression analysis. In 

the first part of the paper, we have suggested the empirical Bayes method for RNA-seq data 

analysis based on FPKM measurements (called R-EBSeq), which combines two previously 

developed and powerful software suits: Cufflinks and EBarrays. R-EBSeq has two important 

features. First, it shares information across genes (or transcripts) to get better variances 

estimates when there are few or no replicates. The use of FPKM makes the sharing 

straightforward and, unlike in some other empirical Bayes RNA-seq software, does not 

require additional pre-processing. Second, it is capable of doing multiple conditions 

comparisons in an easy-to-implement manner, as we demonstrate with experimental data. In 

the second part of the paper, we created the benchmark dataset for RNA-seq differential 

expression analysis and used it to compare R-EBSeq to Cuffdiff, DESeq and BaySeq 

software suits developed for RNA-seq analysis. We find that FPKM-based Cuffdiff gives 

the best performance, followed closely by R-EBSeq. DESeq and BaySeq, which are count-

based methods and do not perform as well. Overall, R-EBSeq seems to offer reasonable 

performance with the flexibility of multiple comparisons and rigorous treatment of 

information sharing when there are few replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The RNA-seq pipeline. This schematic illustrates the process of going from cells to RNA-

seq data, with potential sources of bias and variability noted along the way. See the 

Introduction for details.
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Figure 2. 
Relative operating characteristic curves (ROC) for the R-EBSeq Method. The false positive 

rate (FPR) is plotted vs. the true positive rate (TPR). Test data sets were generated as 

described in Methods. Effects of (A) the difference of means between two conditions; (B) 

transcript variance; or (C) the number of replicates, M, on the performance of R-EBSeq.
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Figure 3. 
Noise properties of RNA-seq technical replicate data. In every panel, the mean vs. the Fano 

factor for individual genes is plotted. Data were taken from [19]. Black circles correspond to 

individual genes, and the red line corresponds to a linear regression of the mean vs. the Fano 

factor for the indicated number of genes. Behavior of the (A) first 15,000 genes; (B) first 

19,000 genes; or (C) first 19,600 genes as ranked by increasing mean.
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Figure 4. 
Comparison of true discovery rates for various RNA-Seq differential expression testing 

methods. The test data sets were generated and various software suites implemented, as 

described in Methods. Each panel contains two plots; the plot on the right is a zoomed-in 

version of the plot on the left. On the y-axis is the number of correctly-identified transcripts, 

and on the x-axis is the number of transcripts selected (in order of increasing p-value). DE 

stands for differentially expressed. In every plot, the thick black line corresponds to 

Cufflinks, the thick red line to R-EBSeq, the large-dashed black line to DESeq and the 

small-dashed black line to BaySeq. These lines are also labeled as indicated. The shaded 

region surrounding the R-EBSeq curve depicts the range of 20 independent runs. (A) 

Performance of the various methods with noise-free data; (B) Performance of the various 

methods with noisy data. Noise was added as described in Methods, and the data are 

overdispersed, as typical for RNA-seq data.
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Table 2

Patterns for multiple conditions comparison. Entries correspond to the population mean which sample is 

assumed to come from, given the pattern indicated. Pattern names are indicated in the row, whereas samples 

are indicated in the columns.

WT-D WT-E KO-D KO-E

Etoposide 1 2 1 2

p53 1 2 1 1

Null 1 1 1 1

WT: wild-type; KO: knock-out; D: DMSO (control); E: etoposide.

Biosensors (Basel). Author manuscript; available in PMC 2014 December 12.


