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Abstract

As part of our ongoing effort to expand the scope of cross-coupling reactions of alkyl

electrophiles, we have pursued a strategy wherein the nucleophilic coupling partner includes a

pendant olefin; after transmetalation by such a substrate, if β-migratory insertion proceeds faster

than direct cross-coupling, an additional carbon–carbon bond and stereocenter can be formed.

With the aid of a nickel/diamine catalyst (both components are commercially available), we have

established the viability of this approach for the catalytic asymmetric synthesis of 2,3-

dihydrobenzofurans and indanes. Furthermore, we have applied this new method to the

construction of the dihydrobenzofuran core of fasiglifam, as well as to a cross-coupling with a

racemic alkyl electrophile; in the latter process, the chiral catalyst controls two stereocenters, one

that is newly generated in a β-migratory insertion and one that begins as a mixture of enantiomers.

In recent years, significant progress has been reported on the development of methods for

the transition metal-catalyzed cross-coupling of alkyl electrophiles to generate carbon–

carbon bonds, including enantioselective processes.1 To date, most investigations of

asymmetric catalysis have focused on stereoconvergent reactions of racemic secondary

electrophiles,2 although an advance has also been described with a racemic secondary

nucleophile (top of Figure 1).3

As part of our ongoing effort to expand the scope of enantioselective cross-couplings of

alkyl electrophiles, we are pursuing an approach wherein an organometallic reagent that

bears a pendant olefin is employed as the nucleophilic coupling partner (bottom of Figure

1).4,5,6 In the presence of a chiral catalyst, transmetalation and then β-migratory insertion

(left side of Figure 2), followed by alkyl–alkyl coupling, could lead to the formation of two

carbon–carbon bonds and a new stereocenter (bottom of Figure 1). This strategy
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complements asymmetric coupling processes wherein an intermediate of type A is generated

through oxidative addition of an electrophile (right side of Figure 2).7

In this report, we establish that a transmetalation–insertion sequence can indeed be used to

generate two, rather than one, carbon–carbon bonds in a cross-coupling with an alkyl

electrophile and that this process can be achieved with good enantioselectivity. Specifically,

we describe couplings of arylboron reagents that bear a pendant olefin with unactivated

alkyl halides, thereby furnishing 2,3-dihydrobenzofurans8,9 and indanes10,11 in high ee (eq

1).

In order to enhance the likelihood of cyclization (β-migratory insertion) prior to coupling

with the electrophile, we chose to focus on an organometallic coupling partner that could

form a five-membered ring upon insertion, since such cyclizations are often facile. At the

outset, it was unclear what catalyst would enable the desired sequence of bond-forming

processes, much less achieve high enantioselectivity.

Interestingly, we have determined that a nickel/1,2-diaminebased catalyst, which we have

found to be useful for enantioconvergent alkyl–alkyl couplings,3,12 is also effective for the

desired cyclization/cross-coupling sequence (Table 1, entry 1). Thus, in the presence of

NiBr2•glyme and ligand 1, both of which are commercially available, the target 2,3-

dihydrobenzofuran is generated in good ee and yield. Under these conditions, essentially

none of the product of direct cross-coupling (without cyclization of the nucleophile) or of

endo cyclization is observed (<5%).

In the absence of NiBr2•glyme, ligand 1, or i-BuOH the desired cyclization/cross-coupling

product did not form in appreciable yield (Table 1, entries 2–4),13 and the use of a smaller

excess of the arylboron reagent led to somewhat lower ee and yield (entry 5).14 Other

ligands that we have found to be useful for enantioconvergent couplings of alkyl

electrophiles were not effective for this new asymmetric cross-coupling with an alkyl halide

(entries 6–8).15 If the alkyl bromide was replaced with the corresponding alkyl chloride,

essentially no 2,3-dihydrobenzofuran was observed (entry 9).16

We next examined the scope of this method for asymmetric cyclization/cross-coupling with

alkyl bromides (Table 2).17 A range of functionalized electrophiles serve as suitable reaction

partners, furnishing the desired 2,3-dihydrobenzofuran in very good enantiomeric excess. A

silane, an acetal, and an imide are compatible with the reaction conditions. The method is
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not limited to unhindered primary alkyl bromides–a β-branched primary and a secondary

bromide also undergo cyclization/cross-coupling (entries 6 and 7).

Under similar conditions, indane derivatives can also be produced in high ee, although

modest yield (eq 2).17c An attempt to generate a quaternary stereocenter furnished a

promising initial result (eq 3).

A number of optically active 2,3-dihydrobenzofurans exhibit interesting biological

activity,8,9 including fasiglifam (Takeda Pharmaceuticals: TAK–875), which progressed to

Phase 3 clinical trials for type 2 diabetes until being withdrawn due to concerns about liver

safety.18 We have applied our method to a catalytic asymmetric synthesis of the

dihydrobenzofuran core of fasiglifam (Scheme 1).

In view of the similarity of the optimized conditions for this new asymmetric cyclization/

cross-coupling process to those for our stereoconvergent cross-coupling of racemic γ-

haloamides,12d we investigated the possibility that a single chiral catalyst could accomplish

two distinct enantioselective transformations: create a new stereocenter through the

cyclization of an achiral nucleophile, as well as control the absolute stereochemistry of a

second stereocenter through an enantioconvergent coupling of a racemic electrophile. As

illustrated in eq 4, this objective can indeed be achieved (minor diastereomer: 86% ee).

In summary, we have expanded the scope of cross-coupling reactions of alkyl electrophiles

by incorporating an olefin in the nucleophilic partner, which leads to the formation of an

additional carbon–carbon bond and stereocenter, when compared with a simple cross-
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coupling. With the aid of a nickel/diamine catalyst (both components are commercially

available), we have established that this strategy enables the synthesis of highly

enantioenriched 2,3-dihydrobenzofurans and indanes through couplings with a range of

alkyl halides. We have applied this new method to the generation of the dihydrobenzofuran

core of fasiglifam, as well as to a transformation wherein the chiral catalyst controls the

stereochemistry of two rather different processes: a β-migratory insertion and an

enantioconvergent coupling of a racemic alkyl halide. Ongoing studies are directed at further

enlarging the scope of cross-coupling reactions of alkyl electrophiles, as well as elucidating

the mechanisms of these transformations.
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Figure 1.
Asymmetric cross-couplings of alkyl electrophiles.
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Figure 2.
Complementary approaches to generating a precursor (A) for catalytic enantioselective

cyclizations.
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Scheme 1. Catalytic Asymmetric Synthesis of the 2,3-Dihydrobenzofuran Core of Fasiglifam
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Table 1
Catalytic Enantioselective Cyclization/Cross-Coupling with an Alkyl Electrophile:

Influence of Reaction Parametersa

entry variation from the “standard” conditions ee (%) yield (%)b

1 none 96 82

2 no NiBr2 • glyme – <5

3 no (S,S)–1 – <5

4 no i-BuOH – <5

5 1.5 equiv of arylboron reagent 81 67

6 (S,S)–2, instead of (S,S)–1 39 64

7 (S,S)–3, instead of (S,S)–1 – <5

8 (S,S)–4, instead of (S,S)–1 61 33

9 BnCH2CH2Cl, instead of BnCH2CH2Br – <5

a
All data are the average of two experiments.

b
The yield was determined by GC analysis with the aid of a calibrated internal standard.
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Table 2

Catalytic Enantioselective Cyclization/Cross-Coupling with Alkyl Electrophilesa

entry product ee (%) yield (%)b

1 95 77

2 96 47

3 97 69

4 97 67

5 94 45c

6 96 58

7 96 52

a
All data are the average of two experiments.

b
Yield of purified product.

c
15% NiBr2•glyme and 17% ligand 1 were used.
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