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Abstract

SHORT ABSTRACT—The bottleneck for cellular 3D electron microscopy is feature extraction 

(segmentation) in highly complex 3D density maps. We have developed a set of criteria, which 

provides guidance regarding which segmentation approach (manual, semi-automated or 

automated) is best suited for different data types, thus providing a starting point for effective 

segmentation.

LONG ABSTRACT—Modern 3D electron microscopy approaches have recently allowed 

unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the 

visualization of large macromolecular machines, such as adhesion complexes, as well as higher-

order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue 

context. Given the inherent complexity of cellular volumes, it is essential to first extract the 

features of interest in order to allow visualization, quantification, and therefore comprehension of 

their 3D organization. Each data set is defined by distinct characteristics, e.g. signal-to-noise ratio, 

crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence 

or absence of characteristic shapes that allows easy identification, and the percentage of the entire 

volume that a specific region of interest occupies. All these characteristics need to be considered 

when deciding on which approach to take for segmentation.

The six different 3D ultrastructural data sets presented were obtained by three different imaging 

approaches: resin embedded stained electron tomography, focused ion beam- and serial block 

face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained 

samples, respectively. For these data sets, four different segmentation approaches have been 

applied: (1) fully manual model building followed solely by visualization of the model, (2) manual 
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tracing-segmentation of the data followed by surface rendering, (3) semi-automated approaches 

followed by surface rendering, or (4) automated custom-designed segmentation algorithms 

followed by surface rendering and quantitative analysis. Depending on the combination of data set 

characteristics, it was found that typically one of these four categorical approaches outperforms 

the others, but depending on the exact sequence of criteria, more than one approach may be 

successful. Based on these data, we propose a triage scheme that categorizes both objective data 

set characteristics and subjective personal criteria for the analysis of the different data sets.

Keywords

3D Electron Microscopy; Feature Extraction; Segmentation; Image Analysis; Reconstruction; 
Manual Tracing; Thresholding

INTRODUCTION

Traditionally the electron microscopy (EM) field has been divided into 1) the structural 

biology branch using high- and super-high resolution TEM, typically combined with 

implicit or explicit data averaging to investigate the three-dimensional (3D) structure of 

macromolecular complexes with a defined composition and typically a relatively small 

size1–4, and 2) the cellular imaging branch in which entire cellular sceneries are 

visualized1,5,6. While the structural biology branch has undergone a spectacular 

development over the last four decades, the cell biology branch was mostly restricted to two 

dimensions, often on less-than-optimally preserved samples. Only within the last decade 

with the advent of electron tomography has cell biological ultrastructural imaging expanded 

into the third dimension5,7, where typically no averaging can be performed as the cellular 

sceneries and thus the features of interest are typically unique.

Although the visualized cellular scenes are often stunning to the eye, efficient extraction of 

the features of interest and subsequent quantitative analysis of such highly complex cellular 

volumes are lagging behind, in part because the precise protein composition is usually not 

known, therefore making it challenging to interpret these cellular 3D volumes. To this date, 

extensive biological expertise is often needed in order to interpret complex tomograms, or to 

focus on the essential components or even the important regions in the 3D volume. What 

further complicates the analysis is the fact that visualization of 3D volumes is remarkably 

nontrivial. 3D volumes can be thought of and thus visualized as stacks of 2D images. Slice-

by-slice inspection of sequential 2D images reduces the complexity, but limits feature 

extraction and thus quantitative analysis to the two dimensions. However, for most 3D 

objects, the depiction of 3D volumes as merely a stack of consecutive planes leads to an 

incomplete and skewed perspective into a particular system’s 3D nature. Alternative modes 

of visual inspection require either volume rendering or surface rendering, which—given the 

often dense nature of a cellular volume—can easily lead to an obstructed view of nested 

objects or overwhelm a user altogether, thus making interactive manual segmentation 

difficult.

To remedy this, a large variety of automated feature extraction (segmentation) approaches 

have been developed that are typically either density- or gradient-based8–10. However, these 
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methods tend to segment the entire volume regardless of which areas or features are of 

interest to the expert, although some recent methods can target a specific feature of interest 

such as actin filaments11. In addition, the programs executing automated segmentation 

sometimes can result in the production of a large number of sub-volumes (e.g. when 

applying watershed immersion segmentation) that often need to be merged manually back 

into the feature of interest or be subjected to further segmentation. This holds true 

particularly for complex and crowded data sets, thus most rendering computer algorithms 

are unable to extract only the features of interest with fidelity, and therefore substantial 

curation efforts by an expert is often needed to produce a desired segmented volume.

Moreover, custom solutions to a highly specific problem are often published as a scientific 

meeting paper, with little to no emphasis on making them broad and comprehensive tools 

accessible to researchers without intimate knowledge of the fields of mathematics, computer 

science and/or computer graphics. A customizable programming software environment, 

containing a range of image analysis libraries, can be a powerful tool set allowing users to 

efficiently write their own modules for accurate segmentation, but this approach requires 

extensive training and a background in computer science in order to take advantage of its 

many features or capabilities for image analysis. For certain data sets where the features are 

more sparse, one can work within such a versatile software environment e.g. to utilize 

powerful shape-based approaches which rely on the unique geometry of “templates” to 

separate objects of interest from their surroundings12,13.

A fair variety of computer graphics visualization packages exist for interactive manual 

segmentation and model building. Some packages are commercially available, while others 

are of academic origin and distributed free of charge, such as: University of California San 

Francisco Chimera14, University of Colorado IMOD15, and University of Texas Austin 

VolumeRover16. However, the wide range and complexity of features and capabilities these 

programs possess steepens the learning curve for each. Certain visualization programs 

provide simple geometrical models such as balls and sticks of various sizes into the density 

maps in order to create a simplified model of the complex 3D volume. These models then 

allow simple geometric and volumetric measurements and therefore go beyond just the 

“pretty picture”. Such manual tracing of objects works well for volumes where only a small 

number of objects need to be traced and extracted. However, the recent development of 

large volume 3D ultrastructural imaging using either focused ion beam scanning electron 

microscopy (FIB-SEM)17–20 or serial block face scanning electron microscopy (SBF-

SEM)21 presents the additional complication that 3D data sets can range from the gigabytes 

range to tens and hundreds of gigabytes and even the terabyte range. Therefore, such large 

3D volumes will be virtually inaccessible to manual feature extraction, and hence efficient 

user-guided semi-automated feature extraction will be one of the bottlenecks for efficient 

analysis of 3D volumes in the foreseeable future.

Presented here are four different segmentation approaches that are routinely used on a large 

range of biological image types, which are then compared for their effectiveness for 

different types of data sets, allowing a compilation into a guide to help biologists decide 

what may be the best segmentation approach for effective feature extraction of their own 

data. The goal is not to make potential users familiar with any one of these particular 
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packages, as detailed user manuals are available for most of the programs described. Instead, 

the aim is to demonstrate the respective strengths and limitations of these different 

segmentation strategies by applying them to six example data sets with diverse 

characteristics. Throughout this comparison, a set of criteria have been developed that are 

either based on the objective image characteristics of the 3D data sets, such as data contrast, 

crispness, crowdedness, and complexity, or stem from subjective considerations, such as the 

desired objective for segmentation, morphologies of the features to be segmented, 

population density of the features of interest, meaning the fraction of the volume occupied 

by the feature of interest, and how one proceeds optimally with finite resources such as time 

and availability of staff. These different example data sets illustrate how these objective and 

subjective criteria can be applied sequentially in a variety of combinations to yield a pairing 

of certain feature extraction approaches with certain types of data sets. The 

recommendations given will hopefully help novices faced with a large variety of 

segmentation options choose the most effective segmentation approach for their own 3D 

volume.

While the focus of this paper is feature extraction, attention to data collection and 

preprocessing data is crucial to efficient segmentation. Oftentimes staining of samples can 

be uneven; hence potential staining artifacts are to be considered in the segmentation 

procedure. However, stain usually gives higher signal-to-noise, and therefore requires less 

filtering and other mathematical treatment of cellular volumes, which could potentially also 

result in artifacts. The respective raw image data sets need to be acquired at the correct 

contrast and camera pixel settings, aligned and reconstructed into a 3D volume. For 

tomograms, aligned images are reconstructed typically using weighted back-projection, and 

then the data set is usually subjected to denoising algorithms such as non-linear anisotropic 

diffusion22, bilateral filtering23, or recursive median filtering24. FIB-SEM and SBF-SEM 

imaging data are aligned by cross-correlating consecutive slices in XY utilizing programs 

such as ImageJ25. Contrast enhancement and filtering can be applied to boost the features of 

interest and thus to de-noise the image stack. Filtering is performed either on the entire 

volume prior to subvolume selection or on the selected subvolumes, as filtering approaches 

can be computationally expensive. Down-sampling of the data (binning), which is 

sometimes used for noise reduction and/or file size reduction, is only recommended if the 

data has been significantly oversampled compared to the anticipated resolution.

After noise-reduction, the processed images can then be segmented by various methods, the 

focus in this study being on the following four: (1) manual tracing by generating a ball-and-

stick model, (2) manual tracing of density (or feature outline), (3) automated threshold-

based density, and (4) customized script for project specific segmentation. Boundary 

segmentation8 and immersive watershed segmentation10 are better alternatives to simple 

thresholding but belong in the same category, and they have not been included explicitly in 

this discussion.

Manual tracing of densities requires outlining the features of interest, slice-by-slice, which 

allows the retention of the original density of respective subcellular areas. This approach 

allows maximal control of the segmentation process, but is a tedious and labor-intensive 

process.
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Automated threshold-based (and related) density segmentation approaches are semi-

automatic, where an algorithm chooses pixels based on a set of user-defined parameters. 

Several academic (free) visualization packages, such as UCSF Chimera, IMOD, Fiji26, and 

VolumeRover are available, as well as commercial (requiring paid licenses) packages, and 

both types typically include one or more of these three segmentation approaches. The 

software packages we used in this work to illustrate these different methods include 

commercial programs in addition to academic open source for manually generating an 

abstract model, as well as manual and automated density segmentation. However, open 

source software can be equally useful and sometimes offer even more advanced options, the 

strength being the possibility of customization.

A comparison of these techniques to different types of data sets led to the following 

presentation of rules and guidance on how to approach the segmentation of diverse 

biological data 3D volumes, which to our knowledge has not yet been published, and thus 

this is the first systematic comparison of the different approaches and their usefulness on 

different types of data sets.

PROTOCOL

1.) Manual abstracted model generation

Note: The details of the methodology described below are specific to Chimera, but other 

software packages may be used instead. Use this approach when the sole objective is to 

create a geometrical model (e.g., a ball and stick model) in order to make geometric 

measurements, rather than displaying the volume shape of the objects.

1.1.) Import the data volume into a suitable program for manual abstracted model 

generation.

1.1.1.) Select File > Open Map to pull up the Open File dialog. Navigate to the file 

location of the desired map.

1.1.2.) Pull up the Volume Viewer (Tools > Volume Data > Volume Viewer) and select 

Features > Display Style to display data with different rendering styles.

1.1.3.) Adjust the threshold for the display by dragging the vertical bar on the 

histogram in the Volume Viewer window.

1.2.) Navigate through the 3D volume (e.g., slice by slice) to select an area of interest 

for segmentation and crop out a smaller sub-volume if necessary.

1.2.1.) In the Volume Viewer dialog, click Axis, then select X, Y, or Z.

1.2.2.) In the Volume Viewer dialog, select Features > Planes. Click One to set Depth 

to display the plane corresponding to the number in the left box, and click All to 

display all planes.

1.2.3.) In the Volume Viewer dialog, select Features > Subregion selection.

1.2.3.1.)Click and drag to create a rectangular box around the region of interest.
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1.3.) Place markers along the feature of interest and connect them with linkers where 

appropriate (often done automatically by the program) until the model is 

complete.

1.3.1.) From the Volume Viewer menu bar, select Tools > Volume Tracer dialog to 

open the Volume Tracer dialog. In the Volume Tracer dialog, select File > New 

Marker Set.

1.3.2.) In the Volume Tracer dialog, check Mouse > Place markers on data planes, 

Move and resize markers, and Link new marker to selected marker.

1.3.3.) Click on the Marker Color swatch, and select a color. Repeat this step for Link 

color.

1.3.4.) Enter radii for the marker and link model-building elements.

1.3.5.) In the Volume Tracer Window, select Place markers using [right] mouse 

button.

1.3.6.) Right click on the volume data to begin laying down markers. Markers will be 

connected automatically.

1.3.7.) In the Volume Tracer dialog, select File > Save current marker set, then File > 

Close marker set.

1.4.) Open a new marker set (Step 1.3.1) to begin building a model into a second 

desired feature of interest. Utilize contrasting colors between marker sets to 

emphasize differences in features.

2.) Manual tracing of features of interest

Note: The details of the methodology described below are specific to Amira, but other 

software packages may be used instead. Use this approach when the population density is 

relatively small and when accuracy of feature extraction is paramount, as manual tracing is a 

time-consuming approach.

2.1.) Import volume data into a program with manual tracing options. Software with 

this capability generally offer at least a basic paintbrush tool.

2.1.1.) For large tomograms (.rec): Select Open Data > Right click on filename.rec > 

Format… > Select Raw as LargeDiskData > Ok > Load. Select appropriate Raw 

Data Parameters from header information > Ok. Toggle and Save As a new 

filename.am file for use in the following steps.

2.1.2.) For 3D image sequence (3D .tif or .mrc): Open Data > Select filename.tif or 

filename.mrc. Toggle and Right Click > Save As filename.am.

2.2.) Navigate through the slices to select a 3D sub-volume for segmentation, then 

crop to this area of interest.

2.2.1.) In 3D Viewer window, select Orthoslice to open image file. Use slider at bottom 

to navigate through slices.
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2.2.2.) To crop larger data opened as LargeDiskData, toggle file name in Pool window 

> Right click > LatticeAccess. Enter desired box size > Apply. Save new file.

2.3.) Create segmentation file.

2.3.1.) Toggle the file in the Pool window > Right Click > Labeling > LabelField. A 

new file will be created and automatically loaded in the Segmentation Editor 

tab.

2.4.) Trace the border of the first feature of interest, then fill the trace by hand or by 

using a command specific to the software used. Follow the feature of interest 

through all slices and repeat the manual tracing segmentation. Use the following 

commands when using Amira:

2.4.1.) To use the Paintbrush tool, alter brush size as desired, then use the mouse 

pointer to trace the border of the feature of interest.

2.4.2.) Fill the traced area with shortcut “f”. Add the selection by clicking the button 

with the plus symbol, or the shortcut “a”. If necessary, press “u” to undo, and 

“s” to subtract or erase.

2.5.) Generate a surface rendering for visualization and basic qualitative or 

quantitative analysis per software user guide instruction.

2.5.1.) In the Object Pool tab, toggle the filename-labels.am in the Pool window > 

Right click > SurfaceGen.

2.5.2.) Select desired Surface properties > Apply. A new file filename.surf will be 

created in the Pool.

2.5.3.) To visualize the segmented volume, toggle filename.surf in Pool window > 

Right click > SurfaceView.

2.5.4.) Use the tools in the 3DViewer window to move, rotate, and zoom in the 3D 

volume.

2.6.) Extract the exact densities and determine measurements such as volume or 

surface area. Export to other programs for more advanced display, analysis and 

simulation.

2.6.1.) On 3DViewer window, click Measure tool > Select appropriate option (2D 

length and 2D angle for measurements on a single 2D plane, 3D length and 3D 

Angle for measurements on a 3D volume).

2.6.2.) Click on mesh surface to measure desired length, distance, and angles. The 

values will be listed in the Properties window.

3.) Automated density-based segmentation

Note: The details of the methodology described below are specific to Amira, but other 

software packages may be used instead.

3.1.) Use this approach on data sets with any variety of contrast, crispness, or 

crowdedness to withdraw the densities of interest.
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3.2.) Import volume data into a program equipped with thresholding, magic wand, or 

other density-based tools for automatic segmentation. Follow steps outlined in 

2.1–2.1.2 in the directions for manual tracing.

3.3.) Navigate through slices and select area for segmentation. If necessary, crop out a 

smaller 3D sub-volume for segmentation. Follow steps outlined in 2.2–2.2.2 in 

the directions for manual tracing.

3.4.) Select the density of a feature of interest, usually by clicking or placing a mark 

or anchor point on the feature. If allowed in the software, enter a number range 

encompassing the feature’s pixel intensity and adjust this tolerance as desired. 

Densities belonging to the feature will be picked up in accordance to the 

intensity of the anchor’s pixel or tolerance value. Use the following commands 

when using Amira.

3.4.1.) Use the Magic Wand Tool for features with distinguishable margins.

3.4.1.1)Click on the area of interest, then adjust sliders in Display and Masking to 

capture correct range of values so that the feature is fully highlighted. Add 

selection with shortcut “a”.

3.4.2.) Use the Threshold Tool for features without clearly distinguishable margins.

3.4.3.) Select the Threshold icon. Adjust slider to adjust density within desirable range 

so that only the features of interest are masked. Click Select button, then add 

selection with shortcut “a”.

3.4.4.) To segment entire volume, select All slices before adding selection.

3.4.5.) To remove noise, select Segmentation > Remove Islands and/or Segmentation > 

Smooth labels.

3.5.) Generate a surface for visualization and qualitative analysis as described in the 

manual tracing section 2.6–2.6.2. If desired, export to other programs for 

adequate 3D display, quantitative analysis and simulations.

4.) Custom-tailored automated segmentation

Note: Use this approach to create customized scripts for automatic segmentation, which 

requires background experience in computer science, but allows the ability to create a 

precise density model from a large volume.

4.1.) Tools (Specific Example of Shape-Supervised Segmentation in MATLAB27)

4.1.1.) Image pre-processing: Perform de-noising, background removal and image 

enhancement by using the following pipeline:

4.1.1.1)Load the image using the imread command.

4.1.1.1 1) In the command line, enter: ≫ im = imread($image_path), where 

$image_path is the location of the image to be analyzed.

4.1.1.2)From the Image Processing toolbox, call Wiener Filter using an estimated or 

known Noise-power-to-signal ratio (NSR).
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4.1.1.3)On the previously processed image, call the image opening function imopen to 

estimate the background layer, then allocate the outcome as a different mask.

4.1.1.3.1)In the command line, enter: ≫ background = imopen(im,strel($shape_string,

$size)), in this method, $shape_string is equal to ‘disk’ the variable $size is 

given by the analyzer. i.e. ≫ background = imopen(im,strel(‘disk’,15)).

4.1.1.4)Subtract the filtered image with the background.

4.1.1.4.1)In the command line, enter: ≫ im2 = im - background

4.1.1.5)Depending on the quality of the results, perform image normalization with or 

without adaptive Otsu’s method28, which can be called using the function 

imadjust from the Image Processing Toolbox.

4.1.1.5.1)In the command line, enter: ≫ im3 = imadjust(im2)

4.1.1.6)Prepare the features of interest for segmentation, limiting the regions of interest 

by cropping the normalized image.

4.1.1.6.1)Using the imtool command, explore the region of interest that is to be cropped 

and provide the coordinates to the command: ≫ im3_crop = imcrop(im3, [x1 y1 

x2 y2]), where the vector [x1 y1 x2 y2] corresponds to the square region to be 

cropped.

4.1.2) Shape recognition/Supervised shape classification: Train the algorithm by 

providing specific examples for each different category of objects (linear traces 

in a 2D image across the features of interest).

4.1.2.1)Check that VLFEAT29 API is successfully installed and visit VLFEAT’s 

website for more in-depth documentation.

4.1.2.2)In the command line, enter: ≫ [TREE,ASGN] = VL_HIKMEANS(im3_crop,

$K,$NLEAVES) where $K is the number of cluster to be used or the number of 

classes the observer wants to arrange the data into, and $NLEAVES is the 

desired number of leaf clusters i.e. ≫ [TREE,ASGN] = 

VL_HIKMEANS(im3_crop,4,100)

4.1.2.3)Use manually segmented features as the input for VLFeat.

Note: This open source C-based library will perform pixel patching, patch 

clustering, and cluster center positioning depending on the type of method 

chosen to work best for the datasets. The available options range from k-mean 

clustering to texton-based approaches30, and the output is a numerical array that 

describes the features desired based on the given exemplars.

4.2) Segmentation: Use this fully automated, although computationally expensive, 

approach to segment multiple classes of objects simultaneously, which will be 

written out as separate maps for further visualization and analysis.

4.2.1.) Load the previously generated numeral array (model).

Tsai et al. Page 9

J Vis Exp. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2.2.) Call the support vector machine (SVM) function in VLFeat, using the model and 

the image to be segmented as an input.

4.2.2.1)In the command line, enter: ≫ [w, b] = vl_svmtrain(x, y, 0.1), where x is the 

original cropped image im2_crop and y is the objective image, the image that 

has been manually segmented. Use ≫ ISEG = VL_IMSEG(I,LABELS) to color 

the results according to the labels generated by the clustering.

Note: Based on the characteristics of the model, VLFeat will classify the image 

on the number of classes (features of interest) assigned from the beginning. 

Depending on the grade of accuracy desired, it is possible to combine this 

method with other approaches or estimate cluster parameters such as hull and 

cluster centers. The output of the SVM algorithm is a probabilistic model and 

multiple binary masks of the desired classes in the new datasets.

4.2.3.) Save results by entering the command: ≫ imwrite(im, $format, $filename) 

where $format is ‘tiff’ and $filename is the path for the output file.

4.2.4.) For visualizing images, enter the command: ≫ imshow(im).

REPRESENTATIVE RESULTS

Figure 1 shows a typical workflow for 3D electron microscopy cellular imaging, including 

electron tomography, FIB-SEM, and SBF-SEM. The workflow includes raw data collection, 

data alignment and reconstruction into a 3D volume, noise reduction through filtering, and 

where necessary, cropping to the region of interest in order to maximize the effectiveness of 

the chosen segmentation software. Such preprocessed data is now ready for feature 

extraction/segmentation.

Figure 2 illustrates the workflow laid out in Figure 1 using four different data sets (which 

will be introduced further below), two of which are resin-embedded samples recorded by 

electron tomography (Figure 2A, 2B), with the other two stemming from FIB-SEM and 

SBF-SEM, respectively (Figure 2C, 2D). Images in Figure 2 column 1 are projection views 

(Figure 2A1, 2B1) and block surface images (Figures 2C1, 2D1), respectively, which upon 

alignment and reconstruction are assembled into a 3D volume. Column 2 shows slices 

through such 3D volumes, which upon filtering (column 3) show a significant reduction in 

noise and thus often appear more crisp. After selecting and cropping the large 3D volume to 

the region of interest (column 4), 3D renderings of segmented features of interest (column 5) 

can be obtained and further inspected, color coded and quantitatively analyzed.

A total of six 3D data sets, each containing a stack of images obtained through either 

electron tomography (3 data sets), FIB-SEM (2 data sets), or SBF-SEM (1 data set) are used 

to compare how each of the four segmentation methods perform (Figure 3). The data sets 

stem from a variety of different research projects in the laboratory and thus provide a 

reasonably diverse set of typical experimental data sets. All data sets were examined by four 

independent researchers, each of whom are most familiar with one particular approach, and 

they were charged with providing the best result possible for each of the six data sets.
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The data sets are from samples as follows: 1. Figure 3A1–3A5: high pressure-frozen, freeze-

substituted and resin-embedded chick inner ear hair cell stereocilia31, 2. Figure 3B1–3B5: 

high pressure-frozen, freeze-substituted and resin-embedded plant cell wall (unpublished), 3. 

Figure 3C1–3C5: high pressure-frozen, freeze-substituted and resin-embedded inner ear hair 

cell kinocilium (unpublished), 4. Figure 3D1–3D5: high pressure-frozen, freeze-substituted 

and resin-embedded blocks of mitochondria located in human mammary gland epithelial 

cells HMT-3522 S1 acini, which have been cultured in laminin rich extracellular matrix32,33, 

5. Figure 3E1–3E5: unstained benchtop-processed, resin-embedded blocks of a sulfate 

reducer bacterial biofilms (manuscript in preparation), and 6. Figure 3F1–3F5: membrane 

boundary of neighboring cells of the HMT-3522 S1 acini.

As can be seen from Figure 3, different segmentation approaches can lead to mostly similar 

results for some data set types, but completely different results for other data types. For 

example, the hair cell stereocilia data set (Figure 3A) yields reasonable segmentation 

volumes with all four approaches, with the manual abstracted model generated by an expert 

user being the clearest to interpret and measure. In this case, such a model allowed for quick 

measurements of filament-filament distances, counting of the number of links found 

between the elongated filaments, as well as determination of missing parts of the density 

map corresponding to locations where the specimen was damaged during sample 

preparation34. Such information is much more difficult to come by for all other three 

segmentation approaches, although the custom-tailored automated segmentation provides 

better results than the approach of purely density-based thresholding.

For the plant cell wall (Figure 3B), manual model generation also seemed the most efficient 

in conveying a sense of order in the cell wall, which none of the other approaches achieve. 

Yet, the abstracted model does not capture the crowdedness of the objects in the data set. 

Manually tracing features of interest seems to give a better result than both the density-based 

as well as shape-supervised approaches. However, manual tracing is very labor-intensive 

and is somewhat subjective. Therefore, automated approaches may be preferred for 

segmenting large volumes with a potential trade-off between precision and resources spent 

on manual segmentation.

For the kinocilium data set (Figure 3C), manual abstracted model generation yields the 

cleanest result and reveals an unexpected architecture of three microtubules at the center of 

the kinocilium, a detail that is readily visible in the cropped data, but lost in all other 

approaches, presumably due to stain heterogeneity. However, many other potentially crucial 

features of the density map are missed in the manual generation of an abstract model. This is 

due to the fact that the subjective nature of manual model formation leads to an idealization 

and abstraction of the actual density observed, and therefore to an interpretation during the 

model formation. Hence, this example nicely demonstrates how this approach allows one to 

concentrate on a specific aspect of the 3D volume. However, the selective perception and 

simplification fails to give a full account of all the protein complexes present in the data set. 

Therefore, if the objective is to show the complexity of the data, then one is better served 

with any of the other three approaches.
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In the case of the 3D matrix-cultured mammary gland acini (Figure 3D), the high contrast 

mitochondria are segmented by all four approaches with ease, with the manual tracing of 

features not too surprisingly yielding the best results with the lowest amount of 

contamination (Figure 3D3). However, manual tracing is very labor-intensive and is 

therefore of limited use for large volumes. Both density threshold-based and shape-

supervised automated segmentation pick out the mitochondria quite well, and would result 

in a near-perfect segmentation, if further tricks for cleanup are employed (e.g., eliminating 

all objects below a particular threshold of voxel density) as available in different packages. 

In this case, manual model building did not yield promising results, in part because 

mitochondria cannot easily be approximated with ball and stick models.

With respect to the bacterial soil community/biofilm (Figure 3E), three of the four 

approaches yield reasonable results, with the manual model generation not performing well 

due to the challenge of representing biological objects such as bacteria by geometrical 

shapes. Extracellular appendages originating from the bacteria can be detected in the 

automated segmentation approaches but not as well in the manual feature tracing. Shape-

supervised custom-tailored automated segmentation can further separate the extracellular 

features from the bacteria despite their similar densities (data not shown), allowing easy 

quantification even of extremely large data sets. Because this is originally a very large data 

set, the custom-tailored automated segmentation clearly outcompeted all other approaches, 

but may have benefited from the low complexity and the relative sparse distribution of the 

objects of interest (low crowdedness).

When examining the interface between two eukaryotic cells in a tissue-like context (Figure 

3F), only the manual tracing of features of interest produced good results. Automated 

density-based segmentation approaches fail to detect the membrane boundary between 

adjacent cells altogether, and even the custom-tailored approaches fails, in part because the 

shape of a cell is not easily approximated or equated with shapes, despite its clear success 

for the bacteria in the biofilm (Figure 3E5).

The observation from Figure 3 that all segmentation approaches do well on some but not on 

other data sets led to the question of what characterizes each of these data sets, and whether 

it was possible to categorize the types of data characteristics or personal aims that appeared 

to match well with their respective approach. Systematic study of this topic has not been 

previously conducted, and thus as a first step an establishment of an empirical list of image 

characteristics and personal aims may guide a novice in their attempt to find the best 

approach for feature extraction of their respective data set.

Eight criteria were identified as significant are shown in Figure 4, and they can be divided 

into two main categories: (1) the features that are inherent in the data set, and (2) the 

researcher’s objectives and other considerations that are somewhat more subjective, albeit 

equally important. The examples shown are predominantly drawn from the six data sets in 

Figure 3, with three additional data sets being introduced: one (Figure 4A1) is a cryo-

tomogram of a cryo-section of Arabidopsis thaliana plant cell wall, the second (Figure 4A2, 

4B1, 4D1) is a FIB/SEM data set of the inner ear stria vascularis, which is a highly complex 

and convoluted tissue that fits more in the category depicted in Figure 3F1–3F5 but is even 
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substantially more complex, and the third one (Figure 4B2, 4D2) is a resin-section 

tomogram of inner ear hair cell stereocilia in cross-sectional view, but otherwise similar to 

the longitudinal view shown in Figures 2A1–2A5 and 3A1–3A5.

For the category of the objective criteria like image characteristics four traits inherent in the 

data sets are proposed to be of importance:

1. The data contrast can be (1) low (Figure 4A1) as is typical for cryo-EM 

tomograms, (2) intermediate (Figure 4A2) such as in cellular sceneries with no 

clear organelle or other feature standing out, or (3) high (Figure 4A3), as is the case 

for the kinociliary tomogram or the stereocilia in cross section, due to the 

alignment of clearly separated filamentous elements within the z-direction.

2. The data can be fuzzy (Figure 4B1), with no visibly clear boundaries between two 

closely positioned yet physically separated objects (like cells in a tissue), or crisp 

(Figure 4B2), with sharply defined boundaries. This is partly a function of the data 

set resolution, which is inherently higher by a factor of about 2–4 for electron 

tomograms compared to FIB-SEM. Naturally, sharper boundaries are desirable for 

both manual as well as automated segmentation approaches, but essential for the 

latter approach.

3. The density maps can be either crowded (Figure 4C1) as reflected by the tightly 

spaced plant cell wall components, or sparsely populated (Figure 4C2) such as the 

bacteria in a colony, which exemplifies the separation that makes automated image 

segmentation substantially easier.

4. Density maps can be highly complex with vastly different features often with 

unpredictable irregular shapes (Figure 4D1: stria vascularis tissue around a blood 

vessel) or well-defined organelle-like objects with a similar organization (Figure 

4D2: stereocilia in cross section).

Also note the vastly different scales in all the different examples, making the comparison 

somewhat difficult.

Apart from the more objective criteria such as image characteristics, four highly subjective 

criteria that will guide the selection of the appropriate path are also proposed:

1. Desired Objective: The objective may be to visualize the hair bundle stereocilium 

in its complexity and to determine and examine the shape of the object (Figure 

4E1), or to create a simplified (abstracted) ball and stick model that is built into the 

density map and allows a fast counting and measuring of the geometrical objects 

(filament length, distance and number of connections) (Figure 4E2).

2. The feature morphology can be highly irregular and complex like cells, such as 

cell-cell interaction zones (Figure 4F1), somewhat similarly shaped with some 

variation, such as mitochondria (Figure 4F2), or more or less identically shaped, 

such as actin filaments and cross links in a hair bundle in longitudinal orientation 

(Figure 4F3).
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3. The proportion of the feature of interest (population density) is important, as one 

may want to segment all features in a 3D data set, as is the case for plant cell walls 

(Figure 4G1), or only a tiny fraction of the cellular volume as is the case of 

mitochondria in a cellular scene (Figure 4G2). Depending on the size of the data set 

and the percentage of volume that requires segmentation, it can be most efficient to 

use manual approaches, or in other cases (where one is interested in a variety of 

features) there is simply no alternative to using semi-automated segmentation 

approaches.

4. Another key subjective criterion is the amount of resources one is willing to invest 

into the segmentation/feature extraction and how much fidelity is required to 

answer a biological question. One may want and need to quantify a feature’s 

volumetric parameters (such as size, volume, surface area, length, distance from 

other features, etc.), in which case more care may be needed to get accurate 

quantitative information (Figure 4H1), or may be merely trying to snap a picture of 

its 3D shape (Figure 4H2). In an ideal world where resources are unlimited, one 

clearly would not want to make any compromises but rather opt for the most 

accurate path of user-assisted manual feature extraction. While this can work for 

many data sets, 3D volumes in the very near future will be in the order of 10k by 

10k by 10k or higher, and manual segmentation will no longer be able to play a 

prominent role in such an enormous space. Depending on the complexity of the 

data and other data characteristics, semi-automated segmentation may become a 

necessity.

In Figure 5, the segmentation approaches are compared for their strengths and limitations. 

The personal aims and image characteristics identified in Figure 4 that best fit each approach 

are outlined as well. Figure 6 applies these personal aims and image characteristics to each 

of the six datasets, exemplifying how to triage data and decide on the best approach. Both 

Figure 5 and 6 are expanded upon in the discussion.

DISCUSSION

Effective strategies for the extraction of relevant features from 3D EM volumes are urgently 

needed in order to keep up with the data tsunami that has recently rolled over biological 

imaging. While data can be generated in hours or days, it takes many months to analyze the 

3D volumes in-depth. Therefore, it is clear that the image analysis has become the 

bottleneck for scientific discoveries; without adequate solutions for these problems, imaging 

scientists become the victims of their own success. This is in part due to the high complexity 

of the data and also the macromolecular crowding typically found in biological cells, where 

proteins and protein complexes border one another and essentially appear as a continuous 

gradient of grayscale densities. The problem is complicated by sample preparation and 

imaging imperfections, and in some cases image reconstruction artifacts, leading to less than 

perfect volumetric data that can pose challenges for fully automated approaches. Most 

significantly, however, is the fact that the experts in sample preparation, imaging and the 

biological interpretation are seldom well versed in computational science, and hence 

guidance on how to effectively approach feature extraction and analysis is needed. 
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Therefore, through the use of various examples, the protocol explains how to prepare data 

for segmentation, as well as the steps for manual abstracted model generation, automated 

density-based segmentation, manual tracing of features of interest, and custom-tailored 

automated segmentation. The manual and automatic approaches outlined in the procedure 

can be found in a large variety of segmentation software, some of which are mentioned here, 

but others perform similar functions and are equally well suited.

The results demonstrate that the effectiveness of each of the 3D segmentation approaches 

varies for each different type of data sets. Even though the different approaches produced 

qualitatively similar 3D renderings as the end product, the amount of time and effort spent 

on each during the segmentation process varied significantly. The recommendations for 

appropriate image characteristics and personal aims per segmentation approach are 

summarized in Figure 5, which is further explained in the following four subsections. These 

criteria were applied to the six datasets, as shown in the decision flow chart of Figure 6. 

Although Figures 5 and 6 are merely meant to provide a rationale for each data set and how 

each of the criteria were weighted in the decision making process, they are not and cannot 

provide a foolproof guidance, but rather a starting point. There are simply too many criteria 

that influence the decision making process: some are objective criteria, such as data set 

characteristics, whereas others are more subjective criteria, such as the desired objective. It 

is safe to say that data sets that display a high level of contrast with sharp crisp boundaries, 

have features that are well separated and relatively homogeneous (not too diverse), and are 

processed with the objective of displaying a density model for a large number of objects, 

automated approaches will be superior, if not for the fact that manual approaches would 

simply be resource (time)-prohibitive. On the other hand, if contrast is low, the data is fuzzy 

and thus requires an expert’s knowledge, the objects are crowded, and the features show a 

high diversity and are thus heterogeneous, one may not have any other choice than manual 

feature extraction/segmentation.

Manual Abstracted Model Generation

Manual abstracted model tracing is particularly effective in segmenting linear elements, 

providing seeds points (balls) that can be automatically connected (sticks). Such balls and 

sticks-models can be very powerful to measure length and orientation of such model and 

provide an adequately abstracted model for both qualitative inspection and quantitative 

analysis. Manual abstracted model generation is commonly used when minimizing resources 

spent on the analysis is more important than absolute fidelity to the shapes of the original 

data. It is most successful with linear and homogenous features of interest (e.g., filaments, 

tubes). Data contrast, crispness, and crowdedness do not play a major role in determining 

this method’s success, as long as the human eye can recognize the object of interest. 

Sometimes such models can also be utilized as a skeleton to segment the 3D map in a zone 

around the skeleton. Although the model is abstract rather than a reflection of exact 

densities, it represents a skeletonized version of the 3D density and thus allows for clutter-

free visualization and qualitative analysis. Quantitative measurements such as length can 

also be determined from the approximate model. For an example of software with manual 

abstracted model generation, please visit Chimera’s detailed user guide online at http://

www.cgl.ucsf.edu/chimera/current/docs/UsersGuide/index.html.
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Manual Tracing of Features of Interest

Manual paintbrush tracing works well with almost all data characteristics, but it is also the 

most time consuming method. At times, it is the only technique for extracting a feature of 

interest from a complex image set containing a large variety of features, such as the thin and 

convoluted cell membrane. One useful tool available in some programs allows for 

interpolation between intermittently segmented slices, where the feature of interest changes 

smoothly. Manual tracing can be applied most efficiently if the data is crisp and has medium 

to high contrast, but it can also be utilized for more challenging data sets, as long as the user 

is familiar with the object of interest. The data complexity can range from discrete objects to 

complex and crowded data sets, where objects are closely packed. In the latter case, manual 

segmentation may be the only choice, as automatic approaches often struggle to segment the 

desired volume and extract too much or too little. Difficult feature morphologies, such as 

convoluted sheets or volumes, can also be extracted by this method. However, the user 

should keep in mind that a dataset with several difficult characteristics can only be 

segmented if the population density of the features of interest is low, as segmentation of 

high population densities of the features of interest becomes time-prohibitive. For an 

example of software with manual tracing, please visit Amira’s detailed user guide online at 

http://www.vsg3d.com/sites/default/files/Amira_Users_Guide.pdf.

Automated Density-based Segmentation

In contrast to the manual techniques, the automated approaches are generally less time-

consuming, which is an important factor to consider when segmenting a large stack of 

images. However, simple thresholding may not be as accurate, and much more time may be 

spent on refinement and curation of the automatically segmented volume. Automated 

density-based segmentation works best on data sets that display a large number of similar 

features of interest that all require segmentation. If the data is more complex, these 

automated techniques can still serve as an initial step, but will likely require some manual 

intervention down the line in order to specify a subvolume containing the feature of interest. 

This strategy typically works well on linear morphologies or convoluted volumes, but is 

rarely successful with thin convoluted sheets such as cell membranes. Minimal user 

intervention with automated approaches enables segmentation through large or small 

volumes, while expending few user resources such as time in return for high fidelity. For an 

example of software with automated density-based segmentation, please visit Amira’s 

detailed user guide online at http://www.vsg3d.com/sites/default/files/

Amira_Users_Guide.pdf.

Custom-Tailored Automated Segmentation

Custom-tailored automated segmentation allows the power customization of algorithms for a 

specific data set, but it is often specific to the data set or data type, appropriate for a limited 

number of feature characteristics, and cannot be generalized easily. The procedure 

showcased here differs from the general automated segmentation approaches, such as 

watershed immersion and other level set methods, which rely on a programmed 

determination of critical seed points, followed by fast-marching cube expansion from these 

seed points. A variation on this theme is boundary segmentation, where gradient vector 
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information informs feature boundaries. In contrast, the customized script used here relies 

on a training stage where the user manually traces a few examples. Through machine 

learning, specific algorithms will detect and then learn to independently recognize properties 

and data characteristics consistently found in the traces. An expert user can retrain the 

algorithms and improve the accuracy of segmentation by including more example traces to 

provide a larger set of feature criteria. Overall, thresholding and related approaches, or even 

custom-tailored approaches may not be as useful to extract a single feature of interest from 

an image with complex diversity of organelles or shapes, as curation may be just as labor 

intensive as manual tracing.

Given the subjective and objective criteria presented in Figure 4 and summary of suitable 

datasets in Figure 5, the decision making scheme depicted in Figure 6 can assist an effective 

assessment of feature extraction strategies for a large variety of data sets. The data sets are 

triaged in four consecutive decisions, each of which may include any one of the four 

respective objectives as well as four subjective criteria introduced in Figure 4. As an 

example, Figure 6 is the rational for triaging each of the six data sets shown in Figure 3. 

Undoubtedly, for each data set there is not a single unique path, but rather different paths 

through this matrix following different criteria for decision-making that may lead to the 

same or different recommendations for data segmentation. While every data set will have its 

own set of properties, which cannot be anticipated, six examples are given, each paired with 

an explanation of the rationale behind the preferred feature extraction/segmentation 

approach. Most also include a proposition for an alternative decision route that either results 

in the use of the same or of a different segmentation approach (Figure 6).

The kinocilium is a crisp data set with clearly defined boundaries that make automated 

approaches more likely to succeed. All features of interest were well separated, again 

favoring an automated approach. In addition, the features of interest are similar to one 

another, making it a relatively homogeneous data set ideal for custom tailored segmentation. 

Lastly, the aim was to extract the entire feature, favoring a semi-automated approach. As a 

consequence, it was concluded that an automated thresholding (solid green line) as well as a 

custom-designed (e.g., shape supervised segmentation) approach (dotted green line) are both 

likely to do well on this data set.

Similar criteria, although placed in a different order in the decision making network, apply 

to the case of bacteria. A custom tailored approach is recommended in part because this data 

set was very large; hence, limited resources prohibit a labor-intensive manual intervention/

segmentation approach. While thresholding would have yielded acceptable results, the 

custom-designed approach was able to execute the study’s key objective to separate the 

roundish bacterial shapes from the extracellular metal deposits, located either in-between the 

bacteria or right next to the bacteria, and therefore the custom-tailored approach was 

preferred.

For stereocilia data sets, the first consideration was the desired objective: is the goal to show 

the entire density or to create geometrical models? The volume of interest was a crowded 

area, and the objective was to segment a large number of objects as separated objects in 

order to subsequently execute quantitative volumetric analysis, including lengths, numbers, 
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distances, orientation, etc. It was helpful that the objects of interest were mainly linear, and 

this made geometrical model tracing the method of choice. However, if instead the objective 

has been to show the entire density, then the linear feature morphology as well as relatively 

high contrast with sharply defined boundaries would make an automated thresholding 

protocol feasible.

The cell membranes and mitochondria data cases are challenging for automated approaches 

due to their categories of feature morphology: convoluted sheets and volumes, respectively. 

The goal is to trace the cell or mitochondria outline accurately, but there are only finite 

resources to do so. In addition, the features of interest are complex and cannot be easily 

automatically detected or shape-encoded, although for the mitochondria data sets the 

customized scripting approach taken for the bacteria may possibly be applied with further 

customization. Fortunately, the membrane and mitochondria themselves only represent a 

small fraction of the entire volume, hence manual tracing is a straightforward albeit time-

consuming approach. Manual tracing is also the method of choice for such data sets when 

the contrast is rather low and the boundaries are rather fuzzy. As a result, even if they 

constitute a significant portion of the data sets, such convoluted sheets must be manually 

traced, simply due to the lack of a better alternative.

The plant data set posed its own challenges because the goal was to segment all objects, 

which are densely spaced and make up a crowded scenery. Displaying the density as-is 

would enable measurements about the shape and organization of the objects, but as 

manually segmenting each filamentous object is too costly, automatic thresholding was 

employed instead.

The various steps and corresponding results in creating a 3D model have been displayed 

here, but more importantly, the data characteristics and personal criteria found to be crucial 

in determining the best path of segmentation have also been elucidated. The important 

characteristics of the image data itself include what is described here as contrast, 

crowdedness, crispness, and the number of different features (such as organelles, filaments, 

membranes) or shapes. Subjective criteria to consider include the desired objective of 

segmentation (measuring/counting, skeletonized representation of the data/displaying 

volumes in 3D renderings), morphological characteristics of the feature of interest (linear, 

elongated, networked, complex, convoluted), the density of features of interest in relation to 

the entire volume (the fraction of the objects that are important and need to be extracted), 

and balancing the tradeoffs of expending resources to the segmentation’s fidelity of the 

original data and the decreasing return on the investment resulting in incremental 

improvements for substantially higher allocation of resources.

The field of image segmentation has significantly matured over the recent years, yet there is 

no silver bullet, no algorithm or program that can do it all. Data set sizes have grown from 

hundreds of megabytes to routinely tens of gigabytes and are now starting to exceed 

terabytes, making manual segmentation near impossible. Thus, more resources need to be 

invested in the clever and time-effective feature extraction approaches that mimick the 

human decision making process. Such efforts will need to be combined with (1) geographic 

information system (GIS)-based semantic hierarchical data bases (similar to Google Earth), 
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(2) data abstraction techniques (i.e., transitioning from a voxel to geometric/volumetric 

representation) compatible with computer assisted design (CAD) software in order to 

significantly reduce the amount of data and thus enabling the display of larger volumes35, 

(3) simulation techniques, as they are frequently used in the engineering disciplines, as well 

as (4) advanced animation and movie making capabilities, including fly-through animations 

(similar to what is developed for the gaming industry).

Clearly, efficient feature extraction and segmentation lies at the heart of this coming 

revolution in cellular high-resolution imaging, and while better approaches will always be 

needed, the principles presented here, as well as the examples of what approach was taken 

for different data types, will provide some valuable information for making a decision on 

which approach to take.
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Figure 1. Workflow for biological imaging reconstruction and analysis
This chart gives an overview of the various steps taken to collect and process images 

collected by tomography, focused ion beam SEM, and serial block face SEM. Raw data 

collection results in 2D tilt series or serial sections. These 2D image sets must be aligned 

and reconstructed into 3D, then filtered in order to reduce noise and enhance the contrast of 

features of interest. Finally, the data can be segmented and analyzed by four methods, 

ultimately resulting in a 3D model.
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Figure 2. Examples of workflow for different data types from tomography and FIB-SEM
Each step of the workflow is shown through four data sets (rows A-D) after data collection: 

resin embedded stained tomography of longitudinally sectioned stereocilia, resin embedded 

stained tomography of plant cell wall cellulose, FIB-SEM of breast epithelial cell 

mitochondria, and SBF-SEM of E. coli bacteria. A 2D slice through the raw data is shown in 

column 1, and the data after alignment and 3D reconstruction is in column 2. Filtering 

techniques applied in column 3: median filter (A3), non-anisotropic diffusion filter (B3), 

Gaussian blur (C3), and MATLAB’s imadjust filter (D3). An example of the best 

segmentation for each data set from the cropped area of interest (column 4) is displayed as a 

3D rendering in column 5. Scale bars: A1–A3 = 200 nm, A4 = 150 nm, A5 = 50 nm, B1–B3 

= 200 nm, B4–B5 = 100 nm, C1–C3 = 1 μm, C4–C5 = 500 nm, D1–D3= 2 μm, D4–D5 = 

200 nm.
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Figure 3. Different data sets being segmented by four different approaches
Six example data sets were segmented by all four approaches: manual abstracted model 

generation, manual tracing, automated density-based segmentation, and custom-tailored 

automated segmentation. Manual abstracted model generation was effective for the resin 

embedded stained tomography of stereocilia (A), as the purpose was not to extract exact 

densities but rather to create a model for quantitative purposes. For the resin embedded 

stained tomography of plant cell wall (B), automated density-based segmentation was the 

most effective method to quickly extract the cellulose through many slices, where as the 

manual methods took much more effort on only a few slices of data. Manual abstracted 

model generation generated the microtubule triplet in the stained tomography of kinocilium 

(C) while other segmentation methods did not, yet the two automated approaches extracted 

the densities more quickly and were therefore preferred. Due to the shape of mitochondria 

from FIB-SEM of breast epithelial cells (D), manual tracing provided the cleanest result, and 

the low population density combined with use of interpolation methods allowed for quick 

segmentation. Given the large volume that needed to be segmented, custom-tailored 

automated segmentation proved to be most efficient to segment the SBF-SEM bacteria data 

(E), but both automatic approaches were comparable. Although time consuming, the only 

method to extract the FIB-SEM of breast epithelial cell membrane (F) was manual tracing. 
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Scale Bars: A1–A5 = 100 nm, B1–B5 = 100 nm, C1–C5 = 50 nm, D1–D5 = 500 nm, E1–E5 

= 200 nm, F1–F5, bars = 500 nm.

Tsai et al. Page 25

J Vis Exp. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Objective and subjective characteristics and criteria for triaging of data sets
Using examples of data sets characteristics, criteria are proposed to inform a decision on 

which segmentation approach to use. With respect to objective characteristics, data can have 

contrast that is low, medium, or high (A1–A3), be fuzzy or crisp (B1–B2), spaced out or 

crowded (C1–C2), and have complex or simply organized features (D1–D2). Subjective 

characteristics include the desired objective targeting a simplified model or extracting the 

exact densities (E1–E2), convoluted sheet, convoluted volume, or linear morphology of the 

feature of interest (F1–F3), high or low population density of the feature of interest (G1–

G2), and the trade-off between high-fidelity and high-resource-allocation for a diminishing 

return on investments such as time (H1–H2). Scale Bars: A1= 50 nm, A2 = 1500 nm, A3 = 

100 nm, B1 = 1500 nm, B2 = 200 nm, C1 = 100 nm, C2 = 200 nm, D1 = 10 μm, D2 = 200 

nm, E1 = 100 nm, E2 = 50 nm, F1–F2 = 500 nm, F3 = 50 nm, G1 = 100 nm, G2 = 1 μm, 

H1–H2 = 100 nm.
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Figure 5. Comparison table of data characteristics appropriate for different segmentation 
approaches
This table summarizes the strengths and limitations of each segmentation approach. The 

criteria from Figure 4 can help identify which datasets are suitable for which segmentation 

method. These subjective personal aims and objective image characteristics were chosen for 

optimal use of each approach, but different combinations may hinder or aid the efficiency of 

the segmentation.
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Figure 6. Decision flowchart for efficient triage of segmentation approaches for data sets with 
varying characteristics
Based upon the characteristics highlighted in Figure 4, this diagram illustrates which four 

criteria contributed the most to the final decision on the best segmentation approach for each 

data set. Each data set is color coded to quickly follow the bold lines representing the 

primary decision-making process, as well as the dotted lines that reflect an alternate path 

that may or may not lead to the same approach. The kinocilium, bacteria, and plant cell wall 

data sets were best segmented with the two automated approaches. In contrast, the cell 

membrane and mitochondria paths always lead to manual tracing due to their difficult 

characteristics.
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