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Abstract

Integrative analytical approaches are needed to study and understand T cell motility as it is a 

highly coordinated and complex process. Several computational algorithms and tools are available 

to track motile cells in time-lapse microscopy images. In contrast, there has only been limited 

effort towards the development of tools that take advantage of multi-channel microscopy data and 

facilitate integrative analysis of cell-motility. We have implemented algorithms for detecting, 

tracking, and analyzing cell motility from multi-channel time-lapse microscopy data. We have 

integrated these into a MATLAB-based toolset we call TIAM (Tool for Integrative Analysis of 

Motility). The cells are detected by a hybrid approach involving edge detection and Hough 

transforms from transmitted light images. Cells are tracked using a modified nearest-neighbor 

association followed by an optimization routine to join shorter segments. Cell positions are used to 

perform local segmentation for extracting features from transmitted light, reflection and 

fluorescence channels and associating them with cells and cell-tracks to facilitate integrative 

analysis. We found that TIAM accurately captures the motility behavior of T cells and performed 
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better than DYNAMIK, Icy, Imaris, and Volocity in detecting and tracking motile T cells. 

Extraction of cell-associated features from reflection and fluorescence channels was also accurate 

with less than 10% median error in measurements. Finally, we obtained novel insights into T cell 

motility that were critically dependent on the unique capabilities of TIAM. We found that 1) the 

CD45RO subset of human CD8 T cells moved faster and exhibited an increased propensity to 

attach to the substratum during CCL21-driven chemokinesis when compared to the CD45RA 

subset; and 2) attachment area and arrest coefficient during antigen-induced motility of the 

CD45A subset is correlated with surface density of integrin LFA1 at the contact.
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1. Introduction

Mechanistic investigations into cell motility rely heavily on live-cell imaging and the 

subsequent analysis of time-lapse microscopy (TLM) data. A fundamental task herein is to 

perform automated tracking of cells. A variety of approaches have been developed for 

automated tracking of cells and also been made available to the research community as 

software packages or tools (Carpenter et al., 2006; de Chaumont et al., 2012; Meijering et 

al., 2012; Meijering et al., 2009; Padfield et al., 2011; Schindelin et al., 2012; Zimmer et al., 

2006). In a common framework referred to as ‘tracking by detection’, cell detection is 

performed in each frame independently, and the detection results are joined together 

between frames via cell tracking algorithms. A popular basis for tracking known as ‘nearest 

neighbor’ associates a detected cell in a given frame with the nearest detected cell in an 

adjacent frame. Recently, model-based methods have been developed for cell tracking 

(Dufour et al., 2011; Maska et al., 2014; Padfield et al., 2011). These methods comprise 

model-based representations of cells that evolve between subsequent frames to perform cell 

tracking.

Motility of cells is a highly complex, dynamic and coordinated mechano-chemical process 

that is influenced by hundreds of proteins (Lauffenburger and Horwitz, 1996; Parent and 

Weiner, 2013; Ridley et al., 2003). Study of T cell motility, along with that of other 

leukocytes, presents additional challenges when compared to the motility of cells of 

mesenchymal and epithelial origin. Leukocytes can move at speeds upwards of 10 μm/min 

and exhibit multiple modes of motility with remarkable flexibility to shift from one mode to 

the other (Friedl and Weigelin, 2008; Jacobelli et al., 2009; Lammermann and Sixt, 2009; 

Sixt, 2011). Leukocytes can also move with or without attachment to the substratum. 

Further, there is appreciable heterogeneity in the motility of leukocytes within a population. 

Thus, the study of leukocyte motility necessitates integrative experimental and analytical 

approaches to develop coherent understanding of the process (Zhang et al., 2013). Multi-

channel or multimode microscopy offers a powerful platform to collect data and enable 

integrative analysis (Welch et al., 2011). An example of integrative analysis is relating 

polarization of a molecule of interest to thymocyte motility (Melichar et al., 2011; Pham et 

al., 2013). In order to conduct integrative analysis, one needs to be able to track cells and 

Mayya et al. Page 2

J Immunol Methods. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



integrate information from multiple image series. Packages such as Volocity (from Perkin 

Elmer), CellProfiler (Carpenter et al., 2006) and TACTICS (Pham et al., 2013) have the 

basic framework for tracking cells and associating information from additional image series 

to the tracks.

Interference reflection microscopy (IRM) provides information on adhesion and spreading 

on the substratum due to interference between light reflected from the cover-glass and the 

apposing cell membrane (Limozin and Sengupta, 2009). As T cells can move with or 

without attachment to the substratum and change contact area continuously, it is beneficial 

to include IRM along with fluorescence and transmitted light modes of microscopy. 

However, IRM is extremely sensitive to focus and planarity drifts as a result of which the 

IRM image series typically have spatiotemporally varying background and foreground 

intensity values. This presents a challenge to the aforementioned tools for integrative 

analysis as they rely on global thresholding for segmenting cells and generally report 

intensity values of additional channels upon global segmentation in the primary channel. It 

is desirable to treat individual image channels separately and also perform local 

segmentation.

In order to be able to accurately integrate IRM data, along with fluorescence and transmitted 

light data in 2D image series, we have developed a MATLAB-based toolset that we call 

‘Tool for Integrative Analysis of Motility’ (TIAM). As a novel strategy, we have used 

centroid positions obtained from detection and tracking of cells to perform local 

segmentation for extracting features from transmitted light, reflection and fluorescence 

channels and then associating them back with cells and cell-tracks to facilitate integrative 

analysis. An intuitive user interface has been built onto TIAM to guide through the steps for 

choosing parameters to perform detection and subsequent analysis of motility 

characteristics. An additional user interface for dynamic visualization of selected tracks is 

also provided. As our main interest lies in T cell biology, we have validated the 

implemented algorithms on chemokine-induced and antigen-induced motility of human CD8 

T cells and obtained novel insights that were critically dependent on the unique capabilities 

of TIAM.

2. Implementation

The overall approach for integrative analysis of motility by TIAM is summarized in Figure 

1. Detection, tracking, feature extraction, and track editing algorithms were implemented in 

MATLAB (from Mathworks). The user interface to facilitate user-inputs was implemented 

in Java. A second user interface for dynamic visualization of individual or pairs of tracks 

was implemented in MATLAB. The TIAM software project has been deposited in GitHub 

for free access to the source code (https://github.com/willieneis/TIAM). A detailed user 

guide, demo and the URL link for benchmark datasets are provided in the Github repository. 

Additional description of algorithms can be found in the supplementary methods section.

2.1 Detection of cells

TIAM is equipped to detect and track cells in transmitted light image series, such as those 

acquired by bright-field, differential interference contrast (DIC), or phase-contrast 
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microscopy. We chose this approach for multiple reasons: a) Cell boundaries can be difficult 

to discern from fluorescence information when cells are in a crowded environment; the 

inherent nature of transmitted light imaging ensures that cell boundaries provide some 

contrast even in a crowded environment. b) Using transmitted light imaging for tracking of 

cells frees up a fluorescence channel for acquiring additional information about cells’ 

behavior. c) Using transmitted light microscopy instead of fluorescence microscopy allows 

for long-term live-cell imaging as phototoxicity is minimized.

TIAM’s cell detection strategy involves finding cell-shaped patterns in the set of edges 

detected in an image. A Canny edge filter (Canny, 1986) is used to produce a binary image 

depicting all edges in a given video frame, and a circular Hough transform (CHT) (Duda and 

Hart, 1972) operates on this binary image to detect individual cells (Figure 2a–2d). This 

two-step strategy has been applied previously to detect nuclei in zebra fish embryos (Melani 

et al., 2007). The Hough transform is a robust method for detecting parameterized curves in 

images, where the task of detecting complex patterns of pixels (a costly global search 

problem) is transformed into the task of constructing peaks in a parameter space. The Hough 

transform carries out a voting process, where each edge pixel casts votes on curve 

parameters with which it is consistent; afterwards, the locations in the parameter space that 

have gained a sufficient number of votes are returned. Local maxima in this parameter space 

can be thought of as centroids of cells. This strategy is beneficial for detecting cells with 

low-contrast boundaries due to the ability of the CHT to detect shapes based on non-

contiguous and partial set of edges. Furthermore, it bypasses the need for segmentation of 

individual cells and thus aid in the accuracy of detection in high-density environments 

(Figure S1 for example). We have used Tao Peng’s implementation of the CHT 

(CircularHough_Grd from the MATLAB File Exchange repository) as it considers a radius 

range during the voting process and includes an additional parameter for searching maxima 

over imperfect circular shapes. Accordingly, we have found our implementation to detect 

polarized T cells as well as cells of different types, morphologies and at different cellular 

densities in images acquired by all three aforementioned transmitted light microscopy 

techniques (Figure 2, Figure S1, Figure S2, and Videos S1–3). The individual parameters 

involved in the detection step are described further in the supplementary methods section. 

Parameter values typically used in our T cell imaging experiments are also provided.

Successful detection is critical for all the ensuing computational steps. Therefore we have 

developed a graphic user interface in Java to interactively change parameters of the Canny-

edge filter and CHT to achieve successful detection of cells in transmitted light images. The 

user guide provides an example of this process to help with intuitive selection of parameter 

values. The user is prompted to adjust the scale of the image such that the cell size is similar 

to the example provided in the user guide. This attempts to ensure that the default radius 

range used during CHT voting process works well. Similarly, edge detection and additional 

CHT parameters can be chosen by comparison to the example images of these stages. The 

centroid positions are transformed back to the original scale at the end of the detection step, 

before proceeding with tracking cells.

Mayya et al. Page 4

J Immunol Methods. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.2 Tracking

Tracking in TIAM is carried out in two steps. In the first step, a modified nearest neighbor 

association algorithm is applied to the outputs of the cell detection step to yield short track 

‘segments’ (Figure S3a). At each time step t, each cell is linked to the spatially nearest 

detected cell of the previous time step t-1, provided the nearest detected cell is within a 

maximal allowed distance r. This process proceeds in this manner only when cells are 

sufficiently separated and there is no tracking ambiguity. If there is more than one cell 

within r, the algorithm returns the track segment that has been produced up to that frame and 

initiates new tracks with neighboring cells that caused the ambiguity. This typically happens 

in cases when cells cross paths or where they are present at high local density. Thus, these 

track segments represent sequences over which the algorithm can confidently provide 

tracking results. We preferred the nearest neighbor algorithm for its simplicity and 

intuitiveness, both in implementation and performance, when compared to the state of the art 

model-based tracking approaches. In addition, we prefer to use longer time-intervals to 

reduce phototoxicity during long-term (over an hour) multi-channel time-lapse imaging. 

With T cells being highly motile, longer time-intervals may not provide overlapping cells in 

subsequent frames, which is a restrictive requirement of contour evolution based techniques 

(Padfield et al., 2011). Although the nearest neighbor algorithm fails to perform well at high 

cell densities, as discussed later, we have obtained accurate tracking with about fifty cells in 

the field of view.

In the second step, an assignment algorithm is used to join shorter segments end-to-end into 

longer cell tracks (Figure S3b). In order to perform segment joining, a similarity is first 

defined between every pair of segments based on compatibility factors such as their start/end 

frame, location, and speed. Then the Hungarian algorithm (Munkres, 1957) is used to find a 

globally optimal mapping between segments based on the similarity matrix (Bise et al., 

2011; Jaqaman et al., 2008; Perera et al., 2006). Out of these mapped assignments, segments 

are only joined if their similarity falls above some threshold. The two-tiered approach to 

tracking aims to be computationally efficient by implementing an unsophisticated, greedy 

nearest neighbor algorithm when the tracking scenario is simple, and a more complex set of 

computations using the nearest neighbor results when the tracking scenario is ambiguous.

The tracking algorithms are explained in detail in the supplementary methods section along 

with the parameter values used. The parameters for the tracking algorithms are hard-coded 

in TIAM. But we have provided information in the user guide as to where in the code the 

parameter values can be changed if desired. Information specific to the image series can be 

specified through the graphic user interface in order to calculate the motility characteristics 

of cells (see user guide).

2.3 Feature extraction and data integration

TIAM is designed to make use of the multi-channel image series in order to extract 

additional information on tracked cells to facilitate integrative analysis and provide insights 

into T cell motility. The feature extraction algorithms implemented in TIAM aim to retrieve 

physical features such as the area of attachment to some underlying substrate (from the 

reflection channel), polarity (from the transmitted light channel), and fluorescence intensity 
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(from up to two fluorescence channels), and store/report them along with motility 

characteristics such as the cell’s speed, turn angle, arrest coefficient, and confinement index 

(see Supplementary methods for description). The user interface provides options to specify 

the channels and the features to be extracted (see TIAM user guide). Due to the consistent 

perspective for all image channels, tracking results from the transmitted light image channel 

can be directly associated with secondary channels. The centroid of cells inferred at the 

detection step is used to link local pixel information from these secondary channels to the 

tracks (Figure 1).

Discerning the boundary contour of a given cell is a common routine that is applied to any 

of the image channels, which can be defined as the Region of Interest (ROI) to calculate the 

desired features from that image channel. Given a centroid position, a square box of a 

predetermined size around the centroid is used to isolate and select the local image. This 

local image ideally contains only the cell of interest. For the reflection and fluorescence 

channels, the local image is segmented via Otsu’s method (Otsu, 1979) to give the cell 

boundary in that channel. In order to discard pixels associated with portions of touching 

neighboring cells, the Watershed algorithm (Meyer, 1994) is used on the distance transform 

of the initial segmented image. For the transmitted light channel, Canny edge detection 

(Canny, 1986) is used first to discern cell boundaries in the local image. In order to discard 

pixels associated with portions of touching neighboring cells, the Watershed algorithm is 

used on the CHT of the edge image. The largest region defined by the Watershed algorithm 

whose centroid is within a given distance from the center of the box is considered as the cell 

of interest.

The local segmentation approach was primarily implemented to handle reflection image 

series that tend to have spatiotemporally varying foreground and background pixel intensity 

values, which precludes the use of global thresholding. In addition, we found during the 

process of implementation that the Watershed algorithm was more reliable on the local 

images than the global images.

2.4 Additional features in TIAM

TIAM allows for batch processing of experimental datasets and can automatically 

distinguish the cell types based on differential fluorescent vital dye-labels (see 

Supplementary methods and user guide). TIAM also provides the option of having the 

selected image channel with the outlines of cells overlaid in a tiff image series. This can 

provide a visual assessment of the quality of segmentation of individual cells in that channel. 

A stand-alone MATLAB based user interface is provided to visualize individual or pairs of 

tracks in the video-mode (see user guide). This allows for manual inspection of tracking 

results from TIAM. This user interface is also intended to help in manually recording the 

track and frame numbers of desired corrections in track assignments. TIAM also provides a 

stand-alone track-editing feature that uses the manually compiled lists of desired corrections 

in track assignments (see user guide). The track-editing algorithm is a two-step process, 

where tracks are first split at specified frames (Figure S4). Then the specified tracks and/or 

sub-tracks, either resulting from breakages in the first step or the ones that were missed by 
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the algorithm, are joined together. Icy, an open source image analysis platform, also 

provides a plug-in for viewing and editing tracks (de Chaumont et al., 2012).

2.5 Evaluation of performance of detection and tracking

Performance evaluation, also referred as performance analysis, in image analysis compares 

the results obtained from an automated procedure against the manually established ‘ground 

truth’. Herein, a ground truth track represents the ‘true’ positions of a cell as a sequence of 

bounding boxes. We used the Video Performance Evaluation Resource (ViPER) software 

(Doermann and Mihalcik, 2000) to manually draw bounding boxes around cells in each 

video frame and index the sequences of bounding boxes corresponding to each individual 

cell to designate tracks.

Performance evaluation metrics were employed to quantitatively and comprehensively 

assess the detection and tracking performance of TIAM and the third-party tools. We used 

the Sequence Frame Detection Accuracy (SFDA) and Average Tracking Accuracy (ATA) 

metrics (Kasturi et al., 2009) as these can be computed in a fully automated fashion and thus 

allow for reproducible quantification of the success of detection and tracking of objects. 

Further, they do not suffer from the risk of human error or bias. These metrics have been 

adopted as standardized metrics by the Video Analysis and Content Extraction (VACE) 

program (http://marathon.csee.usf.edu/vace-links.html) and the Classification of Events, 

Activities, and Relationships (CLEAR) consortium (www.clear-evaluation.org); which are 

two large-scale and community-wide efforts concerned with video tracking and interaction 

analysis. The metrics are based on Jaccard Similarity (Figure S5, and Supplementary 

methods). In order to compute SFDA and ATA, a one-to-one correspondence between 

ground truth and result must be established. To establish this mapping we employed the 

Hungarian algorithm (Munkres, 1957) with metrics based on Jaccard Similarity used to 

construct the similarity matrix (see Supplementary methods for details).

We have consolidated the software routines to carry out performance analysis in a separate 

MATLAB-based suite that we call PACT (Performance Analysis of Cell Tracking). The 

PACT code, its user guide and relevant ground truth datasets are available at https://

github.com/willieneis/TIAM/tree/master/PACT/. The user guide also includes specific 

instructions on using ViPER for ground truth annotation.

2.6 Evaluation of performance of feature extraction

Performance of feature extraction was also evaluated against ground truth. Outlines drawn 

manually or by semi-automated procedures in ImageJ (Schneider et al., 2012) were listed as 

ROIs and used as ground truth (see Supplementary methods for details). A one-to-one 

correspondence between individual cells in ground truth and TIAM result was obtained 

using the Hungarian algorithm (Munkres, 1957). The similarity matrix for the Hungarian 

algorithm was constructed for each frame using the distance between centroids of every 

possible pairing of cells in TIAM result with those in the ground truth. Once the one-to-one 

correspondence is achieved, the quantified features obtained from ground truth were 

compared against those from TIAM.
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3. Experimental methods

CD8 T cells were isolated from human peripheral blood mononuclear cells (from New York 

Blood Center) by the RosetteSep Method (StemCell Technologies). CD45RA+ve and 

CD45RO+ve subsets were isolated using paramagnetic beads coated with CD45RO 

antibody (Miltenyi Biotec). These subsets were differentially labeled with CMRA and 

CMFDA vital dyes (Molecular Probes) after three washes in PBS to remove trace levels of 

extracellular protein. Cells were cultured in phenol-red free RPMI medium supplemented 

with 25 mM HEPES, 1 mM sodium pyruvate and 10% fetal bovine serum (also used as 

imaging medium) until imaging. Fab fragments generated from TS2/4 non-blocking 

antibody (Huang and Springer, 1995) were labeled with Alexa Fluor 488 (Molecular Probes) 

and used to stain for integrin αLβ2 (LFA1) during antigen-induced motility. Pre-treatment 

with the TS2/4 Fab or pharmacological inhibitors was for 20 minutes at 37 °C. The 

following pharmacological inhibitors were used: myristoylated pseudosubstrate peptides of 

PKCα and PKCθ (20 μM; from Calbiochem) inhibit the respective kinases by binding to the 

active site in a competitive manner (Eichholtz et al., 1993); C20 (1 μM) is a lead compound 

from Boehringer Ingelheim that acts as a potent inhibitor of PKCθ by non-competitive 

binding to the active site (Cywin et al., 2007).

Chemokinesis experiments were performed essentially as previously described (Woolf et al., 

2007). Circular coverslips were spotted sequentially with 10 μg/ml human CCL21 (R&D 

systems, Minneapolis, MN) for two hours and then with 2 μg/ml murine ICAM1 for one 

hour (ectodomain of ICAM1 tagged with 12x His and produced in S2 insect cells in house) 

at 37 °C. Majority of CD45RA+ve T cells did not show any motility on ICAM1-coated glass 

alone. FCS2 Bioptechs flow chambers were assembled and blocked with 5% HSA. One 

million cells were introduced into the flow cell and immediately imaged. Imaging was 

conducted at 37 °C on a Zeiss LSM710 confocal microscope operating under standard 

settings enclosed in an environmental chamber using a 25x 0.8 NA oil immersion objective 

(equipped with a DIC prism). Spectral array detectors were set to record fluorescence from 

vital-dyes. Reflected light from the 543nm laser was recorded to provide information on 

contact area of attached cells based on the interference with light reflected from closely 

apposed plasma membrane.

Antigen induced motility was imaged in #1 8-well Labtek chambers (Nunc). The chambers 

were coated with 2μg/ml each of Okt3 antibody (Ebioscience) and ICAM1 for 3 hours at 37 

°C. Three hundred thousand cells were introduced into the wells and imaged at 37 °C on a 

Zeiss LSM510 confocal microscope operating under standard settings enclosed in an 

environmental chamber using a 40x 1.3 NA oil immersion objective (equipped with a DIC 

prism). Reflection and fluorescence channels were included as described above.

4. Results

We evaluated the results from TIAM against manually established ground truth by visual 

inspection as well as by use of quantitative metrics. We have also compared the performance 

of TIAM with other tools. We chose two benchmark datasets on fluorescent-labeled T cells 

subjected to antigen-induced and chemokine-induced motility that provided different 
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experimental and acquisition settings as well as different motility characteristics (Table 1). 

We collected both DIC and fluorescence images in parallel, in order to perform tracking 

using both image series and compare the results.

4.1 Evaluation of performance of detection and tracking

Tracking of cells in transmitted light image series in TIAM is performed by a two-tiered 

approach that involves linkage of neighboring cells in consecutive frames followed by 

joining of short segments by a global optimization routine (Figure S3). To validate the 

segment joining algorithm in a principled manner, we computed the ATA before and after 

running the algorithm on a set of ground truth tracks that had been synthetically broken. The 

accuracy improved drastically after joining the broken segments, which implies correct pairs 

of segments were joined by the algorithm (Figure S6). Including the segment-joining 

algorithm in TIAM improved the ATA values for both the benchmark experiments (Figure 

S7). The improvement in ATA, expectedly, was more when less than optimal r-value was 

used for nearest neighbor association.

Tracks of cells obtained from TIAM showed good overlap with those from manually 

established ‘ground truth’ (Figure 3a, Video S1 and S2). This suggests that detection and 

tracking results from TIAM are reliable. Visual inspection of videos revealed that the fastest 

moving cells escaped being tracked. In some other cases cells were not tracked 

continuously, leading to shorter tracks and/or multiple shorter segments (sub-tracks) 

corresponding to the same cell. This is most likely due to the failure of nearest neighbor 

linkage during the periods of fast motility, especially in crowded areas. This observation 

provides an explanation for obtaining more tracks than in the ground truth and for under-

estimation of mean track-length (Table 1, see below). While the modified nearest neighbor 

algorithm attempts to minimize wrong track assignment by not doing any track assignment 

in case of ambiguity, tracking errors can nonetheless occur. In order to further characterize 

tracking errors, we manually recorded different types of errors in track assignment by visual 

inspection using the stand-alone track visualization module of TIAM. Overall, the error rate 

in track assignment was estimated be around 1% (Figure S8). Thus, TIAM provides reliable 

detection and tracking of cells in transmitted light image series. Association with the nearest 

cell in the subsequent frame is the basis for tracking by the modified nearest neighbor 

algorithm in TIAM. This association is carried out if the cell in the subsequent frame 

happens to be within a threshold distance r. However, erroneous associations may occur 

depending on the value of this threshold distance, especially at high densities of cells or in 

crowded regions. In the case of TIAM, tracking accuracy is quite robust to changes in the 

value of threshold distance r, at least at the density of cells present in the benchmark 

experiments (Figure 3b, Table 1).

Finally, we compared the overall performance of TIAM with some of the other well-known 

tools such as DYNAMIK (Jaeger et al., 2009), Icy (de Chaumont et al., 2012), Imaris (from 

Bitplane), and Volocity (from PerkinElmer). SFDA and ATA provide a direct way for such 

comparisons as they offer a single, comprehensive measure of accuracy of detection and 

tracking, respectively. SFDA and ATA were computed for results from all the tools on both 
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the benchmark experiments. TIAM performed better than the other tools both in detection 

and tracking (Table 1, Video S1 and S2).

4.2 Performance analysis of feature extraction

Extraction of features from the multi-channel image series and integration of these features 

with tracking results is a unique capability of TIAM. Whereas tools such as Volocity, 

CellProfiler and TACTICS can report on additional channels based on the mask created by 

global thresholding of the primary channel, TIAM handles every channel separately and 

performs local segmentation in each one of them. We sought to assess how well TIAM is 

able to perform in segmenting transmitted light, reflection, and fluorescence images and in 

extracting information on polarity, contact area, and mean fluorescence intensity, 

respectively. We again did this by comparing against ground truth that was established 

manually based on personal expertise. Outlines of cells in DIC, reflection and fluorescence 

images drawn by TIAM were in good agreement with those from the ground truth (Video 

S3–S5). Measurement of aspect ratio as a readout of morphological polarity from outlines in 

DIC image series was reasonable, but not very good (Figure 4a, Figure S10). We have 

nonetheless decided to include it as part of TIAM due to its potential value for interpretation 

on the biology being studied. The contact area and mean pixel intensity of cells measured 

from outlines of cells from reflection and fluorescence images, respectively, were in good 

agreement with the ground truth (Figure 4b and 4c). The median absolute error in 

measurements was below 10% for both (Figure S10).

4.3 Insights into motility of human CD8 T cells

We used TIAM to gain new insights into chemokine driven motility in primary human CD8 

T cells. T cells are known to exhibit fast amoeboid motility during chemokinesis triggered 

by CCL21 that is coated onto a glass coverslip (Woolf et al., 2007). By using two inhibitors 

with different mode of action we show that PKCθ, but not PKCα, is involved in CCL21-

driven chemokinesis (Figure 5a). We also observed a concomitant decrease in 

morphological polarity upon inhibiting PKCθ. While the role of PKCθ is well established in 

T Cell Receptor (TCR) signaling, our results point to its involvement in chemokine 

signaling as well. The cells also exhibited an inverse relationship between speed and turn 

angle under the influence of inhibitors and also within the control population (Figure 5a and 

Figure S11). This is consistent with a mode of motility wherein the cells alternate between 

moving and turning in a motility cycle with periods of turning coinciding with slower 

movement (Shenderov and Sheetz, 1997), which has also been observed in T cells 

(Sylwester et al., 1995). However, the observation of negative correlation within the 

population is novel.

We extended the use of TIAM for analyzing multi-channel image series. By differentially 

labeling the CD45RA and CD45RO subsets with vital fluorescent dyes, we captured the 

motility behavior of the two major subsets in the same experiment. By using TIAM, we 

were able to associate information from fluorescence and reflection images to the 

appropriate tracks and track-positions of cells. The CD45RO+ve cells moved faster and 

exhibited an increased propensity to attach to the substratum during CCL21-driven 

chemokinesis when compared to the CD45RA+ve cells (Figure 5b, Video S6). Interestingly, 
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cells from both subsets exhibited increased speed of motility when they had contact footprint 

in the reflection channel (Figure S12). We also related the surface density of integrin αLβ2 

(LFA1) at the immunological synapse to motility characteristics of individual cells within 

the CD45RA population (Figure 5c). Surface density of LFA1 correlates with arrest 

coefficient and contact area of CD45RA+ve cells undergoing antigen-induced motility. 

These results are consistent with the crucial role played by LFA1 in promoting cell 

spreading and stable interactions with antigen-presenting cells (Dustin et al., 1997; Stewart 

et al., 1996).

5. Discussion

TIAM has provided multiple novel findings on the motility of T cells that were critically 

dependent on integrating information from DIC, reflection and two fluorescence channels. 

We showed that PKCθ, which was previously implicated in regulation of motility during 

antigen recognition (Sims et al., 2007), is also important for chemokine driven motility 

(Figure 5a). We have observed that a sizeable fraction of CD45RO+ve human CD8 T cells 

have higher motility on CCL21- and ICAM1-coated glass compared to CD45RA+ve cells 

(Figure 5b). The CD45RO subset consists of central memory and effector memory cells 

(Willinger et al., 2005). Central memory cells and naive cells have high expression of CCR7 

whereas effector memory cells have low expression of CCR7, the chemokine receptor for 

CCL21. It is likely that central memory cells are the most responsive to CCL21 among all 

the subsets of CD8 T cells in our experiments. This is consistent with the increased speed 

during interstitial motility of central memory CD8 T cells compared to naive counterparts 

within intact lymph nodes in the absence of any antigen (Chtanova et al., 2009). Memory 

cells have increased surface levels of LFA1 compared to naive cells, which might contribute 

to higher responsiveness of central memory CD8 T cells to CCL21 co-adsorbed with 

ICAM1. We also observed that majority of CD45RO cells make contacts with the 

substratum, that are at least few microns in size, during CCL21-driven chemokinesis 

whereas majority of the CD45RA cells do not (Figure 5b). These contacts are dynamic and 

discontinuous, similar to those observed previously in pre-activated T cells undergoing fast 

autonomous motility (Jacobelli et al., 2009). These contacts may also contribute to increased 

motility of CD45RO+ve cells.

The novel findings reported in this study were critically dependent on integrating motility 

information with additional information from DIC, reflection and two fluorescence 

channels. In the case of comparative analysis of CD45RA and CD45RO subsets, these were 

distinguished based on differential fluorescent dye labels. The fluorescence information 

allowed us to compare motility characteristics and reflection footprints of attachment 

simultaneously. This allowed us to delineate the motility and attachment tendencies of the 

subsets (Figure 5b). Further delineation based on whether the cells within the subsets had 

shown contact footprint allowed us to observe that attachment promotes motility (Figure 

S12). In the case of LFA1 at the contact, its surface density could be related to motility 

characteristics and reflection footprints of attachment (Figure 5c).

We have brought together several existing approaches in building TIAM. The hybrid 

approach of edge detection followed by Hough transforms is a widely used approach for 
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pattern recognition. Similarly the two-tier approach of linkage of neighboring objects in 

consecutive frames followed by temporal linkage of shorter segments is analogous to a 

recently introduced approach for single-particle tracking (Jaqaman et al., 2008). Put 

together, these approaches enable robust detection and tracking of cells. Accurate and 

comprehensive tracking is critical for developing motion models of cell motility and for 

characterizing the heterogeneity in the motility behavior. Studying cellular heterogeneity has 

yielded better understanding of underlying mechanisms in other contexts (Altschuler and 

Wu, 2010). Our observation of an inverse relationship between the speed and turn angle of 

individual cells is a case in point (Figure S11), as it provides evidence on the amoeboid 

mode of motility at the population level.

We have implemented SFDA and ATA metrics to comprehensively evaluate the 

performance of detection and tracking of cells on real experimental data. These metrics have 

gained acceptance by the computer vision research community as they facilitate 

standardization of procedures. Similar metrics have very recently been proposed in the cell 

tracking research community as well (Maska et al., 2014). As we have further demonstrated, 

automating the process of performance evaluation allows for comparison between multiple 

disparate tools, for testing the performance at different parameter settings and on different 

types experimental data and for assessing the contribution of newly added features to 

existing algorithms. We have created a separate MATLAB-based software package that we 

call PACT (Performance Analysis of Cell Tracking), to enable investigators to calculate 

SFDA and ATA based on manually established ground truth. As individual datasets from 

different labs or different types of experiments are likely to be sufficiently unique, PACT 

can guide users to decide on the best tool to analyze their data.

Data integration is critical for extending our understanding of complex systems and 

processes. TIAM was structured with this overarching principle in mind to take advantage of 

multi-channel acquisition afforded by the state-of-the-art fluorescence microscopy 

platforms. TIAM is equipped to retrieve and associate features from transmitted light, 

fluorescence and reflection channels to cell tracks and track-positions. The insights that we 

obtained were critically dependent on the integrative analysis facilitated by TIAM. The 

generic feature extraction procedure that we have employed allows for future developments 

to characterize patterns in fluorescence from individual cells. It is conceivable that relating 

the patterns in fluorescence-based readout of critical signaling molecules to each other and 

to motility parameters in a spatiotemporal manner by live-cell imaging will yield rich 

mechanistic information (Vilela and Danuser, 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the schema for data integration in TIAM. Transmitted light images are used for 

detecting and tracking cells. Several parameters quantifying the motility characteristics are 

calculated and stored in MATLAB ‘cell arrays’. Individual tracks are considered for 

extracting information from reflection and fluorescence images that are part of multi-

channel time-lapse data. Centroids from track positions are used for local segmentation and 

outlining that would correspond to the cell under consideration. Features are computed from 

the outlined regions and stored along with rest of the track-related information.

Mayya et al. Page 16

J Immunol Methods. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Detection and tracking of cells by TIAM. TIAM uses transmitted light images for detecting 

and tracking cells. Illustration of detection by TIAM is provided with an example (a–d). A 

DIC image of human primary CD8 T cells is used (a). The panels, b to d, represent 

sequential stages during cell detection. In the first step, the Canny edge filter is applied to 

generate a binary image of cell boundaries (b). Then, a circular Hough transform (CHT) is 

applied to this binary image. This transform maps cell outlines to points in a parameter 

space based on a voting scheme (c). Local maxima in the parameter space are used to pick 

centroids of cells (d). TIAM has a graphical user interface that walks the user through the 

choice of parameters for edge filtering and CHT to allow for accurate detection of cells.
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Figure 3. 
Evaluation of performance of tracking T cells by TIAM. a) Tracks of cells obtained after 

manually establishing the ground truth (in green) are overlaid on tracks of cells obtained 

from TIAM (in red). The overlap between the tracks is shown in yellow. These correspond 

to frames 11–40 of Experiment 2 (Table 1). b) ATA values at different thresholds for nearest 

neighbor association (parameter r) in both experiments. ATA values suggest that tracking 

results are relatively robust to changes in the threshold value for nearest neighbor 

association, a critical parameter in the tracking algorithm. Thresholded ATA values are 

plotted here. Jaccard Similarity of 0.4 or more is considered as 1 (see supplementary 

methods) during the calculation of thresholded ATA. This is done to ensure that minor 

localization inaccuracy is not penalized.
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Figure 4. 
Evaluation of performance of extracting features from DIC (a), reflection (b) and 

fluorescence images (c). Aspect ratio (readout of morphological polarity), contact area, and 

mean fluorescence intensity were measured from DIC, reflection and fluorescence channels, 

respectively. Outlines were drawn along cell-boundaries in either a manual or 

semiautomated manner using ImageJ to establish the ground truth for respective channels. 

Performance of extracting features was evaluated by quantitative comparisons with the 

ground truth after establishing one-to-one pairing between TIAM results and the respective 

ground truth. The measured values for each pair are plotted: 1389 for DIC, 4005 for 

reflection and 5973 for fluorescence. Overall, the data hovered around the diagonal line 

implying reasonable accuracy for measurement of polarity from DIC and good accuracy for 

measurement of contact area and fluorescence intensity from reflection and fluorescence 

channels, respectively.
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Figure 5. 
Examples of integrated analysis of human CD8 T cell motility enabled by TIAM. a) Effects 

of pharmacological inhibitors of PKCs on CCL21 driven chemokinesis in CD45RA+ve 

cells. Population median values of different motility characteristics from mean values of 

individual cell tracks were calculated first. These have been normalized to the median 

motility characteristics in the ‘control’ data and shown in a colored heat map. Statistical 

significance of differences in the population was calculated. Unless specified otherwise in 

the heat map cell, p-value was below 0.0001. b) Average speed and average contact area of 

CD45RA+ve and CD45RO+ve cells subjected to CCL21 driven chemokinesis is shown. The 

number of tracks that had reflection footprint out of the total tracked cells is given for both 

subsets. Even when the reflection footprint existed in a portion of the track, it was counted 

as a cell track with attachment. The motility experiments were conducted with a mixed 

population wherein the subsets were isolated, loaded with different vital dyes and then 

mixed in equal ratio. Statistical significance was assessed by Mann-Whitney U-test in both 

(a) and (b). c) Average surface density of LFA1 (measured by binding of Alexa Fluor 488 

labeled Fab fragment of TS2/4 non-blocking antibody) is plotted against average contact 

area and arrest coefficient for individual CD45RA+ve cell tracks. Pearson correlation 

coefficient values are shown at the top of the plots. Arrest coefficient was calculated based 

on a threshold instantaneous speed of 0.5 μm/min. All results are representative of two or 

more independent sets of experiments.

Mayya et al. Page 20

J Immunol Methods. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mayya et al. Page 21

T
ab

le
 1

C
om

pa
ri

so
n 

of
 p

er
fo

rm
an

ce
 o

f 
tr

ac
ki

ng
 T

 c
el

ls

Q
ua

lit
at

iv
e 

ch
ar

ac
te

ri
st

ic
s

T
oo

l N
am

e 
a

N
um

be
r 

of
 t

ra
ck

s
M

ea
n 

ce
ll 

de
ns

it
y 

(m
m

−2
)

M
ea

n 
sp

ee
d 

(μ
m

/m
in

)
M

ea
n 

tr
ac

k 
- 

le
ng

th
 

(μ
m

)

SF
D

A
 b

SF
D

A
 b

A
T

A
 b

(t
hr

es
ho

ld
ed

)

E
xp

er
im

en
t 

1
A

nt
ig

en
-i

nd
uc

ed
 m

ot
ili

ty
 o

f 
C

D
45

R
A

+
ve

 h
um

an
 C

D
8 

T
 c

el
ls

; 3
3.

3 
se

co
nd

s 
be

tw
ee

n 
fr

am
es

; 4
0x

 o
bj

ec
tiv

e 
w

ith
 1

.3
 N

A
; P

ix
el

 d
im

en
si

on
s 

w
er

e 
0.

43
9 

μm
; 2

25
 μ

m
 s

qu
ar

e 
fi

el
d;

 1
00

 f
ra

m
es

G
ro

un
d-

tr
ut

h
12

5
12

43
.8

5
5.

49
11

5.
10

T
IA

M
13

6
11

71
.1

6
5.

1
87

.3
2

0.
63

6
0.

94
5

0.
59

6

D
Y

N
A

M
IK

21
4

71
5.

06
5.

76
44

.9
4

0.
63

8
0.

88
8

0.
30

2

Im
ar

is
 (

D
IC

)
14

4
11

96
.8

4
5.

87
10

0.
64

0.
41

2
0.

67
8

0.
50

8

Ic
y

24
0

11
50

.6
2

5.
19

47
.8

0.
57

4
0.

88
2

0.
38

0

Im
ar

is
14

7
10

70
.2

2
5.

40
77

.1
2

0.
56

6
0.

83
7

0.
45

9

V
ol

oc
ity

18
4

12
12

.8
4

5.
77

80
.9

6
0.

49
0

0.
75

5
0.

45
2

E
xp

er
im

en
t 

2
C

he
m

ok
in

e-
in

du
ce

d 
fa

st
 a

m
oe

bo
id

 m
ig

ra
tio

n 
of

 C
D

45
R

A
+

ve
 h

um
an

 C
D

8 
T

 c
el

ls
; 2

0 
se

co
nd

s 
be

tw
ee

n 
fr

am
es

; 2
5x

 o
bj

ec
tiv

e 
w

ith
 0

.8
 N

A
; P

ix
el

 
di

m
en

si
on

s 
w

er
e 

0.
66

4 
μm

; 3
40

 μ
m

 s
qu

ar
e 

fi
el

d;
10

0 
fr

am
es

G
ro

un
d-

tr
ut

h
19

8
92

3.
18

9.
40

15
8.

38

T
IA

M
24

7
90

6.
05

9.
65

11
8.

37
0.

49
7

0.
86

9
0.

54
5

D
Y

N
A

M
IK

48
1

49
7.

49
11

.0
7

37
.8

0
0.

48
8

0.
78

3
0.

25
2

Im
ar

is
 (

D
IC

)
43

1
92

6.
21

12
.6

7
82

.1
5

0.
33

0
0.

52
6

0.
30

4

Ic
y

47
1

98
9.

01
9.

87
66

.6
7

0.
38

6
0.

61
9

0.
31

6

Im
ar

is
25

2
94

6.
54

9.
59

12
7.

68
0.

40
6

0.
65

9
0.

47
5

V
ol

oc
ity

32
3

98
8.

67
9.

44
10

2.
66

0.
35

8
0.

58
6

0.
44

1

a G
ro

un
d-

tr
ut

h 
w

as
 e

st
ab

lis
he

d 
us

in
g 

D
IC

 im
ag

e 
se

ri
es

. T
ra

ck
in

g 
on

 D
IC

 im
ag

e 
se

ri
es

 w
as

 p
er

fo
rm

ed
 u

si
ng

 T
IA

M
, D

Y
N

A
M

IK
 a

nd
 I

m
ar

is
. T

ra
ck

in
g 

w
as

 a
ls

o 
pe

rf
or

m
ed

 o
n 

fl
uo

re
sc

en
t i

m
ag

e 
se

ri
es

 o
f 

th
e 

sa
m

e 
fi

el
d 

co
lle

ct
ed

 in
 p

ar
al

le
l w

ith
 D

IC
. I

cy
, I

m
ar

is
 a

nd
 V

ol
oc

ity
 w

er
e 

ch
os

en
 f

or
 f

lu
or

es
ce

nt
 p

ar
tic

le
 tr

ac
ki

ng
. D

et
ec

tio
n 

an
d 

tr
ac

ki
ng

 p
ar

am
et

er
s 

us
ed

 f
or

 e
ac

h 
to

ol
 a

re
 d

es
cr

ib
ed

 in
 S

up
pl

em
en

ta
ry

 
m

et
ho

ds
 s

ec
tio

n.
 T

ra
ck

s 
sh

or
te

r 
th

an
 5

 f
ra

m
es

 w
er

e 
di

sc
ar

de
d.

 T
he

 s
am

e 
gr

ou
nd

-t
ru

th
 w

as
 a

pp
lie

d 
to

 b
ot

h 
D

IC
 a

nd
 f

lu
or

es
ce

nc
e 

im
ag

e 
se

ri
es

 a
s 

th
er

e 
is

 e
xc

el
le

nt
 r

eg
is

tr
at

io
n 

be
tw

ee
n 

th
em

 (
Fi

gu
re

 S
9)

. 
Si

m
ila

r 
tr

ac
ki

ng
 p

er
fo

rm
an

ce
 w

as
 o

b 
se

rv
ed

 w
ith

in
 e

ac
h 

to
ol

 o
ve

r 
a 

ra
ng

e 
of

 v
al

ue
s 

of
 m

ax
im

um
 a

llo
w

ed
 d

is
ta

nc
e 

fo
r 

lin
ki

ng
 c

el
ls

. N
on

et
he

le
ss

, o
pt

im
al

 v
al

ue
s 

ob
ta

in
ed

 f
or

 e
ac

h 
to

ol
 is

 r
ep

or
te

d.

b U
ni

fo
rm

 b
ox

-s
iz

es
 w

er
e 

co
ns

id
er

ed
 a

ro
un

d 
ce

nt
ro

id
s 

of
 c

el
ls

 a
s 

re
su

lts
 f

ro
m

 I
m

ar
is

 a
nd

 V
ol

oc
ity

 d
o 

no
t p

ro
vi

de
 o

ut
lin

es
 o

f 
ce

lls
. R

es
ul

ts
 s

ho
w

n 
he

re
 w

er
e 

w
ith

 a
 b

ox
-s

iz
e 

of
 2

0 
pi

xe
ls

. F
or

 th
re

sh
ol

de
d 

pe
rf

or
m

an
ce

 m
et

ri
cs

, J
ac

ca
rd

 S
im

ila
ri

ty
 o

f 
0.

4 
or

 m
or

e 
is

 c
on

si
de

re
d 

as
 1

 (
se

e 
Su

pp
le

m
en

ta
ry

 m
et

ho
ds

).
 T

hu
s,

 m
in

or
 lo

ca
liz

at
io

n 
in

ac
cu

ra
cy

 is
 n

ot
 p

en
al

iz
ed

.

J Immunol Methods. Author manuscript; available in PMC 2016 January 01.


