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Preface

High-throughput molecular profiling and computational biology are changing the face of virology,

providing a new appreciation of the importance of the host in viral pathogenesis and offering

unprecedented opportunities for better diagnostics, therapeutics and vaccines. Here, we provide a

snapshot of the evolution of systems virology, from global gene expression profiling and

signatures of disease outcome, to geometry-based computational methods that promise to yield

novel therapeutic targets, personalized medicine and adeeper understanding of how viruses cause

disease. To realize these goals, pipets and petri dishes need to join forces with the powers of

mathematics and computational biology.

Introduction

Anyone who has taken an undergraduate virology course is familiar with subject matter

focused on the structure of viral genomes and the molecular events associated with multi-

step viral life cycles. The field of virology has done a remarkable job of characterizing and

categorizing viruses and of defining the steps of viral attachment, entry, replication and

release. Moreover, an understanding of viral protein function has paved the way for the

development of antiviral drugs that target viral enzymatic activities. However, many of these

drugs function poorly at best, and the virus-centric approach has not proven to be well suited

for deciphering the complex and multifaceted virus-host interactions that underlie viral

recognition, innate immune signalling and disease outcome. Within the past decade, tools

have become available to chart a new course, one directed at obtaining comprehensive

systems-level views of the host response and the interplay between virus and host.
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Systems virology is a phrase coined to describe the application of systems biology

approaches to the field of virology1. Systems biology is highly interdisciplinary in character,

requiring the combined talents of biologists, mathematicians and computer scientists, and

has as its goal a comprehensive understanding of biological systems. In the case of systems

virology, these biological systems may range from virus-infected cells to tissues to whole

organisms. Systems-level analyses use high-throughput technologies to measure system-

wide changes in biological components such as DNA, RNA, proteins and metabolites, and

are dependent on the quality of the resulting data sets (which are often noisy) and

subsequent data integration and modelling. Ideally, high-throughput data derived from these

and other measurements are integrated and analyzed using mathematical algorithms to

generate predictive models of the system. Once a model has been developed, subsequent

experimental perturbations of the system (for example, viral mutants or targeted inhibition

of host genes or pathways) are used to yield refinements to the model and to increase its

predictive capacity (FIG. 1)2–4.

This holistic host-directed approach stands in contrast to the more traditional reductionist

approaches that focus on a pre-determined small set of molecules (genes, proteins or

metabolites). Although often criticized for not being hypothesis-driven, systems-level (or

discovery-based) analyses are instead increasingly being acknowledged as potent hypothesis

generators. Moreover, for dynamical systems such as those involved in the host response to

viral infection, systems-level analyses are considered that only way to understand emergent

properties; that is, properties or biological outcomes that cannot be predicted by an

understanding of the individual parts of a system alone, but rather only become apparent

with knowledge of the specific organization and interactions between components5. Because

of this, systems virology is an essential and synergistic complement to traditional virology

approaches.

This Review focuses on the host response to virus infection and discusses the evolution and

significant findings of systems virology, including the identification of gene expression

signatures that are predictive of viral pathogenesis and vaccine efficacy, insights into how

viruses disrupt cellular metabolism, and the mapping of virus-host interactomes. These

accomplishments did not come from a single experiment or study, but rather from a body of

work undertaken over several years by different investigators. The field has seen a

progression from genomic-based approaches to measurements of proteins and metabolites

and the embracing of host genetic variation as a means to better understand disease

processes rather than as a source of frustration. Moving forward, systems virology must also

embrace computational approaches capable of integrating this information to construct

robust models of virus-host interactions that incorporate multiple dimensions and scales6, 7.

We cite examples of studies that are moving in this direction and outline what the next phase

of systems virology must encompass to reach its full potential.

Gene expression signatures

With the completion of the human genome project and the advent of microarrays capable of

measuring RNA transcripts at a genome-wide scale, the first systems-level analyses became

a reality. Over the past 12 years, DNA microarrays have evolved from hundreds of cDNAs
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spotted on nylon membranes to glass slides containing high-density oligonucleotides that

encompass entire genomes (BOX 1). Microarrays (then covering only 1,500 human genes)

were first used in virology to evaluate the changes in cellular gene expression that occurred

in a CD4+ T cell line infected with HIV8. Since then, the use of microarrays to evaluate

changes in host gene expression in response to virus infection has become commonplace. In

many cases, these studies remain small and narrowly focused, and although they provide

glimpses into global responses, low sample numbers make it difficult to determine

reproducibility. In addition, they do not provide the robust data sets that are needed for

computational modelling that could result in deep insights into system architecture or

behaviour. This shortcoming has perhaps fed skepticism regarding the ability of genome-

wide expression profiling to yield transformative discoveries. Below, we provide examples

of more comprehensive studies resulting in genomic signatures that have increased our

understanding of viral pathogenesis and the characteristics of the host response required for

immune protection.

Signatures of highly pathogenic respiratory viruses

Influenza virus is well known for its ability to rapidly evolve new variants through genetic

mutation and genome reassortment, yielding strains that can vary widely in virulence and

transmissibility. Most strains cause relatively mild respiratory disease, whereas others, such

as the 1918 pandemic virus and highly pathogenic avian H5N1 strains such as A/VN/

1203/04, can cause severe and often fatal infections9. Over the past 8 years, the field has

used DNA microarrays and functional analyses to define the virus-host interactions that

regulate influenza virus pathogenesis10. These studies have identified gene expression

signatures that correlate with viral virulence and have revealed that the timing and

magnitude of the host response is a critical determinant of eventual outcome of infection.

This phenomenon was first demonstrated in studies that used a combination of mouse and

macaque infection models and genome-wide transcriptional profiling to measure the host

response to the reconstructed 1918 pandemic virus. In these animal models, the virus causes

a rapidly fatal infection marked by severe lung pathology, intense neutrophil infiltration, and

the rapid and sustained induction of pro-inflammatory cytokine and chemokine genes11, 12,

an event often referred to as a cytokine storm13. By contrast, macaques infected with a

highly pathogenic avian H5N1 strain show a rapid and intense induction of interferon and

innate immune genes that eventually resolves as the animals recover14. Genomic analyses

have also revealed that macaques infected with the 1918 pandemic strain15 and mice

infected with A/VN/1203/04 H5N1 virus show a strong induction of genes encoding

inflammasome components (for example, NLRP3 and IL-1β)16. This H5N1 virus is

particularly virulent in mice, and although the inflammasome is part of the innate immune

response to influenza A viruses17–19, the excessive activation of this response seems to be

detrimental in this species.

As high-throughput data have accumulated in public databases, it has become possible to

use this information to carry out meta-analyses. This strategy has been used to analyze data

from a compendium of published studies that used mouse models to measure host

transcriptional responses to lethal or non-lethal strains of influenza virus, respiratory
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syncytial virus or SARS coronavirus20. Two alternative methods were used to generate gene

expression signatures that are predictive of high or low pathogenicity (defined here as 100%

mortality or survival, respectively). The first signature consists of 74 genes the expression of

which changes in the opposite direction with respect to mock infections (referred to as a

‘digital’ relationship). The second signature consists of 57 genes that are differentially

expressed between high- and low-pathogenic infections, without reference to mock

infections (referred to as an ‘analogue’ relationship). Most genes in the analogue signature

are differentially expressed during both lethal and non-lethal infections, but high

pathogenicity corresponds with a higher degree of differential expression.

When the two signatures were tested for their ability to predict pathogenicity, the best

predictor of a highly pathogenic infection was the analogue signature (FIG. 2). Significantly,

this meta-analysis did not take time after infection into account; that is, data from samples

isolated at 1 or 5 days post-infection were treated equally. However, the majority of samples

that were correctly identified as being from either a low or high pathogenic infection were

from early or late time points, respectively. It is therefore likely that taking time post-

infection into account would yield an even more accurate signature.

From these studies, it is now apparent that highly pathogenic respiratory viruses induce or

suppress the expression of many of the same genes as mildly pathogenic viruses, but to a

greater degree (and with different kinetics). Therefore, knowing the identity of genes that are

differentially expressed in response to infection only provides part of the information needed

to predict pathogenicity. The magnitude and timing of the host response are critical

determinants of eventual disease outcome, and this may have important implications for

antiviral therapy. To date, efforts to target the host response with a variety of anti-

inflammatory drugs have been largely unsuccessful13, and it is likely that effective host-

directed therapy will depend not only on the target, but on the timing at which elements of

the host response are suppressed or enhanced. Moreover, these findings point to the need for

computational approaches that can describe nonlinear relationships (see below) and account

for various factors associated with large multivariate datasets21. This also suggests the need

for a paradigm shift in biomarker discovery to one that looks at sets of quantitative

molecular measurements.

Signatures of vaccine efficacy

The application of systems-level analyses to vaccine research, variously termed systems

vaccinology22 or vaccinomics23, has led to the identification of molecular signatures

predictive of vaccine immunogenicity and to new insights into the mechanisms of action of

vaccines. In one of the first large-scale uses of this strategy, gene expression profiling and

computational methods were used to identify gene expression signatures predictive of the

strength of the adaptive immune response in humans vaccinated with the yellow fever

vaccine, YF-17D24.

Transcriptional profiling of peripheral blood mononuclear cells from vaccinated subjects

revealed that YF-17D induces the expression of genes encoding proteins that are associated

with viral recognition and transcription factors that regulate type I interferons. Although also

characteristic of the transcriptional response to active virus infection, this response did not
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correlate with subsequent CD8+ T cell or neutralizing antibody responses, which are thought

to mediate protection. However, an alternative computational and classification method,

discriminant analysis via mixed integer programming (DAMIP), identified a signature

(consisting of complement system and stress response genes) that is highly accurate in

predicting subsequent CD8+ T cell activation. This method also identified a separate

signature (which includes TNF receptor superfamily members) that accurately predicts

neutralizing antibody expression during infection. The robustness of these signatures was

verified through the analysis of samples from a different group of subjects vaccinated with a

different lot of vaccine, thereby identifying new correlates of vaccine immunogenicity.

More recently, similar systems approaches have been used to evaluate innate and adaptive

immune responses to vaccination against influenza virus, with the goal of identifying early

gene expression signatures that correlate with immunogenicity25. Over a 3-year period, a

series of clinical studies was undertaken in which young adults were vaccinated with either

inactivated influenza vaccine (TIV) or live-attenuated influenza vaccine (LAIV). Molecular

signatures for predicting antibody responses were identified by combining gene expression

profiling, antibody response data, real-time PCR analysis and DAMIP. The resulting

predictive signature consisted of genes with known roles in antibody response and other

genes with previously unidentified roles in antibody or B cell responses. For example, one

gene from the predictive signature, CAMK4, encodes CaMKIV kinase, a protein known at

the time to be involved in multiple immune system processes. However, it was not known if

it had a role in antibody responses25. To demonstrate the ability of the systems biology

approaches used in this study to identify biologically significant targets,CAMK4-knockout

mice were vaccinated with TIV and exhibited significantly higher antibody titers on days 7,

14, and 28 days after vaccination compared with wild-type mice, thus confirming the

hypothesis that CAMK4 is important in regulating B cell responses. Although further

investigations are needed to confirm many of these signature predictions, these studies

demonstrate that systems approaches can both identify biological targets and generate new

testable hypotheses related to the mechanism of vaccine action.

An expanding view of the transcriptome

Until recently, transcriptional profiling depended on the use of microarrays to measure the

expression of well-annotated protein-coding genes. The advent of next-generation

sequencing (BOX 2), however, has brought the ability to rapidly sequence the entire RNA

complement of cells or tissues. This has led to a much expanded concept of the host

transcriptome, as most recently revealed by the Encyclopedia of DNA Elements (ENCODE)

project26. It is now apparent that as much as three-quarters of the human genome is capable

of being transcribed and that cells contain vast numbers and varieties of non-protein-coding

RNAs27. Some of these noncoding RNAs, such as microRNAs, have been well studied and

are known to have roles in virus infection28. For most others, functionality is less clear, but

there is growing evidence that long noncoding RNAs also play parts in transcriptional and

epigenetic gene regulation and disease29.

RNA-seq analysis of the host response to SARS coronavirus infection has revealed the

differential expression of a variety of host long (greater than 200 nucleotides) noncoding
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RNAs in lung samples from virus-infected mice30. Many of these RNAs have similar

expression patterns in vitro during influenza virus infection or type I interferon treatment,

suggesting that they may be involved in regulating the innate immune response to a variety

of viruses30. Expanding these analyses to include the sequencing of small RNAs also

revealed the differential expression of over 200 small RNAs, such as small nuclear RNAs

(snoRNAs) and piwi-associated small RNAs (piRNA), in response to SARS coronavirus or

influenza virus infection31. Similarly, RNA-seq has revealed that an HIV-infected CD4+ T

cell line exhibits the differential expression of host microRNAs, snoRNAs and pseudo genes

compared with uninfected cells32. Viral mRNA constitutes a surprisingly large portion of

the total RNA in HIV-infected CD4+ T cells in this study nearly 40% by 24 hours after

infection), and reads mapping to the viral genome have revealed novel viral RNA splice

variants. A correlative analysis that combined mRNA-seq and small RNA-seq data showed

additional roles for host microRNAs in T cell activation and transcriptional and cell cycle

regulation during HIV infection33.

Together, these studies attest to the power of RNA-seq to provide entirely new views of the

transcriptional landscape and the previously unanticipated changes in transcription that

occur in response to virus infection. Such insights are not limited to host transcription, as a

combination of RNA-seq and mass spectrometry recently revealed that human

cytomegalovirus (a 240-kb DNA virus) produces hundreds of previously unidentified

transcripts and short proteins that may have functional, regulatory or antigenic properties34.

Although the functional significance of changes in noncoding RNA expression are only

beginning to be examined29, a better grasp of noncoding RNA expression and function will

certainly be necessary for a complete understanding of viral pathogenesis, innate and

adaptive immune responses, and a more general conception of gene regulation.

Unfortunately, despite the advancements coming out of RNA-seq, the extensive computing

infrastructure needed to handle large data files and the computational prowess required to

align, assemble and analyze short sequence reads continues to put the approach out of reach

for most laboratories.

Beyond the transcriptome

Of course, gene expression profiling provides only one measure of the host response to

infection. In recent years, advances in systems-wide technologies have facilitated a ‘multi-

omics’ approach that includes proteomics, metabolomics, lipidomics and virus-host protein

interactomes. All of these measurements are adding to our understanding of the host

response to viral infection, and new abilities to evaluate the role of host genetics and

epigenetics are adding additional layers of complexity.

Alterations in cellular metabolism

Viruses have long been known to cause changes in host metabolism; however, the full extent

of such changes was not clear until systems approaches were used to evaluate the

metabolomic reprogramming that results from human cytomegalovirus (HCMV) infection35.

Using liquid chromatography-mass spectrometry to directly measure the levels of over 160

different metabolites, it was discovered that HCMV infection induces large increases in

numerous metabolites, including glycolytic and TCA cycle intermediates, amino acids,
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NADH and pyrimidine. The metabolic signature induced by HCMV infection is readily

distinguishable from the signature associated with the transition of quiescent cells into the

G1 phase of the cell cycle, revealing the replacement of cellular metabolic homeostasis with

a HCMV-specific metabolic programme. Systems-level metabolic flux profiling [G]
produced a first-of-a-kind metabolic map showing linkages between compounds and

quantitative information about metabolic activity. The map is biochemically revealing,

indicating a global upregulation of metabolism by HCMV, with the greatest increase in the

TCA cycle and its efflux to feed fatty acid biosynthesis36.

To determine whether this reprograming of the host metabolome is cell type- or virus-

specific, fibroblast and epithelial cells were used to compare the host response to two strains

of HCMV and two strains of herpes simplex virus (HSV-1)37. All four viruses produced

significant changes in approximately 50% of the metabolome. Interestingly, the changes are

consistent across different strains of the same virus and across cell types, but differ markedly

between HCMV and HSV-1, demonstrating that these viruses induce distinct metabolic

programmes. The findings derived from these systems-level approaches generated the

hypotheses needed to drive additional focused studies in which more traditional methods

were used to investigate the molecular mechanisms underlying the virus-specific hijacking

of the host metabolome and the relevance of these mechanisms to potential therapeutic

interventions38–42.

Genomic and lipidomic analyses have also revealed that infection of primary bone marrow-

derived macrophages with mouse cytomegalovirus results in a downregulation of

metabolites involved in the cholesterol metabolic pathway43. The lowering of cholesterol

levels is mediated through the interferon-dependent downregulation of SREBP2, a

transcription factor that regulates sterol biosynthesis. Pharmacologic or RNAi-mediated

inhibition of the sterol pathway was shown to result in increased protection against virus

infection in cell culture and in mice, demonstrating the potential benefit of targeting a host

metabolic pathway as an antiviral strategy.

Virus-host interactomes

Based on the premise that viral proteins interact with cellular factors to promote efficient

viral replication and pathogenesis, system-wide siRNA or shRNA [screens, yeast two-hybrid

libraries and bioinformatic methods are being used to construct and describe virus-host

interactomes and in turn identify cellular targets for therapeutic intervention. Such

interactomes have been generated for numerous viruses, including influenza virus, HIV,

dengue virus, hepatitis C virus (HCV), herpes viruses and SARS coronavirus, and have

yielded ‘hitlists’ of cellular factors that may be important in viral pathogenesis44–51.

Although the number of interactions identified by these studies is impressive, few of the

genes identified have been subjected to functional analyses to confirm their role in virus

replication. Moreover, there is very little overlap in the host factors identified by the

different screens. This could be due to a variety of factors, including differences in screening

systems, cell types and viruses, as well as the methods used to identify interacting partners.

The benefits and shortcomings of these studies, as well as factors affecting their outcome,

have been the subject of several detailed reviews52–55.
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To fully realize the collective information residing in this vast collection of data, it will be

necessary to develop computational and mathematical methods capable of fully integrating

interactomes that have been constructed using different methods or have been obtained from

different biological systems, as well as their associated metadata. In a first attempt at such

integration, meta-analysis of virus-host interactome data for five distinct viruses identified

both common and virus-specific human protein targets56. Common targets include proteins

involved in the cell cycle, apoptosis, the unfolded protein response and nuclear transport.

Many of the common host targets identified are multifunctional hubs – that is, they have

multiple functions or roles within the cell. When coupled with the fact that many viral

proteins interact with multiple host proteins, this combination of factors may explain how

viruses, with their relatively small genomes, are capable of dysregulating so many aspects of

host biology. Unfortunately, because these common host targets often have numerous

cellular functions, focusing on them as drug targets may be problematic52.

In an interesting twist on these studies, virus-host interactome data, together with data on

host transcriptional changes resulting from the expression of 123 viral open-reading frames

derived from DNA tumour viruses, was used to predict cellular genomic variations (for

example, mutations, deletions or translocations) that can give rise to cancer57. By defining

the rewiring of cellular networks and pathways caused by the viral proteins, and identifying

a list of host proteins central to the rewiring, the systematic identification of host targets of

DNA tumour viruses was found to be as successful as traditional large-scale cataloging of

tumour mutations for cancer gene identification. This suggests that disease phenotypes,

whether resulting from virus infection or cancer, may be the result of network perturbations

rather than individual genetic or genomic variations.

Host genetics and epigenetics

Host genetic variation has typically been thought of as a confounding factor that limits the

ability to draw conclusions from data obtained using out bred (for example, human and

nonhuman primate) populations. More recently, attempts are being made to better

understand how genetic diversity influences infection outcome and how knowledge of

genetic diversity can be incorporated into the construction of robust and predictive network

models. One particularly exciting example is the Collaborative Cross (CC) mouse resource.

The CC is a unique panel of multiparental recombinant inbred mouse strains designed to

capture the level of genetic diversity found in out bred populations and provides a resource

for systematically identifying individual and multiple host genetic traits that contribute to

complex immune phenotypes and disease outcome (BOX 3).

As an example, a genetically diverse panel of pre-Collaborative Cross mice (not fully

inbred) determined to have severe or mild responses to influenza virus infection, have been

used to identify expression quantitative trait loci (eQTL) associated with the host response to

infection. Twenty-one high-confidence eQTL were identified, 17 of which were confirmed

using mice from the eight Collaborative Cross founder strains58. Many of these genes have

known functions related to immunity or the host response to infection, such as IFi27l2a,

Clec16a, Pde7a and Tcf7l1, whereas for others such as Sik1 and Senp5, their role in

influenza infection is not yet clear. Structural equation modelling [G] was used to identify
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potential regulatory relationships between additional genes and the validated eQTL,

suggesting that these genes and corresponding sub-networks play important roles in the host

response by either promoting a protective (mild response) or a pathologic (severe response)

to influenza infection depending on the specific genetics of the host. Thus using this

genetically diverse population, high-confidence gene candidates involved in regulating the

host response to influenza infection were identified, allowing for future investigations into

their utility as therapeutic targets.

It is also becoming apparent that epigenetic mechanisms have a role in regulating the

outcome of virus infection, and methods for genome-scale mapping of DNA methylation59

and histone modification60 are now available. Such epigenetic modifications contribute to

chromatin structure and organization, which in turn influence transcriptional activity, the

immune response61 and viral latency62. Viruses may also use epigenetic control mechanisms

to their advantage; the NS1 protein of H3N2 influenza virus, for example, acts as a histone

mimic to suppress the expression of antiviral genes63. Characterizing and understanding

epigenetic mechanisms might therefore be an essential requirement for the construction of

gene regulatory networks64, 65.

Putting the pieces together

As more and more high-throughput data become available, systems virology is poised to

enter a new phase to fulfill its initial promise of revolutionizing our understanding of virus-

host interactions. To do this, the field must move beyond just the listing of molecules that

are differentially expressed upon viral infection. Instead, the relationships between key

molecules must be defined. Such relationships may be cause-and-effect relationships (for

example, transcription factors and their target genes), the result of co-expression, or due to

genetic or direct physical interactions. Here we give examples of several methods being

used to further our understanding of viral-host interaction networks and discuss key

computational challenges that must be addressed.

Network modelling and analysis explores relationships among molecules and analyzes the

structure and organization of the relationships to predict the behaviour of the network or

system. For example, the context likelihood of relatedness (CLR) method is used to predict

genes that are highly interconnected (referred to as hubs) or that exhibit a high degree of

betweenness centrality (referred to as bottlenecks). Genes with high betweenness centrality

exhibit fewer connections than hub genes, but because they are located between (and

connect or bridge) multiple subnetworks, they can play a powerful role in controlling

network signaling (FIG. 3). Bottleneck genes often function as key genes in the regulation of

disease progression and are therefore attractive targets for further experimentation66, 67. An

alternative method, co-regulation network analysis (PCluster)68, has been combined with

genome-wide expression profiling and yeast two-hybrid analysis to identify relationships

between gene expression and direct physical interactions revealing previously unrecognized

roles for several cellular and viral proteins in the host response to H1N1 influenza virus69.

These proteins include a network of RNA-binding proteins, components of the WNT

signalling pathway and viral polymerase subunits. However, as these types of analyses often
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only infer correlations between network components, additional studies are required to

verify model predictions.

These network analysis methods have also been used to analyze the topology [G] of

networks derived from proteomic and lipidomic profiling data, resulting in the identification

of two mitochondrial fatty acid oxidation enzymes, DCI and HADHB, as bottleneck genes

and possible targets through which HCV disrupts cellular metabolic homeostasis70. The

importance of DCI (and of cellular metabolic homeostasis in general) during HCV infection

was then confirmed by additional studies, which included pharmacologic inhibition of fatty

acid oxidation and targeted siRNA knockdown techniques, both of which demonstrated that

DCI is required for productive HCV infection in hepatoma cell lines71, 72. Similarly,

analysis of interaction networks between HCV Core, NS4B and host proteins has been used

to identify potential host anti-HCV therapeutic targets, including alpha enolase, paxillin and

a solute carrier protein (SLC25A5)73. An understanding network topology provides the

opportunity to identify potential targets for therapeutic intervention as well as insights into

possible off-target effects on network signalling that may be induced by drug treatment.

Although much can be learned from the construction and topological analysis of host-

pathogen interaction network sutilizing samples from whole tissues, such networks provide

a generalized picture of the changes that occur in the host during the course of infection

owing to the heterogeneity of cell types present in most tissues. For example, it is difficult to

delineate from these types of networks the signalling events that may occur between infected

lung epithelial cells and cells of the immune system, both in and outside of the infected

tissue. These intercellular interactions are also controlled by signal transduction pathways,

which communicate signals from the extracellular environment to intracellular effector

processes. A much better understanding is needed of intercellular signaling processes, the

cells that are involved, and the directionality of their effects on infection outcome.

A few studies have begun to explore cell-type specific and intercellular signaling on a

system-wide scale. For example, flow cytometry and gene expression data from

bronchoalveolar lavage (BAL) fluid from young-adult and aged macaques infected with

2009 pandemic H1N1 influenza virus were analyzed in conjunction with data from the

Immune Response in silico (IRIS) database. This database contains cell-type specific gene

expression patterns associated with various types of immune cells. By computationally

comparing differentially expressed genes in BAL with cell-type specific gene expression

patterns in the IRIS database, it was possible to identify genes associated with specific

immune cell types including activated dendritic cells, CD4 and CD8 T cells and naïve B

cells. In particular genes associated with T and B cell markers were more highly upregulated

in young adult animals74. Recent studies of mouse models of intestinal inflammation

induced by TNF treatment provide a good example of how systems approaches can be used

to evaluate signalling between cell types in a complex tissue environment75, 76.

Phosphoprotein, cytokine, chemokine and flow cytometry measurements from various

immune cell types over time and under diverse conditions were combined to construct

statistically robust multivariate regression models that related the phosphoprotein signals,

cytokines and cell types to specific phenotypes. These models helped to elucidate key

molecular and cellular processes governing epithelial cell apoptosis and proliferation in
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response to TNF treatment. For example, monocyte chemotactic protein 1 (MCP1) was

predicted by the model to be especially protective against TNF-induced apoptosis, which

was confirmed by treating with anti-MCP1 antibody prior to TNF administration. The model

also indicated that plasmacytoid dendritic cells might be particularly important, a prediction

that was confirmed by depleting these cells from mice under conditions that produced the

most severe epithelial cell apoptosis; this reverted the TNF-induced phenotype to the mildest

outcome.

In addition to constructing network models that span intra- and intercellular signalling

processes, it will also be necessary to consider nonlinear relationships such as how the

network functions over time (i.e., the dynamics of the system). This is particularly true in

light of evidence (discussed above) that the magnitude and timing of the host response to

respiratory viruses are critical determinants of eventual disease outcome. Similar evidence is

accumulating that infectious outcome of HIV is also related to the activation dynamics of

host gene regulation77, 78. However, high-throughput data are typically static and often not

adequate for modelling dynamical systems. To help overcome this limitation in analyzing

network dynamics, inference methodologies are being devised to reinterpret activity

differences due to system perturbation as differences in observation time. For example,

changes in pathogen-induced gene expression that are associated with genetic variability,

both on the side of the pathogen (e.gg, mutant viruses) and the host (as occurs in the

Collaborative Cross mouse model), can principally be used to indirectly infer the critical

dynamics of a system without having to measure the system over time. This innovative

approach has only recently become feasible with major breakthroughs in the theory of

dynamical systems and geometric high-dimensional analysis methodology79, 80.

As virology continues to transition into a more quantitative science, increasing attention

must be paid not only to network dynamics but to other nonlinear interactions, such as

cooperative or synergistic relationships, which characterize so much of biology. Current

biomarker discovery and the identification of molecular predictors of efficacy of adjuvants,

vaccines or more generally drugs are largely unsuccessful because nonlinear interactions

between molecules, as well as genetic diversity in populations, are not taken into sufficient

consideration. Geometric methods (i.e., methods such as principal component analysis that

are used to identify structure in data by identifying spatial and temporal relationships) are

increasingly being used in the analysis of high-throughput molecular data. In particular,

novel combinations of geometric methods, such as those based on singular value

decomposition (SVD) and multidimensional scaling (MDS)81, 82 are beginning to be used in

systems virology to better understand nonlinear interactions between variables and isolate

those from biological noise.

SVD-MDS analysis of transcriptomic data derived from liver biopsies obtained from HCV-

infected liver transplant patients, in combination with categorical analysis (to take into

account variables such as age, time post-transplant, fibrosis score, etc.), has been used to

identify a molecular signature for patients at risk of developing severe fibrosis83. SVD-MDS

and co-abundance networks (which relate molecules on the basis of their abundance

profiles) were also used to integrate proteomic and metabolomic data sets obtained from the

same cohort of patients. This strategy identified a potential role for oxidative stress in rapid
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fibrosis progression post-transplant and identified serum metabolites that may prove useful

as biomarkers for predicting progression to fibrosis84. This understanding of network

structure can now be used to simulate human liver metabolism using novel flux-balance

modelling approaches to better comprehend and eventually treat disease85. Additional

geometric approaches have been described and should prove useful for effectively bridging

different technologies86, 87 and for integrating diverse types of data, thereby better

leveraging data already available in public databases and repositories. Finally, geometric

methods, and links between geometry, information theory and probability theory7, will also

help to identify causal relationships88, which is clearly a currently unmetchallenge. Unlike

purely statistical approaches, geometric methods can be used to integrate different individual

measures for the purposes of comparison and combination into coherent objects that identify

relationships between genes, transcripts or proteins.

Conclusions

After having been extensively hyped as a paradigm shift, system-level approaches have been

criticized for failing to rapidly fulfill their initial grand promises. Standing in the way have

been numerous technical, experimental and mathematical hurdles. However, as discussed in

this Review, significant progress is being made, and new computational approaches are

leading the way. Also of importance is the ever-growing availability of high-throughput data

in public databases; indeed, data sharing is crucial to the future success of systems virology

(BOX 4). To date, bench work has been the necessary precedent to computational

approaches, but we are now at a point where sufficient data are available that computational

methods can be the starting point for making discoveries, generating hypotheses and in turn

guiding targeted bench work. A prime example of this is the flourishing of virtual screening

methods in drug discovery, which depend on systematic drug characterization efforts and

public databases holding functional genomics information obtained under standard

experimental conditions89, 90. Moreover, the information gained from systems approaches

form the basis for what has been termed P4 medicine: personalized, predictive, preventive

and participatory91. In the case of infectious disease, genetic information on the individual

and the pathogen, disease-predictive molecular signatures, targeted risk reduction and

prophylactic measures, and active patient participation will merge into a new approach to

medical care92.

In conclusion, contemporary virology cannot afford to simply catalogue myriad

circumstantial observations. Systems-level approaches provide the opportunity to assemble

the incomplete puzzle of biology in a meaningful way that will advance our understanding

of how viruses cause disease and lead to improved patient care. Although there will always

be a need for traditional microbiology, the success of today’s undergraduates will depend on

their ability to combine traditional skills with systems approaches and mathematics. The

time is ripe, the data are here, and the mathematics to put them together is coming along.

Take heed of the words on Plato’s doorstep: “αγεωμεπρηπος μηδεις εισιπω”a.

aLet no one ignorant of geometry enter.
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Glossary terms [G]

Betweenness
centrality

Centrality is a measure of the location of a gene in a network. Genes

with high betweenness centrality, referred to as bottleneck genes, are

located between and connect different portions of the network.

CLIP-Seq Cross-linking immunoprecipitation-high-throughput sequencing, a

screening method used for identifying RNA sequences that interact

with either RNA-binding proteins or other RNA.

Epistasis The phenomenon where the effects of one gene are modified by one

or more other genes.

Metabolic flux
profiling

A measurement approach that uses liquid chromatography-tandem

mass spectrometry to quantify the rate of conversion of biochemical

molecules in a metabolic network after perturbing the system.

Systems-levels metabolic flux profiling is a high-throughput approach

to quantifying changes in metabolic activity.

Network
topology

The arrangement and connections of the various components of a

network.

RIP-Seq Immunoprecipitation of RNA-binding proteins followed by high-

throughput sequencing of the bound RNA.

Structural
equation
modeling

A multivariate analysis technique for testing and estimating causal

relationships among variables.

snoRNA Small nucleolar RNAs that guide the modification (e.g., methylation

or pseudouridylation) of other RNAs, particularly ribosomal RNAs.

piRNA Piwi-interacting RNAs. These small RNAs are thought to be involved

in gene silencing through the formation of ribonucleoprotein

complexes with Piwi proteins.

Unfolded
protein response

A cellular stress response to the accumulation of unfolded proteins in

the endoplasmic reticulum. The response is characterized by a signal

transduction pathway designed to restore homeostasis by limiting

protein biosynthesis and increasing the abundance of molecular

chaperones involved in protein folding.

Expression
quantitative
trait loci (eQTL)

Genomic loci that regulate mRNA expression. eQTL are mapped by

computationally connecting DNA sequence variation with variation in
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gene expression, providing information on how host genetics impacts

the function of molecular networks.

Complement
system

Proteins found in the blood that react with one another and aid the

ability of phagocytic cells to eliminate microbes. Complement

proteins also play a role in the development of inflammation.
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Box 1 |Microarrays

DNA microarrays are widely used for global transcriptome profiling and remain the

workhorse technology of systems biology. Microarrays can trace at least part of their

ancestry to the Southern blot, in which DNA fragments are immobilized on a filter

membrane for subsequent detection by labeled DNA hybridization, and Southern himself

has provided a detailed description of the many early technological developments that

together led to the first commercial microarrays93. Over the past 15 years, the technology

has progressed from cDNAs deposited on membranes by spotting robots, to commercial

microarrays consisting of tens of thousands of oligonucleotides on glass slides or other

solid supports. Today, major commercial providers of microarrays include Affymetrix,

Agilent Technologies, Illumina and NimbleGen, with platforms varying in the length of

oligonucleotide used, the number of oligonucleotides representing each gene, and the

methods used for oligonucleotide synthesis and attachment to solid supports. Although

microarrays are best known for their use in profiling the expression of protein-coding

genes, the technology has also been adapted for the profiling of microRNA expression,

DNA methylation and single nucleotide polymorphisms (SNPs), as well as for promoter

analysis and the detection of genome-wide DNA copy number variation. Methods have

also been developed to extract RNA from formalin-fixed paraffin-embedded (FFPE)

samples, which have opened the door for microarray-based gene expression profiling of

the large numbers of clinical samples archived using this preservation method.

Microarrays can now provide considerably more information about virus-host

interactions than simply the differential expression of protein-coding genes in response to

virus infection94–97.
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Box 2 |Next-generation sequencing

Next-generation sequencing is a massively parallel sequencing-by-synthesis approach

that has replaced the first-generation automated Sanger sequencing method for genome

analysis98. The approach generates hundreds of millions of bases of high-quality DNA

sequence per run and has enabled the rapid sequencing of entire genomes. It is also used

for transcriptome profiling, an approach referred to as RNA-Seq99. This has a number of

advantages over microarray-based profiling, including the ability to identify and quantify

rare or as-yet-undiscovered transcripts and to provide information on alternative splicing,

genetic variation, and gene and exon boundaries. The method of cDNA library

construction used determines the type of transcripts to be sequenced: small (less than

about 200 bases) RNA sequencing (for example, microRNAs, snoRNAs and piRNAs),

mRNA sequencing (various types of polyadenylated transcripts) or whole-transcriptome

sequencing (polyadenylated and non-polyadenylated transcripts). Once sequence reads

are generated, they are aligned to a known reference genome, or if no reference genome

is available, sequences can be assembled de novo. Because of the short length of

sequence reads, the alignment and assembly of sequence information is a significant

computational challenge100. Additional potential applications of next-generation

sequencing of relevance to systems virology include the detection of protein-DNA

(ChIP-Seq) or protein-RNA (RIP-Seq/CLIP-Seq) [G] binding events and DNA

methylation profiling (Methyl-Seq)59, 101, 102.

Given the advantages of next-generation sequencing, some have suggested that it will

soon replace the use of microarrays for transcriptome profiling. However, the enormous

amount of data generated by next-generation sequencing requires an extensive

information technology and computational infrastructure for data processing, storage and

analysis. These costs and complexities, coupled with the cost of the sequencing itself,

make it likely that microarrays will continue to be widely used for some time.
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Box 3 |The Collaborative Cross

The Collaborative Cross is a recombinant inbred mouse genetic reference population

derived from eight laboratory mouse strains50. Such populations are used to study

complex traits and are most beneficial when they contain large numbers of lines that

exhibit substantial and uniform genetic variation. In the case of the Collaborative Cross,

five inbred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ and NZO/HlLtJ) and

three wild-derived strains (CAST/EiJ, PWK/PhH and WSB/EiJ) are being used to

generate a large panel of recombinant inbred (RI) lines through a randomized funnel

breeding scheme103, resulting in hundreds of independent RI lines in which genetic

variation is randomly and uniformly distributed throughout the genome. Once

established, RI lines can be intercrossed among themselves to generate recombinant

intercross (RIX) lines or backcrossed to other non-Collaborative Cross lines to generate

recombinant inbred backcross (RIB) lines. RIX lines maximize genetic diversity, and

because they are outbred, they are better models of human populations and they can

provide information on gene dominance and epistasis [G]104. RIB lines can be used, for

example, to evaluate whether specific allele combinations alter the phenotype associated

with a given target gene (for example, a dominant targeted gene knockout). Comparison

between viral titer in lungs and the extent of airway inflammation from a panel of pre-

Collaborative Cross mice (not fully inbred) demonstrates the impact of genetic diversity

on influenza virus disease phenotypes (see the figure; each diamond represents a different

mouse). Phenotypes range from high viral titer and inflammation to low viral titer and

little inflammation; in addition, some animals show unique phenotypes, such as high viral

titer with little accompanying inflammation. The Collaborative Cross is being developed

as a resource for the biomedical research community, with genotype information and

mouse line availability publically available at UNC Systems Genetics.
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Box 4 |The importance of data sharing

The rapid dissemination of high-throughput omics data sets to the scientific community is

an important element for the future success of systems virology. It is only through meta-

analyses that rely on advanced computational and mathematical approaches and the

integration of large, coherent and systematic multi-dimensional data sets that the

complexity of virus-host interactions can be unraveled. Owing to the immense amount of

time, expertise, manpower and expense that are required to produce these data sets, it is

imperative for the systems virology community to share data in a timely manner. In most

cases, owing to the richness of information contained in these data sets, this can be done

with little chance of compromising one’s own research. Two of the National Institute of

Allergy and Infectious Diseases (NIAID) sponsored Bioinformatics Resource Centers,

ViPR and IRD, are charged with capturing, publically sharing, storing, integrating and

visualizing systems-wide high-throughput omics data sets (both raw and processed) that

detail the host response to virus infection. Importantly, in addition to capturing data types

such as transcriptomic, proteomic, metabolomic, lipidomic and ChIP-Seq, their goal is to

capture extensive metadata, which provide users with the experimental details needed to

facilitate data interpretation. The practice of linking metadata to several forms of the

omics data (raw, analyzed or modeled) enables ViPR and IRD to meet the demands of a

range of end users (see the figure). For instance, at their portals, users can search for

information on individual genes, download lists of differentially expressed genes or link

metadata to raw data for doing meta-analysis. All laboratories, as a service to the

community, should be committed to sharing these types of data sets, whether through

organization-specific public websites, the appropriate NIAID Bioinformatics Resource

Center, or a combination of both.
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Figure 1. The systems virology paradigm
Using appropriate model systems of virus-host interactions, high throughput profiling

techniques are used to generate multi-dimensional data. Data analysis and mathematical

modelling are combined to generate comprehensive, integrated, and predictive molecular

networks of biological systems and virus-host interactions. Resulting predictions and

hypotheses lead to a subsequent round or cycle of biological perturbations. Completion of

each cycle results in model refinement and a deeper understanding of complex biological

processes. These findings and outcomes can be used directly or further refined by the

scientific community for various types of disease intervention.
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Figure 2. A 57-gene analogue signature predicts respiratory virus pathogenicity
a| A compendium was compiled from publically available data from transcription profiles on

lung samples from mice infected with influenza virus or SARS coronavirus. A meta-analysis

was performed and two signatures predictive of severity of infection (non-lethal verse lethal)

were derived. The digital signature is comprise of a subsets of genes that changes in

opposite direction compared to mock and the analog signature is comprise of a subsets of

genes the are differentially expressed between the two groups without referencing mock. b–
d| Each dot represents a gene expression profile ; non-lethal infections are indicated by a

green dot and lethal infections are indicated by a red dot. Classification results using the

entire gene expression profile (b), the digital gene signature (74 genes) (c) or the analogue

gene signature (57 genes) (d). Regions defined for positive identification of non-lethal

(green square) or lethal (red square) infections are indicated in b. The analogue signature

was more accurate at predicting lethal virus infection (TP=43%) than either the digital

signature (TP=1%) or the entire gene expression profile (TP=0%).
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Figure 3. Co-regulation networks
a| A schematic showing one bottleneck gene (green circle or node) and two hub genes

(orange nodes) in a hypothetical network. Hubs are highly connected to other nodes in the

network. Bottlenecks have a high degree of betweenness centrality and connect or act as

bridges between sub-networks. b and c| The context likelihood of relatedness method was

used to infer functional associations between differentially expressed genes responding to

H5N1 influenza virus infection in mice. Genes (nodes) are colored based on the ratio of

gene expression values of high-dose to low-dose infection. Red indicates higher expression

and blue indicates lower expression in the high dose compared to the low dose. b. The

complexity of these networks does not allow for a visual determination of bottlenecks.

Rather the betweenness centrality is calculated and the size of the node is relative to this

value. The larger nodes are major bridges between different parts of the network. c. A major

hub from a separate subnetwork with in the H5N1 influenza co-regulatory network.
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Box 3 fig.
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Box 4 fig.
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