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Abstract

While numerous computational methods have been developed that use genome-scale models to 

propose mutants for the purpose of metabolic engineering, they generally compare mutants based 

on a single criteria (e.g., production rate at a mutant’s maximum growth rate). As such, these 

approaches remain limited in their ability to include multiple complex engineering constraints. To 

address this shortcoming, we have developed feasible space and shadow price constraint (FaceCon 

and ShadowCon) modules that can be added to existing mixed integer linear adaptive evolution 

metabolic engineering algorithms, such as OptKnock and OptORF. These modules allow strain 

designs to be identified amongst a set of multiple metabolic engineering algorithm solutions that 

are capable of high chemical production while also satisfying additional design criteria. We 

describe the various module implementations and their potential applications to the field of 

metabolic engineering. We then incorporated these modules into the OptORF metabolic 

engineering algorithm. Using an Escherichia coli genome-scale model (iJO1366), we generated 

different strain designs for the anaerobic production of ethanol from glucose, thus demonstrating 

the tractability and potential utility of these modules in metabolic engineering algorithms.

Background

Genome-scale models (GEMS) are powerful tools allowing for the prediction of cellular 

growth, flux profiles, and mutant strain phenotypes [1]. Over the last decade, with the 

development of new computational algorithms, GEMS have been used to guide the design 

of strains for biochemical production, such as biofuels and commodity chemicals (reviewed 

in [2,3,4]). While GEMs are valuable tools, new computational algorithms are still needed to 

evaluate them and apply them in new ways.

© Published by Elsevier Inc. All rights reserved.
§Corresponding author reed@engr.wisc.edu, Tel: 608-262-0188, Fax: 608-262-5434. 

Author Contributions
CJT developed the algorithms, and processing scripts, performed all the simulations, and composed all figures. CJT and JLR 
conceived of and designed the algorithm, analyzed results and wrote the paper. All authors read and approved the final manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Metab Eng Commun. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
Metab Eng Commun. 2014 December 1; 1: 1–11. doi:10.1016/j.meteno.2014.06.001.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Many strain design algorithms exist that identify which network modifications are needed to 

improve chemical production. These modifications can involve reaction deletions 

(OptKnock), metabolic or regulatory gene deletions (OptGene and OptORF), reaction 

additions (OptStrain and SimOptStrain), or flux increases/decreases (OptReg, OptForce, 

CosMos, FSEOF) [3,5,6,7,8,9,10,11,12,13]. The bi-level optimization approaches used to 

identify these modifications can be computationally expensive and recent efforts have 

improved their run-time performances [9,13,14,15,16]. Many of these metabolic engineering 

algorithms focus on improving the desired chemical production when the proposed mutant is 

operating at its maximal growth rate. By coupling chemical production to growth, selection 

for growth rate using a chemostat or sequential batch cultures can enrich for strains with 

increased chemical production [17]. One such algorithm, OptORF, is used extensively in 

this work [5]. The OptORF algorithm extends upon OptKnock by using gene rather than 

reaction deletions as potential modifications. By accounting for gene and transcriptional 

regulatory network information, OptORF proposes deleting or overexpressing metabolic or 

regulatory genes (as opposed to reaction level deletions proposed by OptKnock) to increase 

chemical production. By doing this, OptORF avoids designs that would be impossible to 

implement, due to genetic interactions between reactions or regulatory effects.

While metabolic engineering methods have been successful [2,8,17,18], most of these 

approaches cannot consider the ramifications of undesirable suboptimal flux distributions 

(e.g. production with low productivity) [9,19,20,21,22], or production phenotypes at or near 

stationary phase in batch cultures. Additionally, these algorithms are limited in their ability 

to tailor a strain’s behavior to address more complex problems (e.g., the co-utilization of 

multiple substrates [23,24,25] or elimination of undesirable by-products [26,27,28,29]). 

Consequently, while these approaches are valuable in designing adaptive evolutionary 

strains based on single criteria (e.g., high production at maximal growth rates), they often 

lack the ability to efficiently propose strains meeting multiple design criteria that are of 

interest to investigators. To address these problems in small networks, techniques such as 

constrained minimal cut sets [30] can be used to allow researchers to meet additional design 

criteria (e.g., elimination of undesired byproducts) without affecting the desired chemical 

production phenotype. Recent advances allow enumeration of the smallest minimal cut sets 

in genome-scale networks, from which constrained minimal cut sets can be identified [31]. 

However, all minimal cut sets can still not be enumerated for genome-scale networks, and 

the smallest minimal cut sets identified first might not correspond to constrained minimal 

cut sets meeting additional design criteria. Additionally, strategies for finding constrained 

minimal cut sets that consider transcriptional regulation, media selection or degree of 

coupling between biomass and chemical production have not been developed.

Previously, we developed the forced coupling algorithm (FOCAL) to identify conditions 

(e.g., gene deletions or media conditions) that ensure directional coupling between two 

fluxes (flux through vx implies flux through vy) [32]. By changing media conditions or 

deleting genes, FOCAL affects the shape of the resulting feasible solution space. We also 

showed how FOCAL can be modified to design a mutant strain that must co-utilize xylose 

and glucose simultaneously in order to grow. While these modifications were interesting, 

they did not work to increase the overall productivity of the organism since no metabolic 
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engineering objective was included. Moreover, this approach could only enforce directional 

coupling between fluxes which is often an overly stringent condition for metabolic 

engineering strain designs.

Recently, Ohno et al., used shadow prices from flux balance analysis (FBA) solutions to 

guide a greedy algorithm for increasing chemical productivity as reaction deletions are 

added[14]. Double deletion mutants with the top desired shadow prices (which indicate the 

rate of change in growth divided by the rate of change in chemical production) were used as 

“parent” strains to find triple deletion knockouts with the best shadow prices. This greedy 

search process, called FastPros, was repeated for up to 25 knockouts, and for each iterative 

screening step, any sets of deletions which resulted in a non-negative shadow prices 

(indicating coupling between growth and chemical production) were stored as candidates for 

further analysis and excluded from further screening. The authors then used OptKnock to 

maximize chemical production using only the stored reaction knockouts found by their 

FastPros process. Because they use a greedy algorithm, their method does not guarantee that 

the set of knockouts with the highest shadow prices are discovered. Additionally, since the 

authors use OptKnock to propose strain designs, their approach does not control or optimize 

the degree of coupling between chemical production and cellular growth when mutants are 

proposed.

Here, we have developed modules Feasible Space Constraint (FaceCon) and Shadow 

Constraint (ShadowCon) modules for controlling the shape an organism’s feasible space. 

These modules allow many additional types of design criteria to be considered besides 

directional coupling. These modules can be easily added to mixed integer linear adaptive 

evolution metabolic engineering algorithms to incorporate additional design criteria, while 

retaining the original objective of the method (e.g., coupling growth and chemical 

production). Since there are often many possible solutions to these strain design algorithms, 

embedding these modules allows only the subset of those mutants to be found if the criteria 

associated with these modules is met. Such filtering is needed as models become larger and 

the computational cost (i.e., CPU time) of generating numerous strain designs increases, due 

to the combinatorial explosion associated with increasing numbers of integer variables and 

integer cuts needed to find alternate solutions. To date, the only type of filtering that can be 

done works to prevent finding solutions that have large ranges of chemical production at the 

maximum growth rate [19,33].

FaceCon modules are included as additional inner optimization problems and ensure that 

any proposed mutant cannot operate within a user-defined region (i.e., no feasible flux 

distribution can exist within a user-defined region). By defining this excluded region, 

various feasible space characteristics can be enforced. Below we describe three FaceCon 

modules:

1. Coupling Module: This module allows a researcher to enforce different types of 

coupling (directional or weak) between a flux of interest (vy) and another flux (vx) 

depending on the formulation and parameter selection. This module can be used to 

find mutants with directional coupling (i.e., flux through vx implies flux through vy 

for all values of vx [34]) or weak coupling (where flux through vx implies flux for 
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vy only for some positive values of vx). Depending on how the coupling module is 

implemented one can require mutants have directional coupling, weak coupling, or 

either directional or weak coupling. The result of any of these implementations is 

that a defined portion of the vx axis is excluded from the solution space of a 

proposed mutant.

2. Chemical Level Module: The chemical level module ensures proposed mutants 

meet criteria associated with the production level of a chemical of interest, vy (e.g., 

a desired product or undesired by-product). This module finds mutants whose 

solution space excludes solutions with vy below (or above) a user-defined threshold 

(β) within a defined region (e.g., vy must be greater than β when vx is greater than 

vmin).

3. Direct Constraint Module: This module is the most comprehensive and with proper 

parameter selection can encompass the functions of the two previous FaceCon 

modules. This module allows the user to define a particular region that must be 

excluded from the solution space of any proposed mutant; thus, the researcher is 

able to directly influence the solution space of any mutant proposed by a metabolic 

engineering algorithm.

In the following sections, we detail the application, function and relevant parameters for 

each of these FaceCon modules. We then introduce the concept of shadow constraint 

(ShadowCon) modules, which can be used to control the degree of coupling once coupling 

between two fluxes occurs. To illustrate each module’s functionality and potential use, we 

have included the FaceCon and ShadowCon modules as additional inner problems within 

the OptORF algorithm, to find metabolic gene deletions that couple growth and chemical 

production and that satisfy additional module criteria. Additionally, to demonstrate the 

methods are applicable on genome-scale networks we have applied them to identify mutants 

for ethanol production using the Escherichia coli model, iJO1366 [35]. We demonstrate that 

when there are multiple solutions to metabolic engineering algorithms, the addition of 

FaceCon and ShadowCon modules allows only those mutants that meet additional criteria to 

be identified.

Methods

Most algorithms developed for metabolic engineering focus on maximizing chemical 

production assuming maximum cellular growth. We have developed FaceCon and 

ShadowCon modules that can be integrated into existing mixed integer linear adaptive 

evolution metabolic engineering algorithms which focus on deletions (e.g., OptKnock, 

OptORF, and their tilted variants, as well as RobustKnock) to allow for greater control over 

strain designs (Figure 1) and to filter out designs with undesirable suboptimal behaviors. 

The resulting bi-level optimization problem is converted into a mixed integer linear 

programming problem (MILP) using duality theory. It is important to note that the modules 

and the metabolic engineering algorithm are completely independent subproblems (see 

supplementary materials Figure S5), which only share the same feasible space (altered by 

deletions in the outer problem) and integer variables. All continuous variables (e.g., fluxes) 

are unique to each subproblem. Interestingly, many of these bi-level algorithms include a 

Tervo and Reed Page 4

Metab Eng Commun. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



maximum growth subproblem that determines chemical production capabilities at the 

maximum growth rate. This subproblem itself can be considered a module of the outer 

problem that selects gene deletions or reaction knockouts that constrain the maximum 

growth subproblem. Consequently, the FaceCon modules could be run in isolation of the 

maximum growth subproblem if chemical production is not of concern. Additionally, 

because these modules and the metabolic engineering algorithm share integer variables the 

combinatorial complexity of the problem does not substantially increase with addition of 

FaceCon or ShadowCon modules. Instead only additional linear constraints are added which 

should result in polynomial time scaling as the problem size increases.

For simplicity, we describe only the direct constraint module since the coupling and 

chemical level modules can be implemented using the same equations with different 

parameter values (Figure 2). Nonetheless, alternative formulations of the other FaceCon 

modules are provided in the supplementary materials. While all FaceCon modules are 

written as minimization problems, they can easily be modified to maximization problems 

(e.g., if one wishes to prevent by-product formation). Additionally, while all modules are 

included with acceptance criteria written as constraints – thus, not meeting the acceptance 

criteria forces the problem to be infeasible - such constraints can be reformulated as 

penalties within the outer metabolic engineering objective, which can be especially useful if 

finding a feasible solution is particularly challenging.

Metabolic Engineering Algorithm

All modules were incorporated into a gene-deletion focused OptORF [5] (i.e., no regulatory 

information was considered) and the resulting MILP was written in the General Algebraic 

Modeling System (GAMS) and solved using CPLEX. A gene deletion penalty of one was 

used in the OptORF objective and a maximum of twenty gene deletions was used. The 

standard untilted inner objective function (maximize growth) was used, unless noted 

otherwise. In cases where a tilted objective function was used in OptORF (presented in 

supplementary material), the inner objective function was maximize growth rate minus 0.001 

times the chemical production rate. Each problem was run for ten thousand seconds (except 

for the ShadowCon problems which were allowed to run for up to twenty thousand seconds) 

or until a global optimum was found, whichever occurred first. For the small illustrative 

network global solutions were found immediately. Using the iJO1366 model, the solver used 

all the time allotted when the objective for OptORF was tilted (with and without) FaceCon 

or ShadowCon modules. Similarly, the untilted OptORF required all the time permitted 

when FaceCon or ShadowCon modules were included. For untilted OptORF without 

additional modules (stand-alone OptORF), the first six solutions found were each found in 

~20–25 minutes; however the next four solutions all took the time allotted. To improve 

computational performance, all subunits except one were retained (i.e., they can not be 

deleted) and all isozymes but one were removed by fixing the relevant binary variables to 

one and zero, respectively prior to solving (as described previously [36]).

FaceCon Modules

The direct constraint module is the most comprehensive of the FaceCon modules, since with 

proper parameter selection it can be used to formulate the coupling and direct chemical 
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modules. In the direct constraint module the ratio of (vy − γ) (vx − α) is minimized (or 

maximized). As a result, to ensure the objective remains positive, all fluxes, vj, are broken 

into their forward and reverse components (Equation 1) and normalized by the variable t 

(Equations 2 and 3).

(1)

(2)

(3)

Using these transformations, the direct constraint module has the following form:

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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Where α and γ are parameters corresponding to the coordinates on a vx-vy plane through 

which a line with the smallest (or largest) calculable slope (m) is found that also goes 

through the feasible space within a user-defined region (Equation 7). Equation 5 enforces 

the steady-state material balances in the transformed flux space. Here Sij is the 

stoichiometric matrix where i and j refer to metabolites and reactions, respectively. M and R 

are the set of all metabolites and reactions within a model. Equation 6 is a linear 

rearrangement of Equations 2 and 3. Equation 7 allows the user to define the region where 

the feasible space constraints will be enforced (e.g., where vx is greater than vmin). Thus, for 

the module to be feasible there must be at least one non-trivial flux distribution within the 

user-defined region. Additional optional transformed constraints (Equation 8) can be 

included that specify the user-defined region (or domain) over which the feasible space 

constraints apply (e.g., , such a constraint can be useful to define 

multiple excluded regions with varying slopes, m). Equations 9–12 limit the flux of any 

reaction to its bound or to zero if the reaction has been deleted by the metabolic engineering 

algorithm (indicated by the binary variable aj being zero). In order to prevent the module 

from being infeasible or unbounded, t must be finite and positive and so vx must be greater 

than α (Equation 13).

The direct constraint module is included in the metabolic engineering algorithm as an inner 

problem (Figure 1). The variables in the direct constraint module are independent of the 

variables in other inner problems (i.e., the optimal flux distributions for the different inner 

problems are not necessarily the same). To ensure the module satisfies additional design 

criteria, the minimum slope, m, needs to be greater (or less than in the case of maximization) 

than, mset, defined by the user. This criterion is enforced by either including a constraint 

(Equation 14) in the outer problem of the metabolic engineering algorithm or by modifying 

the outer objective to favor mutants that satisfy this acceptance criterion. To convert the 

resulting bi-level problem to a single level MILP, the inner optimization problem(s) can be 

replaced by the set of their primal and dual constraints and equating the primal and dual 

objectives.

(14)

ShadowCon Module

In addition to feasible space constraints on the allowed feasible region, constraints can also 

be applied to the initial slope where coupling begins along the vx axis using the following 

formulation:

(15)

(16)
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(17)

(18)

(19)

(20)

Here, vx is maximized while satisfying steady-state mass balances (Equation 16), flux lower 

and upper limits (Equation 17 and 18), and an additional constraint fixing vy (Equation 20) 

such that the optimal solution to Equations 15–20 is positioned near the point where the 

degree of coupling between vy and vx (i.e., how a change in vy will affect the maximum 

value of vx) should be calculated.

While developed independently, the above optimization problem is similar to that used in 

FastPros [14]. However, in contrast to FastPros the ShadowCon module is included directly 

as an inner subproblem in the metabolic engineering algorithm (Figure 1). Using this inner 

subproblem, the degree (or slope) of coupling for an OptORF proposed mutant can be 

controlled. Moreover, because ShadowCon uses a mixed integer formulation instead of a 

greedy algorithm, our approach will not get stuck in local maxima or minima if strains with 

a large or small shadow price are desired.

The bi-level problem, created by including a ShadowCon module into a metabolic 

engineering algorithm (like OptORF or OptKnock), is converted to a single level MILP, by 

replacing the inner optimization problem(s) with their set of primal and dual constraints and 

equating the primal and dual objectives. The dual variable (or shadow price) corresponding 

to Equation 20 is the partial derivative representing how the maximum value for vx would 

change if the value for ε (or vy) changed. Using this relation, we can relate the slope (m) for 

the line of coupling between vy and vx as follows:

(21)

Thus, ushadow can be used as a proxy for the potential change in the vy with respect to a 

change in vx. In order to ensure that the optimal value for ushadow is unique (i.e., ushadow 

takes the value of the inverse slope of the line of interest), it is critical to select a value of ε 

such that the optimal solution ensures that Equation 20 is binding, which is guaranteed for 

any feasible solution, and that vy is a basis variable. To accomplish this, it is sufficient to 

pick an ε such that the new optimum does not fall upon a preexisting pivot (i.e., if the 

solution is not degenerate, the dual solution is unique [37]). See supplementary material for 

extended explanation and example problem. For example, when both ε and vy
LowerLimit are 

zero, ushadow becomes unbounded from above and thus may underestimate the slope, m. 

Tervo and Reed Page 8

Metab Eng Commun. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This occurs because Equations 18 and 20 are simultaneously binding for vy. Consequently, 

their two shadow prices can both be increased in conjunction, counteracting one another 

such that there is no net increase in the objective. To avoid this problem we set the value for 

ε equal to 0.001.

Once the primal and dual for the ShadowCon module have been included in the metabolic 

engineering algorithm, acceptance criteria constraints (limiting the value for m) can be 

included in the outer problem (Equations 22 and 23):

(22)

(23)

Where mmin and mmax are the minimum and maximum allowable slopes, respectively. 

Additional optional constraints for the ShadowCon module can be added to the outer 

problem to mimic simple coupling conditions and further filter possible solutions:

(24)

(25)

Here equation 24, makes use of user-defined parameters, vx
min and vx

max, to define a region 

where coupling between vx and vy must occur. Alternatively, equation 25, can be added to 

require a minimum distance  between the optimal OptORF solution where coupling 

actually begins.

Results and Discussion

FaceCon modules are sub-problems, formulated such that their resulting inner objective 

values can be used to test acceptance criteria of mutants being evaluated by the strain design 

algorithm (see Figure 3). While the formulations for each module are distinct they all share 

certain features. Firstly, all FaceCon modules check that no feasible solution exists within a 

user-defined region (e.g., region where flux vx is greater than vmin). Consequently, FaceCon 

modules create a mandatory feasible region (i.e., a region within which a non-trivial feasible 

solution must exist for any mutants proposed by the strain design algorithms). By evaluating 

these regions, FaceCon modules allow researchers to find mutants that meet additional 

criteria, which would not be possible using existing metabolic engineering algorithms alone. 

Below we describe the parameters and unique features of each FaceCon module. A 

summary of all modules included in this paper and their usage is provided in Table 1.
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Coupling Module

The coupling module (Figure 3A) works to enforce directional or weak coupling between 

two fluxes (vx and vy, where a non-zero vx implies a non-zero vy). By altering the 

formulation and parameters, the coupling module can be used to identify mutants with 

directional coupling (i.e., vx implies vy for all values of vx - effectively FOCAL sans media 

selection constraints), weak coupling (i.e., vx implies vy if vx is greater than a positive, user-

defined value, vmin, and vx does not imply vy for some non-zero value of vx less than vmin), 

or either directional or weak coupling. Inclusion of such modules results in mutants having 

an infeasible region containing the vx-axis above vmin (for the directional coupling case vmin 

is zero). A coupling module adds a mixed-integer linear program (MILP) sub-problem to the 

strain design algorithm, and finds the minimum ratio (m) of vy/vx within the user-defined 

region (vx>vmin). To meet the acceptance criterion of this module, m must be non-trivial. In 

addition, to only find mutants with weak coupling (i.e., there also exists some vx > 0 where 

vy can be 0 and thus the fluxes are not directionally coupled) another sub-problem is added 

to ensure that vy can be zero for some values of vx less than vmin. A coupling module 

determines the line going through the origin with the smallest slope that lives in the feasible 

space where vx>vmin for a given mutant.

An illustrative example (Figure 4A) is provided to demonstrate the functionality of the 

coupling module to only find mutants with weak coupling (we have previously shown 

examples of directional coupling involving substrate co-utilization [32]). In this example, 

OptORF is used to design a strain that maximizes the production of Eex (v10) while 

maintaining a minimum biomass production rate (vbio > μmin). In addition, two sub-problems 

were added such that a proposed mutant found by OptORF must have a weak coupling 

phenotype (coupling between v10 and vbio occurs only for certain values of vbio). An 

optimization sub-problem is added which minimizes the ratio of v10/vbio, when vbio>vmin. 

(Note that by setting lower values for vmin a stronger selection pressure for chemical 

production can be achieved since more values of vbio must result in chemical production). 

Then another sub-problem is added to ensure that directional coupling does not occur for 

some value of vbio within a defined range (i.e., v10 = 0 for δ<vbio<σ, where δ and σ are user-

selected values greater than 0 and less than vmin, respectively. Adding these constraints 

guarantees that coupling will not occur for values of vbio≤δ). The inclusion of this second 

sub-problem guarantees that there is at least one solution where v10 is 0 and cellular growth 

is still possible, thus ensuring the weak coupling criteria is met. Such solutions may be of 

value when coupling is desired but directional coupling solutions are thought to be too 

deleterious to the cell’s fitness. The solution proposed when these two sub-problems are 

included in OptORF involves knocking out fluxes v6 and v15, which works to couple both 

Aex and Bex consumption to the production of Eex while allowing Gex to be directed entirely 

to biomass production. With these fluxes eliminated, simultaneous consumption of Aex, Bex, 

and Gex will result in Eex production at the maximum growth rate; however, consumption of 

Gex alone can still proceed without any Eex production. The feasible region for this mutant 

growing in the presence of Aex, Bex, and Gex is shown in Figure 4A.
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Chemical Level Module

The chemical level module works to find the minimum (or maximum) flux value through a 

reaction of interest (vy, e.g., chemical production) when flux through another reaction (vx, 

e.g., growth) exceeds some threshold (vmin). When this module is embedded in a strain 

design algorithm the resulting strain proposed must have a value of vy greater (or less) than a 

user-defined requirement, β, when vx is greater than vmin (Figure 3B). This type of module 

results in a rectangular excluded region of height, β. Such a module can, for example, be 

useful in guaranteeing a minimum amount of production at certain growth rates (and hence a 

minimum productivity) or limiting the production of undesired by-products. In the 

illustrative example, the chemical level module was used in conjunction with OptORF to 

maximize the production of Eex while guaranteeing that no undesired by-product Iex was 

produced (Figure 4B). To ensure a mutant with this phenotype was proposed, the chemical 

level module was used to calculate the maximal amount of flux through reaction, v12. Since 

no by-product formation was desired, both vmin and β were set to zero resulting in an 

excluded region across the entire vbio-v12 sub-space. With these additional criteria, OptORF 

proposed knocking out fluxes v15 and v8, which prevents production of Iex and also results in 

weak coupling between v10 and vbio. The feasible region for the mutant is shown in Figure 

4B.

Direct Constraint

The Direct Constraint module (Figure 3C) is the most multifunctional of the FaceCon 

modules described. This module creates a line through the point (α, γ) with slope mset; all 

points below (or above) the line must be excluded from the feasible region of any proposed 

mutant. The module works by determining the line with the smallest (or largest) slope (m) 

going through a point within the user-defined region of the feasible vx-vy sub-space and the 

point, (vx, vy) = (α, γ) where α and γ are defined by the user. Once this slope has been 

calculated, a proposal is accepted on the condition that m is greater (or less) than a user-

defined slope, mset.

To demonstrate how the direct constraint module works, an illustrative example is provided 

in Figure 4C. In this example, the direct constraint module is applied to ensure that beyond a 

given production of Eex there will be equivalent or greater production of Iex, effectively 

forcing co-production of two compounds. This type of module could be used when the 

proposed strain needs to generate two products or co-utilize two substrates. To force such a 

mutant to be proposed by OptORF, we defined a point on the x-axis of the v10-v12 sub-

space, (α,0), and used a slope acceptance criterion of mset = 1. The resulting strain design is 

an interesting triple knockout mutant (missing fluxes v5, v11, and v15) where maximal 

cellular growth requires both Eex and Iex production. In this case, deletion of v15 ensures that 

production of Eex generates one or two molecules of C from Bex or Aex, respectively. The C 

molecules produced can only be converted into biomass with Iex as a by-product when v5 

and v11 are deleted. Thus, an ideal strain is created such that the cell’s biological imperative 

is coupled to the co-production of two chemicals. The feasible region for the mutant is 

shown in Figure 4C.
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Application of FaceCon Modules to a Genome-Scale Escherichia coli Model

To demonstrate the scalability of FaceCon modules to genome-scale problems, we applied 

OptORF in conjunction with FaceCon modules to design strains for anaerobic ethanol 

production from glucose in E. coli using the iJO1366 model [35]. A maximum glucose 

uptake rate (GUR) of 10 mmol/gDW/h was used. Figure 5 shows the different strain designs 

and solution space topologies that can be generated using FaceCon modules without needing 

to exhaustively query the set of stand-alone OptORF (OptORF without any FaceCon 

modules) solutions using integer cuts. As a baseline, we first show a stand-alone OptORF 

strain design’s feasible region (Figure 5A). While we did not use a tilted objective function 

[19]for the solutions provided in Figures 5 and 6, this can easily be incorporated into 

OptORF with a FaceCon module (see Figure S6 and Figure S7 in supplemental materials for 

tilted solutions).

Since no tilt or maximin modification was added to OptORF [19,33], the double knockout 

mutant (ΔtpiA ΔatpB) proposed by OptORF can have different amounts of ethanol 

production at the maximum growth rate (including no production), resulting in no coupling 

between biomass and ethanol production (ethanol production ranges between 0 and ~18.5 

mmol/gDW/h at the maximum growth rate). This lack of coupling is because lactate can be 

produced as an alternative to ethanol during maximum growth. All the knockouts that are 

shown in Figure 5 secrete ethanol as a way to recycle NADH and NADPH anaerobically. 

Under fermentation conditions too many protons are generated internally and so ATP 

synthase operates in reverse, translocating protons from inside to outside the cell. 

Consequently, deleting ATP synthase (atpB), which appears in all solutions in Figures 5 and 

6, forces the model to find alternate ways of dissipating intracellular protons. Converting 

pyruvate into ethanol or lactate consumes one cytoplasmic proton per NADH recycled, 

while an alternative path for consuming NADPH converts carbon dioxide into formate 

(using pyruvate formate lyase, pyruvate synthase, and flavodoxin reductase) and does not 

consume any cytoplasmic protons in the process. Consequently, the atpB deletion blocks 

this formate production pathway at the maximum growth rate and increases ethanol or 

lactate production so that more intracellular protons are incorporated into secreted products 

(ethanol or lactate). Deleting triose-phosphate isomerase (tpi) pushes flux through the 

Entner-Doudoroff pathway (instead of glycolysis), reducing ATP yields from glucose and 

thereby enhancing ethanol production by reducing maximum growth rates.

We next used a coupling module to generate a strain where there is always directional 

coupling between ethanol and biomass production (i.e., coupling module set strictly for 

directional coupling). To accomplish this, the minimal slope of a line in the feasible region 

going through the origin is calculated and a positive slope is required for acceptance. The 

feasible region for the resulting six gene deletion mutant is provided in Figure 5B. This 

mutant also includes the tpiA and atpB knockouts, but also has deletions to remove 

alternative pathways for recycling NAD(P)H. The glcA and lldP knockouts prevents lactate 

production (which can also be accomplished by deleting the lactate dehydrogenases, dld and 

ldhA—an alternative solution), while the mgsA knockout, which codes for methylglyoxal 

synthase, prevents dihydroxyacetone from being converted to and secreted as (R)-1,2-

Propanediol. The final knockout of tesB, a fatty-acid CoA thioesterase, prevents flux 
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through 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA dehydrogenase, and secretion of 

fatty acids (e.g., hexanoate) which consumes reductant. At maximum growth, the model 

predicts that some L-valine can be produced instead of ethanol and thus there remains a 

range for ethanol production (between ~10.2 and ~18.5 mmol/gDW/h).

While the fully coupled phenotype may be ideal (since any growth requires ethanol 

production), the mutant requires numerous deletions and may initially be sickly. To relax the 

design criteria, we found a weakly coupled strain where growth and ethanol production are 

coupled when vBio is greater than 0.075 h−1. The four gene knockout mutant proposed 

(Figure 5C) would be genetically simpler to construct and, while the selective pressure is not 

as strong as for the directionally coupled mutant, the ethanol production rates after adaptive 

evolution should be nearly equivalent (between ~10.4 and ~18.4 mmol/gDW/h). While this 

mutant also includes the atpB, glcA and lldP knockouts from the directionally coupled case, 

interestingly, this mutant uses the pgi (phosphoglucose isomerase) deletion (instead of tpi) to 

favor the Entner-Duodoroff pathway over glycolysis.

To demonstrate use of a direct constraint module, we created an excluded region where 

ethanol produced per unit additional biomass must be greater than 500 mmol ethanol/gDW 

(calculated from the point α=0.15 hr−1) for cells growing above 0.175 hr−1. Note, these 

parameters would ensure the designed mutant would have a minimum substrate-specific 

productivity [9] (calculated as [ ]), of at least ~0.22 mmol 

ethanol/mmol glucose/h for growth rates above 0.175 hr−1. Using this module, the four gene 

knockouts proposed (Figure 5D) by OptORF achieved weak coupling between ethanol and 

biomass production and met the stated criteria. Unlike the previous solutions, this mutant 

would use glycolysis to achieve maximum growth. In this case, deleting gdhA (encoding 

glutamate dehydrogenase) forces glutamate to be produced using a less energy efficient 

pathway (involving glutamine synthetase and glutamate synthase, which consumes one 

additional ATP per glutamate synthesized). This reduces the maximum growth rate, such 

that the design criteria is satisfied. At the maximum growth rate, ethanol production is 

predicted to be ~17.4 mmol/gDW/h for this mutant.

In the previous examples, we selected feasible space constraints that restrict the ethanol 

production-cellular growth subspace; however, feasible space constraints can be used on 

other subspaces. We investigated the use of FaceCon modules for eliminating undesirable 

by-products, such as, succinate, acetate, and formate. A preliminary analysis indicated that 

under anaerobic conditions some baseline level of succinate secretion is required for cellular 

growth. Acetate secretion is not essential for growth but one or more acetate producing 

enzymes are essential for growth. Since there is no gene assigned to the acetate transport 

reaction there is no genetic way to eliminate acetate secretion. Consequently, we focused on 

finding a solution that could eliminate formate production at all growth rates and maximize 

ethanol production at the maximum growth rate (see supplemental materials Figure S7). 

This five gene deletion strategy knocks out transporters for lactate (glcA and lldP—an 

alternate solution could instead delete the lactate dehydrogenases, ldhA and dld) and formate 

(focA and focB). In addition, deleting ppc (which encodes for phosphoenolpyruvate 

carboxylase) increases flux through malate synthase and malate dehydrogenase— generating 

Tervo and Reed Page 13

Metab Eng Commun. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



more NADH to produce oxaloacetate— and decreases balance the newly generated 

reductant. The predicted ethanol production for this mutant at the maximum growth rate is 

~17.8 mmol/gDW/h.

These examples show that FaceCon modules are both tractable at the genome-scale and can 

aid OptORF in proposing interesting mutants which meet multiple design criteria, with 

minimal impacts on production of the chemical of interest. These solutions would not be 

easily obtained using stand-alone OptORF. To find the mutants that satisfy these additional 

design criteria (Figure 5B–D) using stand-alone OptORF would require numerous integer 

cuts due to the large number of gene deletions required to produce these phenotypes and the 

gene deletion penalty used by OptORF. For example, using stand-alone OptORF with 

integer cuts took ~13.4 hours to generate ten alternate solutions (the last four solutions alone 

took 11.1 hours). None of the ten proposed solutions satisfy the design criteria of the 

FaceCon solutions shown in Figure 5. In contrast, using OptORF in conjunction with 

FaceCon modules, desired solutions could be found directly, in a short amount of time (~2.8 

hours). In addition, all of the OptORF with FaceCon strategies have very similar levels of 

maximum ethanol production (at the maximum growth rate) as the best solution found by 

stand-alone OptORF.

Previous computational studies have identified strategies for improving ethanol production 

in E. coli using constraint-based models. Trinh et al. previously used elementary mode 

analysis to design an eight gene deletion strain of E. coli (Δndh Δzwf ΔfrdA ΔsfcA ΔmaeB 

ΔldhA ΔpoxB Δpta) with high ethanol yields [25]. The OptORF with FaceCon strategies 

suggested in Figure 5B–D required fewer mutations and are predicted to achieve higher 

ethanol yields at maximum cell growth; however, the Trinh et al. strains do guarantee a 

minimum yield 0.36 g ethanol/g glucose for all growth rates. Previously, OptORF was 

applied to an earlier metabolic model (iJR904) and eleven mutations were frequently 

suggested to improve ethanol production (appearing in at least 10% of 200 suggested 

strategies): ptsH, pgi, pflAB, pflCD, tdcE, tpi, pta, eutD, gdhA, gnd and nuoN [5]. These 

genes differ from those commonly found in OptORF with FaceCon strategies, which include 

atpB, glcA, and lldP (or equivalently atpB, dld, and ldhA). While differences in strain 

designs could be due to differences in the metabolic networks, this work suggests new 

strategies for improving ethanol production.

Shadow Price Constraint (ShadowCon) Module

While various methods such as ‘tilting’ the objective function, using a maximin problem, or 

adding FaceCon modules can ensure that growth and chemical production are coupled, none 

of these methods allow direct control over the ratio of Δvy/Δvx at the onset of coupling 

between two fluxes, vx and vy, thus defining the degree to which two fluxes are coupled. 

However, such a module can be designed by taking advantage of shadow prices in the dual 

of a flux balance analysis (FBA) problem. The FBA problem is formulated by adding an 

equality constraint for vy equal to ε (e.g., chemical production rate) to the standard set of 

FBA constraints and then maximizing vx (e.g., biomass production). In this case, the shadow 

price for the added equality constraint (ushadow) indicates how vx changes for small changes 

in vy and is the inverse of the coupling line’s slope since the shadow price is calculated near 
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where coupling initially occurs on the x-axis (within some user-defined ε). By setting 

criteria for the shadow price associated with the added equality constraint, one can 

effectively control the degree of coupling between the two fluxes of interest (see Methods 
and Supplementary File 1 for additional details). The shadow price constraints module 

(ShadowCon) includes the FBA problem (described above), its dual formulation and 

additional constraints on the equality constraint’s dual variable. Addition of ShadowCon to a 

strain design algorithm, especially in conjunction with other FaceCon modules, allows for 

greater control over the strength of the selective pressure for producing a given chemical.

As a demonstration of how such a module works, we have applied ShadowCon to iJO1366 

(Figure 6) requiring that the slope of the initial coupling line, m, fall between 25 and 200 

mmol/gDW. This range was chosen to create a strong coupling between ethanol and 

biomass production while also preventing strategies from being proposed where no coupling 

exists. The resulting mutant includes a new knockout, ptsH that encodes a component of the 

PTS transport system. Deletion of ptsH, forces glucose to be transported using either a 

proton symporter or ABC transporter, both of which produce a cytoplasmic proton. The 

additional proton reduces the growth rate and increases the maximum amount of ethanol 

produced (a ΔatpBΔglcAΔlldP mutant also satisfies the slope criteria but has a lower 

maximum ethanol production). In order to evaluate the sensitivity of ethanol production (at 

the maximum growth rate) to the coupling line’s slope, we ran OptORF with the 

ShadowCon module using increasingly more stringent slope requirements. In this case, a 

tilted objective was used (see methods for details) and the lower bound on the slope was 

increased from 25 until the ShadowCon module prevented finding an OptORF solution (see 

Table S1 in supplementary material). As can be seen, the OptORF chemical production 

objective is eventually sensitive to increasing slope requirements; however, the predicted 

production is still sufficiently high for a wide range of slopes.

Conclusions

We have developed FaceCon and ShadowCon modules to extend upon the capabilities of 

existing mixed integer linear adaptive evolution metabolic engineering algorithms. Future 

work, could involve incorporating these methods into other types of metabolic engineering 

algorithms. Nonetheless, we show such modules are applicable to genome-scale models as 

shown using the E. coli model iJO1366. Using these modules will allow greater control over 

the knockout strategies proposed and allow for more efficient generation of phenotypes of 

interest, including complex phenotypes that would be difficult, if not impossible, to find 

using existing metabolic engineering algorithms alone. Moreover, using these approaches 

could allow for parallelization of metabolic engineering algorithms by starting multiple runs 

simultaneously with different FaceCon or ShadowCon parameters. Such an approach would 

result in more diverse and interesting solutions and could save additional time over 

sequential approaches for multiple solutions which rely on integer cuts. Using FaceCon and 

ShadowCon modules in conjunction with one another will allow researchers to define 

multiple engineering design criteria that should be met by any strain proposed. Through our 

illustrative and genome-scale examples, we have touched upon a number of possible 

applications for FaceCon modules such as by-product inhibition, coupling constraints, and 

co-production of metabolites. Another possible use may include constraining chemical 
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production with increasing carbon uptake. Using these modular approaches, we hope to 

provide algorithm flexibility so that researchers have fewer limitations when using their 

strain design algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Added modules to impose multiple design criteria for engineering algorithms

• Examples are provided to eliminate by-product secretion

• Examples are provided to control coupling between product and biomass 

formation

• Modules are tractable for genome-scale design
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Figure 1. 
Modules added as inner problems to extend existing metabolic engineering algorithms. 

Figure demonstrates how FaceCon and ShadowCon modules are implemented within a 

metabolic engineering algorithm, in this example OptORF. All module variables (including 

fluxes) are completely independent of the metabolic engineering variables, with the 

exception of reaction deletions which are shared across all subproblems. By being modular, 

these constraints can be added to most FBA-centric approaches and can be mixed and 

matched to include addition strain design criteria.
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Figure 2. Hierarchy of FaceCon Modules
The above Venn diagram depicts the set of constraints and parameter values that are used in 

a given FaceCon module. As can be seen, many modules are subsets of the more 

comprehensive Direct Constraint module. The necessary Direct Constraint parameter values 

are provided to reproduce the functionality of each of the other FaceCon modules.
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Figure 3. Examples of FaceCon modules and their effects on a strain’s feasible region
The effects of the coupling (A), chemical level (B) and direct topology (C) modules are 

shown to illustrate each module’s intent and capabilities. Here the orange dot indicates the 

optimal solution that would be found from including each module in OptORF. The dashed 

lines and hatched regions indicate the excluded regions imposed by the FaceCon modules.
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Figure 4. Illustrative Examples of FaceCon Modules. OptORF was used in conjunction with the 
FaceCon modules to create unique phenotypes that would be difficult to produce by OptORF 
alone
(A) A coupling module was added to guarantee that weak coupling would occur but not 

directional coupling. The dashed line on the x-axis indicates where the excluded region 

begins. (B) The chemical level module was added to prevent any production of the 

undesired compound Iex. The hatched region indicates the excluded region imposed by the 

module. (C). The direct constraint module was added to force the co-production of Eex and 

Iex for large growth rates. For all panels, red arrows and x’s on the network map indicate a 

reaction knockout. Dotted vertical lines show the μmin and vmin values used in OptORF and 

FaceCon modules, respectively.
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Figure 5. Application of FaceCon to iJO1366
Parameters used in FaceCon modules for each case are provided above the mutant feasible 

regions. Dashed lines and hatched regions indicate excluded regions imposed by the 

FaceCon modules. The module included in OptORF for each case was: (A) No FaceCon 

modules, (B) Coupling module (only directional coupling), (C) Coupling module (only weak 

coupling), and (D) Direct Topology module. OptORF without any modules (A) finds a 

lower chemical production phenotype compared to (B) and (C) due to gene deletion 

penalties used in OptORF. Additionally, no tilt was applied to the OptORF algorithm 

resulting in a strain design where there is no coupling between biomass and ethanol 

production. Alternate solutions exist, and replacing the glcA and lldP deletions with dld and 

ldhA deletions has a negligible effect on the feasible regions shown in panels (B), (C), and 

(D).
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Figure 6. Application of ShadowCon Module to iJO1366
The ShadowCon module works to limit the slope of the line at the onset of coupling between 

ethanol and biomass production. Using the dual variable, ushadow, associated with this line it 

is possible to constrain the slope, m, between a user-specified upper (mmax) and lower (mmin) 

bound (dashed lines).
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Table 1

Summary of Modules and their Usage.

Module Name Description Parameters Potential Usage

FaceCon

Coupling Module

Module allows researcher to enforce 
weak or directional coupling. To 
enforce only weak coupling a second 
sub-problem is added.

vmin, δ*, σ*

Can be used to define the nature of 
coupling proposed by metabolic 
engineering algorithms. Can be useful 
when proposals tend to generate sickly 
mutants.

Chemical Level Module

Module allows researchers to define 
minimal or maximal chemical 
production limits, β, beyond a user 
defined point vmin

vmin, β
Can be used to eliminate undesired by-
products or to define minimal chemical 
production criteria.

Direct Constraint Module

Module allows researchers to create 
an exclusion region of their own 
design, defined by the line going 
through the point (α,γ) with the slope 
mset

vmin,α,γ,mset

Can be used to propose co-production or 
co-utilization of metabolites. All FaceCon 
modules are special cases of the direct 
constraint module.

Other ShadowCon Module
Module allows greater control over 
the degree of coupling once it has 
initiated

mmin, mmax
Can be used to vary the intensity of 
selective pressure on a reaction when 
coupled to growth rate.

*
Parameters are only used when additional module sub-problems are required (e.g., when only weakly coupled mutants are desired).
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