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Abstract

There are two challenges that researchers face when performing global sensitivity analysis (GSA)

on multiscale in silico cancer models. The first is increased computational intensity, since a

multiscale cancer model generally takes longer to run than does a scale-specific model. The

second problem is the lack of a best GSA method that fits all types of models, which implies that

multiple methods and their sequence need to be taken into account. In this article, we therefore

propose a sampling-based GSA workflow consisting of three phases – pre-analysis, analysis, and

post-analysis – by integrating Monte Carlo and resampling methods with the repeated use of

analysis of variance (ANOVA); we then exemplify this workflow using a two-dimensional

multiscale lung cancer model. By accounting for all parameter rankings produced by multiple

GSA methods, a summarized ranking is created at the end of the workflow based on the weighted

mean of the rankings for each input parameter. For the cancer model investigated here, this

analysis reveals that ERK, a downstream molecule of the EGFR signaling pathway, has the most

important impact on regulating both the tumor volume and expansion rate in the algorithm used.
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1. INTRODUCTION

Recently, computational cancer models across different biological scales, i.e., multiscale

cancer models, have garnered much attention for its potential to help move the field of
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integrative cancer systems biology towards clinical implementation [1-3]. Because model

parameters defining biological properties at different scales are generally not produced by a

single laboratory, studying the dynamic system behaviors governed by a fixed set of

parameters is inappropriate. This implies that the influence of the perturbations of these

parameters on the overall system behavior needs to be further investigated [4]. Sensitivity

analysis has been widely accepted as a useful tool for this purpose, especially when it is not

possible or practical to conduct numerous wet-lab experiments [5]. There are two types of

sensitivity analysis methods: local sensitivity analysis (LSA) and global sensitivity analysis

(GSA). Because LSA (one-at-a-time parameter variation method) only allows one parameter

to change each time, for analyzing complex biosystems, such as cancer, GSA is believed to

be more appropriate for accessing a parameter’s sensitivity because it allows multiple

parameters to change simultaneously.

Thus far, a number of GSA techniques have been developed, especially in the engineering

field, and include response surface methodology, Monte Carlo analysis (sampling-based

approach), and variance decomposition procedures (variance-based approach). GSA

methods have also been applied to systems biology models [4, 6-8], but most of them focus

on the analysis of signaling pathways. To assess the context-dependent relationship between

different biological scales of interest, we have previously provided an applicable GSA

strategy based on the integration of Monte Carlo and resampling methods as well as the

repeated use of analysis of variance (ANOVA) [9]. Read et al., also developed a GSA

method based on statistical techniques to link simulation results back into the original

biology domain in order to determine the confidence of the simulation-derived predictions

[10]. However, there is no single ultimate solution that best fits all types of systems biology

applications, i.e., each method has its advantages and disadvantages [11]. A particular

method may be favored over another depending on the specific model being studied and the

objectives of the analysis. Hence, in identifying inputs critical for certain outputs, it is better

to consider multiple methods together

In this article, we present a sampling-based GSA workflow that accounts for multiple GSA

methods together. We chose sampling-based GSA methods because they are relatively easy

to implement and to demonstrate the applicability of the workflow; the focus here is not on

whether or not variance-based methods are always more superior over sampling-based ones.

Specifically, in addition to the ANOVA-based method, two other sampling-based GSA

methods, i.e., partial rank correlation analysis (PRCA) and Sobie’s multivariate linear

regression analysis (MLRA; capable of prioritizing parameters for non-linear computational

models) [12], are also an integral part of the workflow. After an initial parameter ranking is

produced with a specific GSA method, parameters are grouped by ANOVA using statistical

comparison procedures. In the end, we generate a summarized parameter sensitivity ranking

sorted by the strength of influence that each input parameter exerts on model output. We

exemplify the feasibility of the workflow using a 2D multiscale agent-based model

previously developed for simulating non-small cell lung cancer (NSCLC) [13]. The

identified critical model parameters (on the molecular level) may have the potential to serve

as therapeutic targets in treating NSCLC.
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2. METHODS

2.1 Multiscale Non-Small Cell Lung Cancer Model

The 2D agent-based NSCLC model [13] encompasses both molecular and microscopic (i.e.,

multi-cellular) scales, and we only briefly introduce its key development methods here. An

epidermal growth factor (EGF)-induced, EGF receptor (EGFR)-mediated signaling pathway

is implemented at the molecular scale, and includes seven main components (see Fig. 1a for

an illustration of the simplified pathway). At the microscopic scale, a lattice-based 2D

biochemical microenvironment is constructed and populated with diffusive chemical cues

including EGF, glucose, and oxygen (see Fig. 1b for model setup). Each cell (or agent) in

the model carries a self-maintained signaling pathway, and as a simulation run progresses,

these cells constantly sense changes in environmental factors, interact with other cells, and

adjust their behavior according to a set of predefined biological rules. A molecularly-driven

cellular phenotypic decision algorithm (Fig. 1a) is established to determine cell phenotypic

transitions upon molecular changes: PLCγ-dependent migration and ERK-dependent

proliferation (see [13] for detail). This algorithm is derived from and supported by

experimental studies [14, 15]. In the model, each lattice grid can be occupied by one cell or

remain empty at a time; if a cell decides to migrate or proliferate, it will search for a

neighborhood location to move to or for its offspring to occupy. The model is able to

quantify the relationship between extracellular stimuli, intracellular signaling dynamics, and

multi-cellular tumor growth and expansion. Thus, it can be used to investigate the cross-

scale effects of simultaneous molecular parameter variations on tumor ‘outcome’ at the

microscopic scale.

2.2 Global Sensitivity Analysis Workflow

We propose a GSA workflow consisting of three phases (Fig. 2): pre-analysis (for preparing

the basic input sampling data set), analysis (for performing sensitivity analysis with three

GSA methods and for quantifying the distribution of the sensitivity index), and post-analysis

(for producing the final summarized parameter ranking). We will explain each phase using

the 2D NSCLC multiscale model (described in section 2.1) as a practical example. Note that,

to investigate the effects of how molecular changes in individual cancer cells percolate

throughout and across the scales of a cancer system, the model output (i.e., biological

response of the tumor) no longer consists of the behaviors of output signals or signal

activation patterns (as it is in most current signaling pathway studies [16]); instead, the

output is the tumor’s growth and expansion rate, two phenotypic behaviors at the

microscopic level driven by the implemented molecular network. Similar to previous studies

[17-19], we will use the number of elapsed time steps as a measure for “tumor expansion

rate,” and the final number of live cells for “tumor volume.”

2.2.1 Pre-Analysis—Continuous input parameters are first partitioned into mutually

exclusive ranges of values, and each individual range is termed a parameter level. In our

case, we only consider the initial concentrations of pathway components as input parameters

to demonstrate the applicability of the GSA workflow. When the number of parameters or

parameter levels is large, exploring the entire parameter space is computationally

impractical. For example, suppose we have K parameters and for each parameter we have N
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levels, for a total of NK combinations. The number of simulations grows exponentially as K

or N increases. The other fact rendering exploring the entire space impractical is that

this/any 2D multiscale cancer model takes a relatively long time to finish, because each cell

has to undergo a series of pathway analysis throughout the course of the simulation. Hence,

we use a random sampling of input parameters to render the large number of variation

combinations computationally manageable. Specifically, as implemented in [9], we use the

Latin hypercube sampling (LHS) method to generate 2000 random sets of parameter values,

and thus 2000 sets of simulation results will be generated correspondingly. For simplicity,

we call each set of parameter values along with the corresponding two tumor output values

an observation. Thus, at the end of the pre-analysis phase, we have 2000 observations, and

we refer to the 2000 observations as the original sample.

2.2.2 Analysis—The sensitivity indices for the three sampling-based GSA methods are as

follows: the F value for ANOVA calculated by the F-test [9], the magnitude of the partial

correlation coefficient for PRCA, and the magnitude of the regression coefficient for

MLRA. For all analyses, the bigger the value of the sensitivity index is, the larger the

influence that the (molecular) parameter has in determining the (microscopic) system output.

We note here that, based on the original sample obtained at the pre-analysis phase, each of

the three GSA methods can already yield their own parameter rankings. However, there is

still the possibility that the sample data is biased (regardless of how sophisticated the LHS

method is), which would make the resultant ranking incorrect. Thus, we further quantify the

sampling distribution of the sensitivity index for each GSA. As implemented in [9], to

understand such distributions (of F value, partial correlation coefficient, and regression

coefficient, respectively), we use bootstrap resampling [20], which repeatedly samples the

original sample with replacement and forms a new sample that is the same size as the

original sample. The most attractive feature of this approach is that we do not have to run

the multiscale cancer model again, thereby saving a great deal of time. In practice, we again

generate 1000 bootstrap samples (including the original sample) and then apply each GSA to

each bootstrap sample to calculate the sensitivity index values. As a result, with respect to

each model output (tumor volume or expansion rate), for each GSA, there will be 1000

sensitivity index values (each corresponding to a bootstrap sample) generated for each input

parameter. We then draw probability distributions of sensitivity indices from these results.

Next, to discriminate between two closely ranked input parameters, we use ANOVA with

Tukey’s method (also known as Tukey’s studentized range test) [21]. Tukey’s method is a

single-step multiple pairwise comparison procedure which, in conjunction with ANOVA,

can determine which parameter means across the groups are significantly different from the

others. In brief, suppose we have N treatment groups: ANOVA examines the difference

across the N group means as a whole, and Tukey’s method looks for statistically significant

differences between each pairs of the groups. In our case, each input parameter is regarded

as a treatment group, containing 1000 sensitivity index data. We note that other statistical

methods for performing multiple comparison tests, such as Duncan’s test, Scheffe’s

procedure, and the Waller-Duncan k-ratio t test can be used as a substitute for Tukey’s

method; however, detailed discussion of this topic is beyond the scope of this article, and

interested readers should refer to [22]. If the difference between the means of two originally
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closely ranked input parameters is statistically significant (unless otherwise noted, all

statistical comparisons are conducted at the 5% confidence interval), they will be assigned to

different groups; if not, they will remain in the same group. Parameters from the same group

are assumed to have similar effects on the model output, and thus will be reassigned the

same rank. In practice, for all three GSA methods, a rank of 1 is assigned to the input with

the highest sensitivity index in a parameter ranking, and the largest value of rank is assigned

to the input of least importance (i.e., lowest sensitivity index).

2.2.3 Post-Analysis—Since there is no one-stop GSA method for all types of systems

applications, we propose an approach to synthetically take into account the parameter

rankings produced by all of the GSA methods. This approach calculates the weighted mean

of the rankings for each input parameter, according to the following equation:

(1)

where i refers to the ith of M parameters, j refers to the jth of N GSA methods; ri,j represents

a specific rank for the ith parameter with respect to the jth GSA method; kj represents the

weight for the jth GSA method; Si is the final score for the ith parameter. The smaller the Si,

the more important is the given parameter. The weights are normalized to sum up to 1.

Figure 3 illustrates the process of producing the summarized (or integrated) parameter

ranking. In practice, GSA methods can be set with different weights (i.e., the coefficient k),

depending on the researchers’ experience or prior knowledge. For example, for a specific

model, methods that have been proven to be more suitable than others may have higher

weights, while others have lower weights. However, for simplicity and because we have no

a priori knowledge regarding which GSA method is more powerful than others for this

particular multiscale cancer model, we set kj = 1/N (j = 1,2,…,N), meaning that all GSA

methods are equally important.

3. RESULTS

The agent-based model was implemented in C/C++. In each simulation, a total of 49 seed

cells arranged in a 7 × 7 square were initially positioned in the 2D lattice. The first 2000 sets

of parameter combinations (i.e., the original sample) were created with Matlab 2008

(Mathworks, Inc.). All statistical analysis programs for running ANOVA, Tukey’s method,

and bootstrap resampling were developed with SAS/STAT 9.3 (SAS Institute). Each GSA

method took approximately three minutes to obtain the ranking results on a Dell workstation

(Pentium-4 1.7 GHZ, 2.0 GB RAM). Input parameters are the initial concentrations of the

seven EGFR pathway components (Fig. 1a). Table 1 summarizes the input parameter

variation ranges and corresponding levels.

3.1 Individual Parameter Rankings

For all three GSA methods (ANOVA, PRCA, and MLRA), conducted using the 1000

bootstrap samples, the individual ranking results are shown in Fig. 4. All GSA ranking

results find ERK to have the most significant impact on both, tumor volume and expansion

rate, a result which further emphasizes the potential therapeutic value of ERK in suppressing
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overall tumor growth. In tumor volume evaluation, MEK remains among the top three

parameters in all rankings, but it is far less important than ERK in influencing the tumor

volume outcome because there is a big difference in each corresponding sensitivity index

value between MEK and ERK. In tumor expansion rate evaluation, other than ERK, both

PLCγ and EGFR are determined to be critical by all of the GSA methods. As expected, for

each model output, the different GSA methods each produce different ranking results.

3.2 Summarized Ranking

For the three equally-weighted GSA methods, the value of each weight, kj (j=1,2,3) for Eq.

(1) is 1/3. The summarized parameter rankings with respect to tumor volume and expansion

rate are shown in Fig. 5. From this figure, one can easily identify whether a component is

critical, as well as what the component’s position relative to other molecules in the pathway

is. In tumor volume evaluation (Fig. 5a), ERK is the most critical parameter, followed by

MEK. This result is most similar to the ranking obtained by using ANOVA and MLRA (Fig.

4a). That ERK is the most important parameter affecting tumor volume is not surprising,

since ERK decides a cell’s proliferation fate in our phenotypic decision algorithm of the 2D

NSCLC multiscale model [13]. However, in tumor expansion rate evaluation (Fig. 5b), ERK

remains the most critical parameter, followed by PLCγ and EGFR. This is somewhat

surprising, since we assumed that PLCγ would have the most significant impact on tumor

expansion because it is the determinant of cell migration fate [13]. The identified important

parameters by the final summarized ranking with respect to tumor expansion rate are in

agreement with all of the three individual parameter rankings (Fig 4b).

4. DISCUSSION AND FUTURE WORK

Each sensitivity analysis method (whether GSA or LSA type) has its own key assumptions,

limitations, and demands regarding the time and effort needed for application and

interpretation [11]. With that in mind, we have presented a sampling-based GSA workflow

into which a number of helper techniques, such as LHS sampling, Bootstrap resampling, and

ANOVA with Tukey’s method for parameter grouping are introduced, and have applied the

workflow to a previously developed multiscale NSCLC model [13]. Overall, the workflow

provides solutions to (1) how to render the large number of parameter variation

combinations computationally manageable, (2) how to effectively quantify the sampling

distribution of the sensitivity index for each GSA to address the computational intensity

issue, and finally (3) how to discriminate between two closely ranked input parameters.

Parameter ranking results indicate that, for the model used here, ERK is the most critical

parameter at the molecular scale chiefly regulating the two tumor growth indices, i.e., tumor

volume and expansion rate, on the multi-cellular level. Cautiously extrapolated, this finding

therefore supports therapeutic efforts that seek to target ERK to control tumor expansion in

NSCLC. Furthermore, by extending the model to incorporate drug-cell interactions [23-27],

the GSA can also be used to help develop optimal drug treatment strategies for individual

patients.

The workflow introduced here is flexible in that some methods can be substituted with

others at the investigators’ choice. For example, at the pre-analysis phase, in order to

introduce the uncertainty of the parameters into the model, we use LHS to randomly select
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parameter values from their respective probability distributions. In fact, there are many other

approaches to process random sampling (see [28]), and this research topic has been

extensively studied in the statistics and engineering fields. We choose to use a uniform

probability distribution, i.e., equal probability of selection, for all of the input parameters

because the distributions of the parameters are unknown to us. If any of the parameter

distributions is known a priori, this knowledge (or literature data) should be applied to the

model to improve the accuracy of the parameter sampling. However, the probability

distributions of parameter values for real biological systems are usually unknown, and it is

thus reasonable to use a uniform distribution as the default [29]. Also, as mentioned earlier,

we can employ techniques other than Tukey’s method along with ANOVA to quantify the

distribution of the sensitivity index, and other types of GSA methods [11, 30] can be

integrated into the workflow as well.

As noted before, it is expected that different GSA methods produce different parameter

rankings with respect to either tumor growth index (i.e., tumor volume or expansion rate).

This prediction is precisely what we find in our analysis, and it highlights the importance of

the adjusted, summarized parameter ranking method, using Eq. (1), which integrates the

individual parameter rankings. This way, a model parameter (pathway component) is

identified to be critical only when all or most of the GSAs agree. In both tumor volume and

expansion rate evaluation, PKC is assigned the lowest ranking by most of the GSAs, and

thus is deemed to be a less important parameter. However, this conflicts with our previous

LSA study’s results [17], where the model is observed to be sensitive to variations in PKC.

Since the LSA method only varies a single parameter at a time while keeping all others

fixed, we believe it only accesses the baseline of the effect of perturbations in each

individual parameter. By incorporating multiple methods, the proposed GSA analysis

procedure inherently indicates to the researcher how strong the produced ranking is—in

particular, how certain the evaluation of a molecule’s importance is. A consistently high

ranking indicates that a molecule is likely a good therapeutic target, since the multiple

confirming analyses add to the robustness of the results. While it may be difficult to choose

the “best” or “surest” method of analysis per se, this “across-GSA methods analysis” should

increase confidence in the result, which is essential once treatment strategy choices are

deduced from it.

We focus on computing the ranking of the parameters, not on understanding what level of

difference would make a parameter more critical than others. In practice, this is the

researcher’s responsibility to determine this level, which also depends on the model being

investigated. Although the ANOVA with Tukey’s method can divide the parameters into

different groups from a statistical point of view, the result should be used only as a reference

to the assessment of difference between groups.

As described, our multiscale model spans two biological scales: molecular signaling and

multicellular scales; a molecularly-driven cell phenotype decision algorithm was established

to link the two scales. In this study, we focused our parameter analysis on a subset of model

parameters, i.e., on concentrations of pathway components, simply to demonstrate the

applicability of the GSA workflow. However, other scale-specific parameters (e.g.,

association and dissociation kinetic rates on the molecular scale, oxygen and glucose
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concentration profiles on the multicellular scales, etc.) and the threshold parameters

(specifically, for ERK and PLCγ) for linking molecular changes to cellular phenotypic

determination can be varied simultaneously together with the pathway parameters to obtain

a more complete ranking of pathway ‘signatures.’ While this will incur overload

computational cost, it is particularly important for a multiscale model to be useful in

rationally designing multi-target or multi-component therapies. This topic has not been fully

addressed yet by the multiscale modeling community.

In summary, we have presented a GSA workflow accounting for multiple GSA methods

together to identify critical parameters at the molecular level that have significant impact on

tumor volume and expansion rate on the microscopic level. Applying the workflow to a

previously developed multiscale lung cancer model, ERK is found to be the most important

molecule in regulating both tumor evaluation indices, thus indicating its potential to serve as

a therapeutic target in NSCLC. In the future, kinetic rate constants will also be considered as

molecular parameters, and their cross-scale effects will be examined together with the

signaling pathway component concentrations. Currently, we only use the GSA workflow to

perform sensitivity analysis when a simulation task is finished, but it is reasonable to

hypothesize that parameter rankings are changing over the course of the simulation. Hence,

we plan to perform GSA at regularly spaced time intervals, producing a map of time-

dependent dynamic parameter rankings, which may provide additional and useful

information to moleculartargeted cancer research.
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Abbreviations

ANOVA Analysis of Variance

EGF epidermal growth factor

EGFR EGF receptor

ERK extracellular signal-regulated kinase

GSA global sensitivity analysis

LSA local sensitivity analysis

MAPK mitogen activated protein kinase

MEK mitogen activated protein kinase kinase

MLRA multivariate linear regression analysis

PLCγ phospholipase Cγ

PKC protein kinase C

PRCA partial rank correlation analysis
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Figure 1.
Introduction of the 2D agent-based model. (a) Schematic representation of the signaling

pathway. In short, EGFR is activated by binding to extracellular EGF, inducing receptor

dimerization and autophosphorylation. The bound receptor forms a docking site for the

signaling molecule PLCγ, which then activates the Raf signal through PKC. This process

initiates the ERK signaling cascade, which is involved in cellular proliferation,

differentiation, and survival. The rates of change of PLCγ and ERK are employed to

determine cell migration and proliferation chances for the next step. (b) A virtual 2D

microenvironment with a discrete lattice containing 200 × 200 grid points. A single, distant

blood vessel representing a “nutrient source” is located at (150,150). The nutrient source is

the most attractive location for the chemotactically-acting tumor cells (i.e., cells tend to

move towards the nutrient source). When the first cell reaches the nutrient source, a

simulation run is terminated. The diameter of each cell and the unit interval of the 2D

microenvironment are all 10μm.
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Figure 2.
Workflow of the global cross-scale sensitivity analysis, which is composed of three phases:

pre-analysis, analysis, and post-analysis.
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Figure 3.
Process for producing the final summarized parameter ranking. All three GSA methods

(ANOVA, PRCA, and MLRA) generate their own individual parameter rankings based on

the same 1000 bootstrap samples. Note that all GSA methods use ANOVA and Tukey’s

method to perform parameter grouping. The summarized ranking is obtained using Eq. (1).
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Figure 4.
Individual parameter ranking results from 1000 bootstrap simulations for ANOVA, PRCA,

and MLRA, with respect to (a) the final number of live cells – tumor volume and (b) the

number of simulation steps – tumor expansion rate. SI stands for sensitivity index. Columns,

mean; bars, SD.
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Figure 5.
Final summarized parameter ranking according to Eq. (1) with respect to (a) tumor volume

and (b) tumor expansion rate. The ranking results (table) are shown on the left of each panel,

while the right (pathway figure) identifies the potential of each component for serving as a

therapeutic target. A molecule with a higher ranking is associated with a deeper background

color.
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TABLE 1

Parameter variation ranges and corresponding levels of input parameters. Variation ranges were set large

enough to cover the entire possible parameter space. The variation range for each parameter was partitioned

into levels by means of evenly spaced intervals. Standard values are taken from the literature [31, 32].

Input Standard value (nM) Variation range Number of levels

EGF 2.65 0~10.0-fold 10

EGFR 80 0~2.0-fold 10

PLCγ 10 0~2.0-fold 10

PKC 10 0~2.0-fold 10

Raf 100 0~3.0-fold 12

MEK 120 0~4.0-fold 10

ERK 100 0~10.0-fold 20
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