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Abstract

Mycobacterium tuberculosis (MTB) infects 30% of all humans and kills someone every 20 – 30 

seconds. Here we report genome-wide binding for ~80% of all predicted MTB transcription 

factors (TFs), and assayed global expression following induction of each TF. The MTB DNA 

binding network consists of ~16,000 binding events from 154 TFs. We identify >50 TF-DNA 
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consensus motifs and >1,150 promoter binding events directly associated with proximal gene 

regulation. An additional ~4,200 binding events are in promoter windows and represent strong 

candidates for direct transcriptional regulation under appropriate environmental conditions. 

However, we also identify >10,000 “dormant” DNA binding events that cannot be linked directly 

with proximal transcriptional control, suggesting that widespread DNA binding may be a common 

feature that should be considered when developing global models of coordinated gene expression.

INTRODUCTION

Mycobacterium tuberculosis (MTB) is a remarkably successful pathogen that infects an 

estimated 1.5 billion people and kills 1.3 million people each year1. Throughout TB disease, 

both bacterium and host engage in a dynamic series of adaptations to modulate local 

environments. For the pathogen, adaptation is principally mediated through the ~214 DNA 

binding proteins encoded in the MTB genome. These proteins interact with small molecule 

chemical messengers, other proteins, and the DNA to shape the transcriptional landscape of 

the cell and convert cascading stimuli into coordinated effector gene responses. Several 

approaches to understanding the wiring and connectivity of interacting macromolecular 

components of MTB have been described, including gene expression pattern-driven 

identification of regulatory subnetworks2,3, metabolic reconstructions4,5, integration of 

expression data from diverse experimental and environmental conditions6, and hybrid 

networks that seek to bridge transcription regulation with metabolic outputs and cellular 

fitness7. In each case the goal of these approaches is to constrain the universe of potential 

interactions within cells through an iterative process of experimentation, data collection and 

computational approaches that result in network reconstruction.

Various groups have probed the gene regulatory landscape of MTB by characterizing the 

regulons of individual transcription factors (TFs). The most widely applied approach has 

been gene knockout and phenotyping or transcriptional profiling of the resultant mutant8–10. 

More recently however, technologies such as chromatin immunoprecipitation followed by 

microarray hybridization or high-throughput sequencing (ChIP-chip and ChIP-seq, 

respectively) have been applied to MTB11–16. These approaches identify directly sites of 

TF-DNA binding, and in conjunction with transcriptional profiling and/or meta-analyses 

offer a powerful window in to the global regulatory capacity of individual proteins. 

Employing ChIP-seq and transcriptional profiling, we recently described an analysis of the 

binding profile for 50 MTB TFs assessed in a uniform condition17. This preliminary 

network reconstruction showed good concordance with published results, as well as 

common features of regulatory networks from other organisms, such as robust network 

construction, connectivity and DNA binding motif structure18–20.

Here we expand efforts to characterize the MTB gene regulatory network. We report the 

DNA binding and transcriptional regulatory profile of ~80% of all predicted MTB TFs 

(>150 proteins). From these data we derive high-confidence DNA consensus motifs for >50 

TFs. We show that chromosomal regions proximal to coding sequence or transcription start 

sites are enriched for binding, allowing us to define functionally a genome-wide promoter 

window size for MTB. We identify 5,400 protein-DNA interactions within this window with 
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high probability for direct transcriptional control of proximal targets, and 1,162 binding 

events that regulate proximal gene expression in the experimental condition assayed. 

However, we also note even more DNA binding that cannot be linked directly with 

transcriptional control. Further, we characterize one TF in which widespread binding events, 

most of which are not directly associated with gene expression changes, are nonetheless 

dictated by specific DNA sequence motifs that can be validated by an independent 

experimental approach. We propose the phrase “dormant binding” to describe sequence-

specific protein-DNA interactions without a proximal effect on gene expression, and suggest 

that this class of binding may exert proximal regulatory control under different 

environmental conditions, but may also contribute more subtly to the regulatory landscape 

of the cell. Altogether, this work presents an experimentally constrained protein-DNA 

interaction framework for MTB that reveals thousands of DNA binding events, many of 

which we can link to proximal regulatory events. Our pan-genome survey indicates that 

widespread, dormant TF-DNA binding is very common, and suggests that the control of 

gene expression in bacteria may involve a layer of complexity that is currently 

unappreciated.

RESULTS

We recently described a preliminary MTB gene regulatory network based on the DNA 

binding patterns of 50 TFs (23% of the 214 TFs of MTB)17. Here, we present a substantially 

more complete transcriptional regulatory network that incorporates updated peak calling 

algorithms, stringent controls/filters to define high quality TF binding (see Materials and 

Methods), and includes 80% of the MTB TFs (workflow in Supplementary Fig. 1).

We cloned 206 (of the estimated 214) DNA binding genes into an anhydrotetracycline -

inducible Gateway shuttle vector to contain an N- or C-terminal FLAG epitope tag. The 

remaining 8 genes proved refractory to our sub-cloning efforts. For added inclusiveness, this 

list was compiled through gene annotation data from Tuberculist21, TBDB22, and 

PATRIC23, as well as manual curation24. Once transformed, we cultured MTB strains to a 

uniform growth stage and induced expression of the gene-of-interest for 18 hours – 

approximately one cell division. We then harvested chromatin samples for ChIP-seq as well 

as total RNA for high-density transcriptional profiling by custom tiled microarray. For 

microarray analysis, induction and experiments were repeated with at least three biological 

replicates24. For ChIP-seq samples we employed a custom algorithm for read alignment and 

ChIP peak calling (Methods).

ChiP-seq data set and controls

Previously we showed that DNA binding events reproduced with high fidelity in eight of 

eight replicate ChIP samples17. In addition to the experimental ChIP samples we created a 

negative control composite data set against which we filtered experimental ChIP data sets. 

Because no single control captures all known or potential ChIP artifacts we designed this 

negative control compendium to include 10 diverse samples/sequencing datasets: wild-type 

H37Rv chromatin immunoprecipitated with and without anti-FLAG antibody (input DNA 

and mock IP controls, respectively), chromatin samples from uninduced expression-vector 
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bearing cells immunopreciptated with and without anti-FLAG antibody (basal expression 

from chimeric inducible promoter and mock IP controls, respectively), as well as chromatin 

samples from induced non-TF genes immunoprecipitated with anti-FLAG antibody 

(specificity of FLAG IP). We subjected each control data set to peak calling, creating an 

experimentally-derived negative control peak set consisting of ~2000 scored final peaks. We 

then compared each experimental peak with this negative control peak set to define a 

collection of pass-filter DNA binding events (Methods). This approach identified both 

global and local binding patterns for every TF assayed with associated significance scores 

for every ChIP peak (Supplementary Fig. 2).

Some genomic regions appeared to be hotspots for ChIP enrichment, irrespective of the 

significance threshold. Recent reports from yeast25,26 suggest that loci with high 

transcriptional activity can be artificially enriched in ChIP assays. We compared our MTB 

high-occupancy sites against the absolute log2 expression value of transcripts derived from 

more than 700 microarrays24 and did not observe any such correlation with hyper-enriched 

regions and transcript abundance (Supplementary Fig. 3). Nevertheless, we know of no 

biological mechanism for why these loci should be enriched across TF class and experiment. 

Therefore, any 50-bp region bound by more than 50 different TFs was flagged as a 

provisional experimental artifact and removed from subsequent analysis. This step culled 

1006 peaks at 5 gene loci (Rv1088, Rv1115, Rv1396c, Rv2190c, Rv3622c-3623).

We considered the possibility that artificially high TF gene induction from our ectopic 

expression system might result in more DNA binding than would be observed in wild-type 

(WT) cells. In addressing that question, we previously demonstrated good concordance 

between DNA binding following ectopic induction of tagged TFs and published genome-

wide binding studies that relied on native conditions and/or antibodies12,14,17,22. Specifically 

we compared data from our over-expression system to results of ChIP-seq experiments 

using WT cells and antibodies directed at native BlaI12, DosR11, or EspR14. In each case, 

approximately the same number of peaks was identified, and peak position and height were 

well conserved17. To assess this question more broadly, we compared here the number of 

binding sites per TF and the magnitude of TF ectopic induction, and found no correlation 

(Supplementary Fig. 4a). In addition, we compared TF expression levels in our over-

expression system to a compendium of >2,300 published microarrays. We found that >80% 

of TFs were induced to a higher level by one or more experimental condition in WT cells 

(Supplementary Fig. 4b and24). Thus, while we cannot exclude the possibility that over-

expression sometimes produced non-physiological DNA binding, we conclude that such 

spurious DNA associations are rare in our data sets.

Network topology and characteristics

We analyzed genome-wide binding profiles for all TFs at p-value cutoffs of <0.05, <0.01, 

<0.001, and <0.0001. As expected, the number of protein-DNA interactions shrinks as we 

progress to more stringent inclusion thresholds (Supplementary Fig. 5). While binding 

events in the range 0.05>p>0.01 have binding scores stronger than at least 95% of all 

negative control peaks and are clearly distinguishable from background, they generally 

possess lower signal to noise ratios and skewed read distributions (Supplementary Fig. 2). 
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Testing showed that DNA binding events with a p~0.01 could be confirmed by independent 

experiment, where peaks with p~0.05 were less consistently validated. We therefore chose a 

cutoff of p<0.01 to filter peaks for subsequent analyses. With this threshold the physical 

DNA-binding map includes 15,980 protein-DNA interactions from 156 MTB TFs. 

Supplementary Table 1 provides all TF-target interactions, with associated peak binding 

metrics, genome coordinates, and confidence scores. In addition, all raw and filtered data 

can be found at: http://networks.systemsbiology.net/mtb.

We mapped the center of each binding event peak, and the global distribution of all TF-

binding events was visualized on a circularized map of the MTB chromosome (Figure 1a). 

Although thousands of genome-binding events were mapped, visualization at high resolution 

revealed that the chromosome in general is sparsely bound (Figure 1b). The vast majority of 

the genome (~3.8 million base pairs, 86%) was not associated with any TF-binding, whereas 

~0.6 million base pairs contained at least one binding site, and locations with more binding 

events were progressively fewer. Regions with multiple TFs binding in close proximity are 

prime candidates for combinatorial regulation. For example, our data recover the well-

characterized binding of Rv3133c/DosR upstream of both Rv3134c and Rv2031c8,11, but we 

also note in both regions a strong binding signature from hypoxic-responsive TF Rv1985c27.

For individual TFs in this study, the number of DNA binding events per protein ranged from 

0 to >850 (Figure 1c). No binding sites were detected for 24 TFs. There were also 7 proteins 

with >500 binding sites each on the chromosome, and 14 TFs accounted for ~50% of all 

binding in the network. For proteins that do not bind DNA as well as for prolific binders, no 

single gene family describes these TFs.

Correlating DNA binding with regulation of transcription

We explored binding locations relative to translation start sites of annotated genes. About 

25% (nearly 4000 out of ~16,000 binding sites) were within intergenic regions. While this is 

roughly 2.5× what would be observed by random chance (cumulative hypergeometric mean 

p<0.001), the relatively low 25% intergenic enrichment was unexpected and caused us to 

investigate further binding site distribution characteristics. Peaks with the highest quality 

scores were slightly more likely to be intergenic. For instance, among the 800 best peaks, 

the proportion within intergenic regions rose to 29% (Supplementary Fig. 6). However, even 

when considering only the highest scoring peaks (top 20%) on a per-TF basis, the binding 

site distribution is highly idiosyncratic (Supplementary Table 2). About one-fourth of TFs 

exhibit 80% intergenic binding or more, while another one-fourth show at least 80% binding 

within coding sequences. Of the proteins with strong intergenic bias in this analysis, nearly 

all bind 3 or fewer times on the MTB chromosome. We cannot exclude the possibility that 

the prevalence of within-gene DNA binding we report is somehow a function of our 

approach; however, the trends observed here are broadly consistent with other genome-wide 

DNA binding studies in MTB14,16, and with some reports in other bacteria28,29.

We also analyzed the binding locations relative to an experimentally determined map of 

transcriptional start sites (TSS) in MTB, many of which are not consistent with traditionally 

defined coding region boundaries30. We observed a striking enrichment of TF-binding 

proximal to TSSs, with the highest density of binding at −18 nucleotides upstream to TSSs 
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(Figure 2a). To associate TFs with direct regulation of target genes, we analyzed instances 

where TF over-expression resulted in significantly altered expression of genes proximal to 

TF binding locations (Methods and24). By performing this analysis over different sized 

genomic segments, we determined that a consensus promoter spanning 150 bp upstream to 

70 bp downstream of starts yielded maximal sensitivity vs. specificity (Supplementary Fig. 

7). All binding events within this window were considered functional, i.e. – capable of 

directly regulating downstream gene expression in the right environmental context. 5,400 

binding sites for 143 TFs were located within promoter windows. Because a single binding 

site could be associated with more than one promoter, altogether there were 7,248 TF-

promoter interactions within 2,848 promoters. There were 1,243 promoters with a single TF 

binding site, and the median was 2 binding sites per promoter. Overexpression of TFs under 

reference growth conditions validated that 1,162 TF-DNA interactions can directly regulate 

proximal genes (Supplementary Table 3). Thus, despite the known conditional nature of 

gene regulation, we were able to validate over 20% of all promoter-proximal binding events 

using only one reference laboratory growth condition. By extension, a large fraction of the 

>7,200 promoter-proximal TF-DNA interactions are likely to regulate gene expression 

directly in the appropriate environmental context, and can even be used to refine promoter 

predictions. For example, expression of the putative benzoquinone methlytransferase 

Rv0560c was previously predicted to be controlled by an unknown repressor of the MarR 

family31. We found 5 TFs that bind near the start of this gene, but of those only over 

expression of the MarR family TF Rv2887 resulted in repression of Rv0560c 

(Supplementary Fig. 8). However, the other TFs are strong candidates to regulate Rv0560c 

in other contexts. Mapping TF-DNA binding and expression changes in other environments 

should expand further the list of interactions with corresponding identifiable downstream 

expression changes6.

While 5,400 DNA binding events are located in the promoter window, roughly 66% 

(>10,500) of binding sites are outside this region. Altogether 109 different TFs exhibit 

promoter-distal binding. While there are examples of prokaryotic proteins binding outside of 

promoters and exerting regulatory effect at a distance (Figure 2a, and32–35), as a class these 

binding events are less likely to exert direct influence on gene expression. To explore 

globally the link between TF-DNA binding and transcription, we compared the number of 

binding events per TF and the number of expression changes associated with each TF 

(Figure 2b). Of 178 MTB TFs in this study, nearly 40% exhibit an approximately linear 

relationship between the number of DNA binding events and transcriptional changes. Two 

of the most well-characterized DNA binding proteins in MTB (Rv3133c/DosR8 and 

Rv3849/EspR14) behave this way. For roughly 30% of proteins, induction is associated with 

a disproportionately large impact on transcription relative to the number of binding sites. 

These proteins may regulate other TFs and initiate a transcriptional cascade. Alternatively 

some of these TFs may be poor candidates for ChIP analysis. In contrast, there are 

approximately the same number of proteins whose induction results in prolific DNA binding 

but comparatively few transcriptional changes. The regulatory circuits of these genes may be 

complex, perhaps requiring one or more partner TF(s) or another co-factor to reconcile DNA 

binding and expression profiles. These proteins belong to a wide range of TF families, 

including TetR, ArsR, and GntR, along with one nucleoid associated protein Lsr2.
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Identifying DNA consensus motifs from ChIP-seq data

We searched for conserved motif signatures for each TF. We queried all DNA binding data 

using MEME36 and default parameters. We performed each motif search twice for each 

grouping – one unconstrained and one constrained to detect only palindromes. After filtering 

motifs for MEME E-values (E <= 1) and peak locations within the queried sequence (p <= 

0.05) we could identify significant motifs for a total of 57 (71%) out of the 80 TFs that had 

≥14 ChIP-seq peaks. We report the two motifs detected for each TF, along with all related 

statistics, in Supplementary Table 4. TFs with a greater number of binding sites were more 

likely to have an identified consensus motif. The average number of binding sites for TFs 

with a motif was 246 (range 14 to 859), compared to an average of 28 peaks (range 3 to 437) 

for those TFs where a significant consensus motif could not be identified. For TFs with 

previously characterized DNA binding motifs, this analysis corresponded well with previous 

reports (eg. – Rv250637,38, Rv235939, DosR8, KstR9, and EspR14). In cases where the data 

set was of sufficient size to parse by location within or outside of a promoter, the identified 

consensus motifs tend to share the dominant sequence features of the motif derived from the 

aggregate sequences (for example, Rv1255c); however, in this context subtle sequence 

variations are likely to have functional consequences.

Rv0494 as an example of widespread binding

As indicated above, about 30% of the TFs in this study bind prolifically around the 

chromosome both within and outside of promoters, but affect relatively few transcriptional 

changes. To investigate this behavior, we focused on a representative member, Rv0494 

(Figure 3). Rv0494 is a GntR-family regulator40,41 whose induction correlated with 10 

transcriptional changes at 7 genomic loci (Figure 3, blue-red ring) including binding at the 

Rv3094c-Rv3095 locus (Figure 3, grey ribbon); however, there are 77 Rv0494 binding 

events distributed around the MTB chromosome (Figure 3 – internal lines). DNA pattern 

searching using MEME36 on the entire data set yielded two significant consensus motifs 

(Supplementary Table 4). We observed that the Rv0494-bound regions contributing to the 

longer (17mer) motif have more significant ChIP binding scores, whereas the bound regions 

contributing to the shorter (~9mer) motif have strong but less significant scores. We 

stratified ChIP binding sites by score and searched for consensus motifs in two tranches: 

p<0.001 (higher peak quality scores; 36 input regions, purple lines in Figure 3) and 0.001 < 

p < 0.01 (lower peak quality scores; 41 regions, yellow lines in Figure 3). We saw a striking 

division in the consensus motifs derived. Of the 36 highly significant binding sites, 35 

contained a close variant of the 17-mer consensus motif (motif E-value = 8.4×10−51, Figure 

3, purple ribbon). Of the 41 less significant bound sequences, 28 contained the 9-mer 

consensus motif (motif E-value = 1.7×10−31, Figure 3, yellow ribbon). Combining the 

bound regions that did not contribute to either motif initially, we found that these peaks had 

p-values in the middle of the distribution (0.0015 < p < 0.004, Supplementary Fig. 9). 

Repeating the MEME pattern search on these 14 regions showed that 13 sites contained a 

close variant of the 17-mer consensus motif (motif E-value = 8.3×10−5).

We next analyzed expression from Rv0494-induced cultures. Of the 10 differentially 

expressed genes following Rv0494 induction, two of these loci (6 genes) are immediately 

adjacent to Rv0494 binding sites. These are strong candidates for direct regulation by 
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Rv0494, and both these loci show highly significant binding (Figure 3, grey ribbon, and 

Supplementary Table 3). However, we also find examples of binding to the strong consensus 

motif with no obviously associated change in gene expression.

Validating Rv0494 binding to different motifs

From these analyses, the vast majority of Rv0494 binding sites – 76 of 77 bound regions – 

are described by one of two consensus motifs. We sought to validate this binding by an 

alternate approach. Employing purified, recombinant Rv0494 protein we developed a 

“universal” electrophoretic mobility shift assay (uEMSA) in which a uniform DNA scaffold 

was modified to contain a 5′ IR680 (red) or IR800 (green) IR tag (Figure 4a). This approach 

allows simultaneous visualization of target, non-specific, and specific competitor DNAs in 

an in vitro electrophoretic mobility shift assay42. The Rv3094c-Rv3095 intergenic region 

contains a variant of the 17-mer motif (Figure 3), and in uEMSA experiments both the 17-

mer consensus motif and Rv3094c-Rv3095 DNA sequences are tightly bound by 

recombinant Rv0494 protein (Figure 4b). Binding is specific, as confirmed by a persistent 

gel shift in the face of 20× molar excess non-specific competitor DNA; however, in the face 

of 20× molar excess specific competitor, Rv0494 protein preferentially binds to the more 

abundant IR800-labeled competitor DNA. Rv0494 protein also showed specific binding to 

the 9-mer DNA consensus motif, though at a higher protein concentration than the 17-mer 

motif. We note that none of the 9-mer-Rv0494 interactions were associated with detectable 

changes in proximal gene expression, indicating that such binding events can nonetheless be 

validated by alternate means. Altogether, these data indicate that consensus DNA binding 

motifs derived from ChIP-seq can be validated by alternate experimental methods, and 

demonstrate a correlation between ChIP peak quality score and protein-DNA affinity.

DISCUSSION

Robert Koch described the cause of tuberculosis more than a century ago yet MTB remains 

a pervasive pathogen, infecting 30% of the world’s population and causing 2 – 3 deaths 

every minute. To understand better how MTB adapts within the human host we undertook a 

systematic characterization of the gene regulatory network. We ectopically induced 

expression of epitope-tagged copies of nearly every DNA binding protein in MTB 

(Supplementary Fig. 1). Using this approach we performed ChIP-seq and transcriptional 

profiling under a uniform condition for 178 TFs. We filtered the binding patterns of 

experimental samples against a robust negative control peak set, and imposed a stringent 

significance threshold for inclusion of DNA binding events in downstream analyses. We 

also associated binding with gene expression changes, incorporating transcriptional data 

generated under the same experimental conditions. These data provide an in-depth, system-

wide view of the DNA binding network in this important bacterial pathogen.

The MTB DNA binding network consists of ~16,000 protein-DNA interactions from 154 

genes that passed our stringent filter set (Figure 1). We could not identify consistent 

attributes to define the 24 proteins that did not bind DNA, and we hypothesize that these 

proteins require additional signals or modifications to bind the chromosome. We also noted 

prolific binders – 7 proteins with >500 binding sites each. MEME pattern searching analysis 

Minch et al. Page 8

Nat Commun. Author manuscript; available in PMC 2015 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



revealed significant consensus motifs for each of these proteins, which suggests that prolific 

binding was still dictated by sequence-specific DNA interactions (Supplementary Table 4). 

The number of binding events per protein could be fit to a power law distribution 

(p(k)~k-1.5), with half of the binding coming from 14 proteins and ~90% of the binding from 

44 proteins (~25% of all assayed binding proteins, Figure 1c). However, from the 

perspective of the DNA the chromosome is sparsely bound. More than 85% of the genome 

bound no TFs, while slightly more than 10% of the genome bound a single TF (Figure 1b). 

A few loci (~2.5%) were hotspots for binding, and these are prime candidates for 

combinatorial protein-DNA interactions.

Genome-wide, TF binding was non-random, and we identified significant consensus motifs 

for 57 TFs (Supplementary Table 4). Furthermore, we observed more than twice as much 

binding in intergenic regions than would be expected by random chance. Similarly, we 

found a striking enrichment of TF binding within −150 to +70 nucleotides of annotated start 

sites (CDS or TSS), with the greatest enrichment in the 0 to −20 region. Altogether, we 

found approximately one third (5,400 of 15,980) of TF binding sites were within one or 

more 220 bp promoter windows, resulting in >7,200 TF-promoter interactions (Figure 2a 

and Supplementary Table 3). More than 1,150 of these binding events were associated with 

altered gene expression in our experiments, and in the appropriate environmental context, 

many more of these >7,200 interactions are likely to serve a proximal regulatory function. 

However, even more binding events (>10,500) were positioned outside of promoters. We 

observe some instances of promoter-distal binding correlated with proximal gene regulation 

(Figure 2a), and probably in alternate environmental contexts a greater number of these 

would act to alter expression of proximal genes. However, it is also likely that many of these 

promoter-distal binding sites are transcriptionally dormant. Abundant promoter distal 

binding has been noted before32,33,43, and in some cases individual proteins that bind DNA 

prolifically have been shown to regulate transcription at a subset of their loci but not at 

others14,16,34. For instance, in MTB the TF EspR has been labeled both a specific 

transcription factor44 and a nucleoid associated protein14. Our analysis provides evidence 

for both ideas. We find that EspR exhibits binding that is both widespread and promoter-

proximal, and that only a fraction of binding events directly influence transcription. 

Furthermore, we observe similar behavior from the majority of TFs in MTB.

To examine further the phenomenon of widespread binding with limited regulation we 

focused on Rv0494, which binds 77 times and promotes altered expression at only 2 of these 

loci (Figure 3). We identified consensus motifs associated with both stronger and weaker 

binding and protein-DNA interactions could be validated by independent experimental 

approaches (Figure 4). Some Rv0494-dependent expression changes were proximal to 

strong binding events, however many strong binding events were not associated with any 

local gene expression changes.

Altogether our analyses both complement and contrast with current models of bacterial 

transcription. For example, we found numerous strong DNA binding consensus motifs 

(Supplementary Table 4) and robust enrichment for DNA binding in the window (−150 to 

+70) relative to transcription start sites (Figure 2a), in agreement with promoter studies in 

bacteria45. However, compared with the model bacterium E. coli, the MTB TF-DNA 
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binding network results were surprising in terms of binding site numbers, locations and 

effects. Transcription is well-studied in E. coli, with substantial information collected and 

curated at the online repository RegulonDB46. This database lists ~2400 E. coli TF-DNA 

binding events, nearly 7× fewer than we observe in MTB. Only 27 individual E. coli TFs are 

known to bind DNA more than 20 times, compared with 69 in MTB. Further, in MTB we 

find dozens of TFs with widespread binding and few downstream transcriptional changes.

How to reconcile these differences? We have considered the possibility that widespread 

DNA binding is an artifact of the ChIP approach. However, we have ruled out previously 

described artifacts such as spurious ChIP enrichment proximal to highly-transcribed loci 

(Supplementary Fig. 3), applied rigorous control filters (Methods), and our binding data are 

highly reproducible17. The FLAG-tagged TF overexpression and reference conditions that 

we employed could be sources of artifactual binding, but ChIP under physiological 

conditions with native antibodies also yield similar binding profiles14,17. Further, we have 

shown that our TF overexpression levels are less than or equal to TF gene expression 

changes in publically available array studies for over 80% of TFs (Supplementary Fig. 4b 

and24).

Another possibility is that most previous studies, which assess protein-DNA interactions at 

specific candidate sites, may consistently underestimate the actual extent of binding. Since 

early groundbreaking work with the Lac operon47, researchers interested in transcriptional 

control have focused on individual gene expression changes and thus may have 

systematically understudied the possibility of transcriptionally dormant binding. In fact, the 

most common approach to determine TF regulatory targets is transcriptional profiling of a 

gene disruption mutant, which by definition precludes identification of such binding events. 

Widespread dormant binding could thus be a phenomenon specific to MTB, however several 

recent studies in both eukaryotes and prokaryotes used global approaches and reported 

unexpectedly widespread binding14,16,48–50, including one study in E. coli that was not 

based on ChIP43. In addition, various effects of dormant binding have been reported, 

including association with chromosome organization, replication and cell division33,43, 

altering response kinetics and dynamics at regulation-active loci through transcription factor 

titration and buffering against noisy input51–53, suggesting multiple functional contexts for 

this phenomenon. These observations, in eukaryotes and archaea as well as bacteria, raise 

the possibility that widespread dormant binding is a common feature of transcriptional 

systems everywhere that should be considered when developing gene regulatory networks. 

The implications of these phenomena for MTB biology and for transcriptional control more 

broadly are largely unexplored, and warrant additional investigation.

Materials & Methods

Construction of Expression Vectors and Strains

Our in-house analysis indicated that there are 214 putative DNA binding genes in the M. 

tuberculosis genome. At the outset of this project we had at our disposal a Gateway Entry 

Clone library of ~2600 M. tuberculosis ORFs in the backbone of pDONR221 (PFGRC/

Colorado State University under NIAID contract HHSN266200400091c). In the event that a 

putative DNA binding gene-of-interest was not included in the extant Entry Clone library, 
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we created entry clones through PCR amplification of the relevant gene template from 

H37Rv gDNA, adding the necessary Gateway recombination sequences to the PCR product. 

In total, 9 genes proved refractory to sub-cloning efforts, and so were triaged from 

subsequent analyses. Including those genes from the PFGRC entry clone library and our 

sub-cloning efforts the final putative DNA binding clone library contains 206 genes. We 

inserted each of these genes in to an E. coli-mycobacterial episomal shuttle vector modified 

to contain an anhydrotetracycline (ATc)- inducible promoter54 and a Gateway cloning 

recombination cassette (kind gift of Eric Rubin). We further modified this vector to contain 

an N- or C-terminal FLAG epitope tag – amino acid sequence: n-DYKDDDDK-c. For the 

present work the C-terminal FLAG tagged version was used for all DNA binding 

experiments, with the exception of experiments utilizing Rv3133c/DosR, which contained 

the N-terminal FLAG tag. M. tuberculosis H37Rv strains containing these ATc-inducible, 

FLAG-tagged, expression vectors are available from BEI resources (nr-46512, 

www.beiresources.org).

Culturing Conditions

M. tuberculosis strain H37Rv was cultured in Middlebrook 7H9 with the ADC supplement 

(Difco) and 0.05% Tween80 at 37° C with constant agitation. For transformation with ATc-

inducible expression vectors and subsequent expansion/experimentation, cultures were 

grown with the addition of 50 μg/mL hygromycin B to maintain the plasmid. All 

experiments were performed under aerobic conditions and growth was monitored by 

OD600. At an OD600 of 0.35, expression of a gene of interest was induced for the 

approximate duration of one cell doubling (18 hours) using an ATc concentration 100ng/mL 

culture.

Chromatin immunoprecipitation

DNA-protein interactions were characterized by cross-linking 50 mL of culture with 1% 

formaldehyde while agitating cultures at room temperature for 30 minutes. Cross-linking 

was quenched by the addition of glycine to a final concentration of 250 mM. Cells were 

pelleted, washed in 1x PBS + 1x protease inhibitor cocktail (Sigma), and resuspended in 

ChIP Buffer 1 (20 mM KHEPES – pH 7.9, 50 mM KCl, 0.5 mM DTT, and 10% glycerol) + 

1x protease inhibitor cocktail. Due to the thick cell wall of M. tuberculosis, samples were 

mechanically lysed using Lysing Matrix B tubes and 3 rounds of bead beating at max speed 

for 30 seconds, with cooling on ice between treatments. Samples were centrifuged for 1 

minute at 13.2 xg to pellet beads. Supernatants were collected and sample volumes were 

normalized to 500 μL in ChIP Buffer 1. We then utilized a Covaris S2 ultrasonicator at 

settings: amplitude = 20%, power = 5, cycles/burst = 200, for 16 minutes to shear chromatin 

to a uniform size centered around 200bp. Following shearing, the sample was adjusted to 

buffer IPP150 (10 mM Tris-HCl – pH 8.0, 150 mM NaCl, and 0.1% NP40) and 

immunoprecipitation of FLAG-tagged proteins was initiated by incubating samples 

overnight rotating at 4°C with 10 μg (1:55 dilution) M2 anti-FLAG antibody (Sigma, 

F1804). The following day, samples were incubated with protein G-coupled agarose beads 

(Pierce) rotating for 30 minutes at 4°C and 90 minutes at room temperature. Agarose bead-

protein complexes were pelleted by centrifugation for 2 minutes at 2,000xg at which point 

the supernatant was discarded, and the samples were subjected to five rounds of washing in 
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IPP150 buffer (rotate for 2 minutes, pellet bead-protein complex, discard supernatant). 

Increasing the stringency, the final two washes were carried out with TE, pH 8.0. Protein 

complexes were eluted off the beads in two steps. In the first step, protein-bead complexes 

were incubated in elution buffer 1 (50 mM Tris-HCl – pH 8.0, 10 mM EDTA, and 1% SDS) 

for 15 minutes at 65°C. After pelleting and saving the supernatant, protein-bead complexes 

were treated with TE – pH 8.0 and 1% SDS for 5 minutes at 65°C. Elution supernatants 

were pooled and the proteins were digested/cross-links were reversed by incubation with 1 

mg/mL Pronase for 2 hours at 42°C followed by 9 hours at 65°C. Immunoprecipitated DNA 

was subsequently column purified using QiaQuick PCR purification columns (Qiagen) and 

eluted twice with 20 μL 10 mM Tris-HCl, pH 8.5.

ChIP-seq Peak Control Dataset

To determine significance thresholds for peak inclusion in our data set we generated a ChIP-

seq control compendium consisting of 10 different sequencing data sets. Because no single 

control type captures all known or potential ChIP artifacts or biases we included an array of 

control types, including: wildtype H37Rv chromatin immunoprecipitated with and without 

anti-FLAG antibody, chromatin samples from uninduced expression-vector bearing cells 

immunopreciptated with and without anti-FLAG antibody, as well as chromatin samples 

from induced non-TF genes immunoprecipitated with anti-FLAG antibody.

Illumina Library Prep Sequencing

All libraries were prepared according to standard Illumina protocols. Samples were 

sequenced on the Illumina GAIIx sequencer, generating unpaired 30–50 million 40bp reads 

per sample.

Read Alignment & Peak Calling

Peak calling was carried out using an in-house algorithm outlined in Supplementary Fig. 10 

and available for download at http://networks.systemsbiology.net/mtb. Short reads were 

aligned to the H37Rv reference genome using Bowtie 0.12.7 with default parameters, 

resulting in 98% of reads being successfully aligned. Read pileups were converted to wiggle 

tracks for forward, reverse, and cumulative strands, and then searched for local extrema. We 

then estimated half width at half height for each local maximum (a de facto “peak”), and 

using nonlinear least squares optimization we found the optimal Gaussian or Gumbel model 

distribution that best fit the aligned reads. We assigned 0–1 scores based on relative height, 

width and drift from starting local maximum of each fitted peak. We then merged the 

forward, reverse, and cumulative results in to a “combo peak” and re-scored that triplet with 

the addition of score values for separation and relative heights of the forward and reverse 

strand peak centerpoints. The final score for a single ChIP peak was the product of [ScoreF 

* ScoreR * ScoreC * Sep * EqHts] on a 0–1 scale, with 1 being a “perfect” score.

Assigning Significance Scores to Called Peaks

Each sequencing data set was subjected to the “read alignment and peak calling” algorithm. 

To determine significance scores of experimental data, we collapsed the peaks (with 

respective scores) from the 10 control experiments described above into a single data set 
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containing 2027 scored “final” peaks as negative controls (Supplementary Table 5). For 

each scored peak in an experimental data set we measured the probability of identifying a 

comparably high scoring matched peak type in the control data set. Thus, an experimental 

peak with p = 0 indicates that no peaks in the negative control set had an equivalently robust 

score. Similarly, a peak with a p value of 0.01 has a peak quality score better than 99% of all 

peaks identified in the negative control set. A table with scoring metrics and significance 

scores for all DNA binding proteins assayed, all peaks, is provided in Supplementary Table 

1.

RNA Isolation

RNA was isolated as described previously55. Briefly, cell pellets in Trizol were transferred 

to a tube containing Lysing Matrix B (QBiogene, Inc.), and vigorously shaken at max speed 

for 30 seconds in a FastPrep 120 homogenizer (Qbiogene) three times, with cooling on ice 

between steps. This mixture was centrifuged at max speed for 1 minute and the supernatant 

was transferred to a tube containing 300 μL chloroform and Heavy Phase Lock Gel 

(Eppendorf North America, Inc.), inverted for two minutes, and centrifuged at max speed for 

five minutes. RNA in the aqueous phase was then precipitated with 300 μL isopropanol and 

300 μL high salt solution (0.8M Na citrate, 1.2M NaCl). RNA was purified using an RNeasy 

kit following manufacturer’s recommendations (Qiagen) with one on-column DNase 

treatment (Qiagen). Total RNA yield was quantified using a Nanodrop (Thermo Scientific).

Microarray analysis

RNA was converted to Cy dye-labeled cDNA probes as described previously27. Briefly, for 

all microarrays described here, 3 μg of total RNA was used to generate probes. Sets of 

fluorescent probes were then hybridized to custom NimbleGen tiling arrays consisting of 

135,000 probes spaced at ~100 bp intervals around the M. tuberculosis H37Rv genome 

(NCBI Geo Accession #: GPL14896). Arrays were scanned and spots were quantified using 

Genepix 4000B scanner with GenePix 6.0 software. These data were exported to 

NimbleScan for mask alignment and robust multichip average (RMA) normalization56. 

Subsequent statistical analysis and data visualization was carried out using Arraystar 

software. To compare against a standard, baseline, expression set, median expression values 

were calculated for all genes across all input microarrays (N=702). Altered gene expression 

was considered significant if it produced an empirical Bayes method p <0.01. Raw 

microarray data are available at the gene expression omnibus (GEO) in series GSE59086. 

Additional details can be found in24.

Promoter window size analysis

Receiver operation curves (ROCs) were used for assessing the accuracy of promoter 

window sizes to associate binding with target regulation. Upstream promoter window sizes 

were tested every 10 nucleotides from −10 to −200 upstream of designated start sites and at 

varying nucleotide lengths to −1500 upstream. Similarly, window sizes were tested every 10 

nucleotides from +10 to +200 downstream. The set of ChIP-seq binding events with target 

regulation was formed by instances within a given window size that a particular TF has a 

significant overlap of proximal gene targets and differentially expressed genes (as 

determined by Rustad et al24. The overlap was computed using hypergeometric enrichment 
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p-values. The ROC curves were formed by considering the overlap of each possible pairwise 

combination of TFs and measuring the sensitivity and specificity of the overlap, where 

sensitivity represents the fraction of differentially expressed target genes that had a binding 

peak within the promoter window, and specificity represents the fraction of non-

differentially expressed target genes that did not have a binding peak within the promoter 

window. The R open-source package pROC was used to calculate AUC values of tests 

performed at each window size57. The optimal window size was determined by the largest 

AUC in the upstream and downstream regions and resulted in a −150:+70 window. As a 

result, genes targeted by a particular TF were identified by having a significant ChIP-Seq 

binding peak in the −150:+70 window of their start site or by being part of an operon with a 

binding site in the −150:+70 region of an upstream gene in the operon.

Identifying consensus motifs from ChIP-seq data

For consensus motif determination we searched for conserved DNA signatures within +/- 50 

nucleotides of ChIP-seq peak centers using MEME36. Peaks were further subdivided into 

subsets that were only within or outside of our defined promoter windows (thus there are 

three subsets for each TF – “all” significant peaks, those “in” promoters, and those “out”). 

We performed each motif search twice for each grouping – one unconstrained and one 

constrained to detect only palindromes. For each motif, we computed the significance of the 

distribution of its locations relative to the corresponding peak centers, relative to a uniform 

null distribution, using the Komolgorov-Smirnov (KS) test. We also scanned each motif in 

an unbiased manner across the entire genome using FIMO58 and computed whether these 

scanned locations were significantly located within +/- 50 nt of the corresponding ChIP-seq 

peak locations relative to randomly sampled locations throughout the genome. Motifs with 

MEME E-values (E <=1) and peak location (p <=0.05) were considered significant.

Recombinant Rv0494 Protein Purification

The Rv0494 CDS was subcloned in to the pET28b expression vector (Novagen/EMD 

Millipore). The Rv0494 locus was PCR amplified from purified H37Rv gDNA, adding an 

XhoI restriction endonuclease site to the 3′ end of the cassette. The primer specific to the 5′ 

end of the gene cassette contained an NdeI RE site as well as the recognition motif for the 

HRV 3C protease. After ligation pET28-Rv0494Ab inducibly expressed Rv0494 with an N-

terminal 6x-HIS tag upstream of the HRV 3C cut site and native Rv0494 sequence. For 

recombinant protein production we transformed BL21(DE3) E. coli with pET28-Rv0494Ab. 

Cultures were grown to an OD600 of 0.5 in Terrific Broth before treatment with 100 μM 

IPTG shaking overnight at 18°C. Following sonication, recombinant protein was recovered 

from crude lysates by FPLC metal affinity chromatography and size exclusion 

chromatography. To remove the 6x-HIS tag from the final protein product, recombinant 

Rv0494 was subjected to HRV 3C protease (Novagen) digestion (rotating overnight at 4°C). 

Following cleavage, Rv0494 solutions were again passed over a metal affinity column to 

remove the liberated epitope tag and the HIS-tagged protease. Final purification was 

effected through size exclusion chromatography. Protein aliquots were snap frozen in 

storage buffer (150 mM NaCl, 20 mM Tris-HCl – pH 7.5, 5% glycerol) and kept at −80°C 

for subsequent applications. The purified 26kDa Rv0494 protein contains two non-native 

amino acids at the N-terminus.
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Universal Electrophoretic Mobility Shift Assays

Similar to the technique described in42, for universal electrophoretic mobility shift assays 

(uEMSAs), three oligos (Integrated DNA Technologies) were resuspended to 50 μM in 

dsDNA annealing buffer (10mM Tris-HCl – pH 7.5, 100 mM NaCl, 1 mM EDTA). In this 

scheme, oligo 1 consisted of 30 nucleotides taken directly from the Rv3094c-Rv3095 

intergenic region in the M. tuberculosis genome, or the consensus motif sequences flanked 

by GC-matched randomized nucleotides. Oligo 2 consisted of 42 nucleotides: the reverse 

complement of the oligo 1 30-mer, as well as a 12 nucleotide “scaffold” sequence at the 3′ 

end to which oligo 3 is the reverse complement. Oligo 3 consisted of a 12-mer with a IR680 

or IR800 infrared dye covalently coupled to the 5′ end. The IR680 12-mer scaffold/universal 

sequences were different than the IR800 12-mer. The three ssDNA oligos were combined to 

a final concentration of 50 μM, vigorously agitated, and heated to 95°C for 10 minutes on a 

benchtop heat block. The entire metal block was subsequently removed from heat and 

allowed to cool to room temperature over a period of ~3 hours protected from light. The 

resulting dsDNA product became the substrate for subsequent EMSA experiments. Purified 

recombinant Rv0494 protein was removed from storage buffer (150 mM NaCl, 20 mM Tris-

HCl – pH 7.5, 5% glycerol) and exchanged to sterile-filtered reaction buffer (10 mM Tris-

HCl – pH 8.0, 10 mM NaCl, 1 mM DTT, 1 mM EDTA, 5 ng/μL BSA) using a 10kDa-cutoff 

spin column (Amicon). In the present study, Rv0494 was present at 0.1 μM for the 

Rv3094c-Rv3095 and 17-mer consensus motif uEMSA experiments. Rv0494 was present at 

2.0 μM for the 9-mer consensus motif uEMSA experiments. 50 nM specific, IR680-labeled, 

dsDNA target was used in all reactions. For specific and non-specific competition 

experiments, 20x molar excess IR800-labeled dsDNA was added to the reaction mixture 

(final concentration = 1 μM). All components of a reaction were combined, mixed, and 

incubated protected from light for 30 minutes at room temperature. 15 μL of reaction 

product was loaded on to 10% polyacrylamide TBE gel and run at a constant 150V for 75 

minutes, protected from light. Owing to the lower melting temperature of the universal 12-

mer used in these experiments (~65°C), the gel box was contained in an ice bath for the 

duration of electrophoresis. The gel was washed once in PBS prior to visualization on a Li-

cor Odyssey scanner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A global view of DNA binding
A) TF binding sites identified by ChIP-seq plotted with Circos59. Sense (blue) and antisense 

(orange) CDS and operon boundaries illustrated with black edges. The 4.4 Mb H37Rv 

chromosome is divided in to non-overlapping 50bp windows, and green spikes represent the 

total number of TF binding events within each window. B) Histogram of number of TF 

binding events per 50 bp window. C) Number of ChIP binding events (out-degree) for each 

of the 156 DNA binding proteins with at least one binding site.
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Figure 2. Global view of DNA binding and transcriptional regulation in MTB
A) Plot of binding distribution in 1kb nucleotide window (−500 to +500) surrounding CDS 

or transcription start sites. ROC/AUC analysis indicated that the optimal promoter window 

size is −150 to + 70 nucleotides (indicated by vertical dashed lines and shading of 

histogram). Binding events correlated with 1.5-fold induction or repression in the over-

expression dataset24 are depicted in red and green, respectively. B) The relationship between 

the number of binding events detected vs. the number of transcriptional changes associated 

with induction of each TF in this study. Rv0494 (orange triangle) is an example of a TF with 

prolific binding but limited differential gene expression. Additional genes discussed in text 

highlighted in yellow with symbols as follows: Rv1657/ArgR (downward triangle), 

Rv1846v/BlaI (square), Rv3133c/DosR (octagon), Rv3849/EspR (diamond).
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Figure 3. Rv0494 as an example of widespread binding and local gene regulation
Rv0494 binding and regulation of gene expression was plotted using Circos59, with sense 

(blue) and antisense (orange) CDS and operon boundaries illustrated with black edges. The 

Rv0494 gene locus is positioned at ~2 o’clock, and ChIP binding sites are denoted at the 

terminus of each edge radiating out from Rv0494 (peaks of p<0.001 indicated by purple 

lines, 0.001<p<0.01 indicated by yellow lines). Rv0494 consensus motifs corresponding to 

peak significance thresholds are indicated by the color-matched ribbons. Genes that exhibit 

significant differential regulation (>2-fold change with empirical Bayes method p<0.01 from 

5 biological replicate microarrays) upon induction of Rv0494 are indicated by blue (gene 

repression) and red (gene induction) bars. The Rv0494 ChIP binding site between regulated 

genes Rv3094c-Rv3095 is shown connected by a gray ribbon.
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Figure 4. Universal electrophoretic mobility shift assay (uEMSA) validation of Rv0494 binding. 
A)
Schematic of DNAs used in uEMSA experiments. Three DNAs are annealed to form a 

single dsDNA product: a specific query sequence (orange box) is annealed in a 3-piece 

dsDNA fragment to a unique 12-mer sequence covalently coupled to a reporter dye. In these 

experiments, the specific query DNA was labeled with IR680 (red) and specific or non-

specific competitor DNAs were labeled with IR800 (green). B) Purified recombinant 

Rv0494 binds specifically to ChIP-identified wildtype sequence (left panel), the 17-mer 

consensus motif (middle panel), and the 9-mer consensus motif (right panel). In the absence 

of protein, dye-coupled DNA does not shift (lane 1); however, the protein-DNA complex 

runs at a higher molecular weight (lane 2). This protein-DNA complex persists in the face of 

20x molar excess green-labeled non-specific competitor DNA (lane 3), but can be 

outcompeted by the addition of 20x molar excess green-labeled specific competitor DNA 

(lane 4).
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