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Abstract

The nickel-catalyzed cross-coupling of aryl halides with alkyl radicals derived from alkyl halides 

has recently been extended to couplings with carbon radicals generated by a co-catalyst. In this 

study, a new co-catalyst, cobalt phthalocyanine (Co(Pc)), is introduced and demonstrated to be 

effective for coupling substrates not prone to homolysis. This is because Co(Pc) reacts with 

electrophiles by an SN2 mechanism instead of by the electron-transfer or halogen abstraction 

mechanisms previously explored. Studies demonstrating the orthogonal reactivity of (bpy)Ni and 

Co(Pc), applying this selectivity to the coupling of benzyl mesylates with aryl halides, and the 

adaptation of these conditions to the less reactive benzyl phosphate ester and an enantioconvergent 

reaction are presented.

Introduction

Cross-coupling relies upon the selective, ordered activation of two different substrates. For 

the coupling of nucleophiles with electrophiles, a single catalyst reacts with the electrophile 

by oxidative addition and the nucleophile by transmetalation, resulting in high cross-

selectivities. Cross-electrophile coupling,1 the union of two different electrophiles, achieves 

selectivity by different mechanisms. Specifically, we have recently shown that in nickel-

catalyzed reactions electrophiles can be differentiated by heterolysis and homolysis (Figure 

1, entry 1).2 Selectivity arises because (L)Ni0 reacts with aryl halides faster than alkyl 

halides, but (L)NiI forms alkyl radicals faster than aryl radicals.3

The key to successful cross-electrophile coupling is selective radical generation from R-Y 

(Figure 1).4 In order to expand the types of substrates that can be coupled with aryl halides 

by this electrophile + radical mechanism, alternative methods of generating radicals must be 

developed. A key advance was that radical generation and coupling can be accomplished by 

two different catalysts (Figure 1). Our group5 and the groups of Sanford,6 Molander,7 and 
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MacMillan and Doyle6b have independently shown that a variety of co-catalysts can allow 

coupling of otherwise unreactive substrates under mild conditions (Figure 1, entries 2-4).

All of the methods reported to date convert the substrate into a radical by single-electron 

oxidation or reduction (Figure 1). As such, substrates must be easily oxidized or reduced. 

The development of co-catalysts that form radicals by different mechanisms would enable 

further expansion of substrate scope in this arylation strategy.

We report here that cobalt phthalocyanine (Co(Pc)) is an excellent, non-photochemical co-

catalyst for radical generation that is compatible with nickel catalysis (Figure 1, entry 5).8 

Co(Pc) differs from previously described co-catalysts because it generates radicals after 2-

electron nucleophilic substitution9 rather than single-electron transfer. This gives Co(Pc) 

different selectivity than previous approaches. For example, alkylsulfonate and 

alkylphosphate esters are unreactive towards single-electron transfer due to the strength of 

the C-O bond, but react rapidly by nucleophilic substitution.

Results and Discussion

To demonstrate the potential of Co(Pc), we applied this co-catalyst to the synthesis of 

diarylmethanes from two abundant electrophiles, a benzyl alcohol derivative and an aryl 

halide. Although a variety of approaches to diarylmethanes have been developed,10 their 

prominence in medicinal chemistry11 has justified continued attention. The majority of 

recent approaches involve the cross-coupling of benzylmetal reagents7, 12 or arylmetal 

reagents,13 but the need to pre-form each organometallic reagent can be limiting. A major 

advance was the development of methods where organozinc reagents were generated and 

coupled concurrently, but 2-4 equiv of the benzyl halide was still required for high yields 

and no examples with more abundant benzyl alcohol derivatives14 were reported.12d-f, 13e 

Gosmini reported one example of the coupling of benzyl chloride with ethyl 4-

bromobenzoate under conditions that might not involve an organozinc intermediate,15 but 

the scope of this method has not been explored. Finally, Reisman reported the coupling of 

secondary benzylic chlorides with vinyl bromides, but the use of aryl halides or benzyl 

alcohols was not reported.16 Compared to these known methods, our new approach avoids 

pre-formed nucleophiles, starts from benzyl alcohols instead of the less abundant benzyl 

halides, and does not use a large excess of one coupling partner.

The application of our reported conditions1 to the coupling of aryl halides with benzyl 

bromide resulted primarily in the formation of bibenzyl (Scheme 1A). This is due to the fact 

that benzyl bromide reacts with (L)Ni faster than aryl halides (Scheme 1B). For example, 

benzyl bromide is converted to bibenzyl and toluene in only 60 min (Supporting Information 

Table S1).

In order to restore selectivity, we sought to take advantage of the low reactivity of 

bipyridine-ligated nickel catalysts with alkyl sulfonate esters in order to prevent formation 

of benzylnickel and favor formation of arylnickel (Scheme 1C). Benzyl mesylates can be 

conveniently generated in situ from abundant benzyl alcohols. Although this approach 

prevented bibenzyl formation (Table S1), it did not improve the yield of diarylmethane 

because nickel is slow to form a benzyl radical from a benzyl mesylate (Table 1, entry 1). 
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The addition of Co(Pc) as a co-catalyst could generate the missing benzyl radical (Scheme 

1C), separating the oxidative addition and radical generation steps.17

Significantly, this optimized nickel and cobalt system allows for the coupling of benzyl 

mesylates with aryl bromides, which occurs in low yield in the absence of Co(Pc) (Table 1, 

entries 1-3).20 Furthermore, it appears that both (dtbbpy)NiBr2 and Co(Pc) are required for 

high selectivity as neither catalyst is effective without a ligand (entries 4 and 7). An 

alternative co-catalyst, sodium iodide,13j, 21 was not as effective as Co(Pc) (entry 5 and 

Table S1). The different products formed arise from different mechanisms of co-catalysis: 

Co(Pc) selectively forms benzyl radicals from BnOMs while NaI converts BnOMs to BnI 

which reacts similarly to benzyl bromide (Scheme 1B). For convenience, the aryl halide, 

ligand, Co(Pc), and zinc could be added with the alcohol, Ms2O, and EtN(i-Pr)2 or after 

mesylate formation was complete with little difference in yield. However, if nickel was 

added at the beginning, rapid reduction or dimerization of the starting materials resulted.20

The nickel and cobalt co-catalytic strategy of synthesizing diarylmethanes was also 

successful when aryl iodides were employed as coupling partners. When benzyl mesylate 

was reacted with iodobenzene under the optimized reaction conditions, the diphenylmethane 

product was formed in good yield. Although product was formed in the absence of Co(Pc), 

the co-catalytic method improved yield and selectivity (Table 1, entries 9-12). Added NaI 

depressed the yield only slightly (entry 13 vs. entry 9), suggesting that PhI competes with in 

situ formed BnI more effectively than PhBr for oxidative addition to nickel (Scheme 1B).

Application of these conditions to a variety of different aryl bromides, aryl iodides, and 

benzyl alcohols demonstrated the generality of the method (Scheme 2). The reaction 

tolerates functional groups, such as aldehyde (3e) and methyl ketone (3d), which are 

susceptible to the nucleophilic and basic character of some organometallic reagents. 

Additionally, a boronic acid ester was coupled without chemoselectivity problems, 

demonstrating complementarity with existing cross-coupling methods (3f).13

The coupling of aryl bromides and aryl iodides with benzyl mesylate provided comparable 

yields. In examples where the selectivity over bibenzyl was high but the yield was low, 

hydrodehalogenation of the arene was responsible for diminished yields.20 The aryl bromide 

conditions could be applied without further optimization to a vinyl bromide with reasonable 

success (3j). Both electron-rich and electron-poor benzyl alcohols couple effectively and 

steric hindrance on the benzyl alcohol did not result in lower yields (3l, 3c’, 3m, 3g’, 3n).22 

Finally, we were able to apply this approach to the synthesis of beclobrate (3o), a 

diarylmethane compound that can be used to alter lipid levels in humans.23

The reactivity and selectivity of the reaction can also be rationally optimized. For example, 

the coupling of benzyl diethyl phosphate ester24 was sluggish under our standard conditions 

and starting materials were not consumed (Table 2). Presumably, this was due to the reduced 

leaving group ability of OP(O)(OEt)2 compared to OMs.25 Increasing the amount of Co(Pc) 

from 1 mol% to 6 mol% as well as increasing the temperature from rt to 80 °C allowed the 

reaction to proceed in high yield to form diphenylmethane (3a’).22 Notably, we observe no 

hydrodehalogenation under these conditions, perhaps because there is no acid (EtN(i-
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Pr)2•HOMs) present. We anticipate that a similar strategy could be employed to couple other 

less reactive electrophiles.

The likely intermediacy of a benzyl radical suggested to us that an enantioconvergent 

coupling of racemic secondary benzylic electrophile with an aryl bromide could be 

achieved.26, 27 Although yields were low with secondary benzylic alcohol derivatives, α-

chloroethylbenzene (7) coupled efficiently under slightly modified standard conditions to 

form diarylethane 828 in 41% isolated yield and 43% ee (Scheme 3).29 This yield and 

enantioselectivity compares favorably to the results of Molander in the coupling of a 

racemic secondary benzylboron reagent with an aryl halide using the same chiral ligand 

(52% yield, 50% ee), suggesting a similar enantiodetermining step (radical capture by a 

chiral nickel complex).7 Together with the related highly enantioselective coupling of vinyl 

halides by Reisman,16 these results suggest highly enantioselective reactions to form 

diarylmethanes will soon be realized. Future studies will be aimed at improving the 

enantioselectivity and yield of these and related reactions.

Conclusions

In conclusion, Co(Pc) is a new co-catalyst for radical generation that is compatible with 

nickel-catalysis offering a different selectivity than other established co-catalysts while 

maintaining high functional-group compatibility. The first synthesis of diarylmethanes from 

benzyl mesylates and aryl iodides or bromides is possible because 1) [Ni0] reacts with Ar-X 

faster than with BnOMs, preventing bibenzyl formation and 2) Co(Pc) reacts with benzyl 

mesylate faster than with Ar-X, selectively forming benzyl radicals. We propose that these 

benzyl radicals react with (L)NiII(Ar)X to form product.2, 4, 6, 7 These results demonstrate 

the potential of Co(Pc) as a nucleophilic co-catalyst for radical cross-coupling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of radical co-generation methods in cross-coupling. An electrophile (Ar-X) 

reacts to form an arylmetal intermediate and the other substrate (R-Y) reacts to form a 

radical (R•).
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Scheme 1. 
Diarylmethanes from cross-electrophile coupling: problem (A and B) and mechanism-based 

solution (C).18 Ligand = 4,4’-di-tert-butyl-2,2’-bipyridine.
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Scheme 2. 
Nickel and cobalt co-catalyzed arylation of benzyl mesylates. Reactions performed as in 

Table 2, footnote a with 7 mol% NiBr2•3H2O, 5 mol% dtbbpy, and 1 mol% Co(Pc). Yield is 

isolated yield of purified product. See Supporting Information for details on reaction 

selectivity. ND = not detected. a No Co(Pc) was added to this reaction. b 3 mol% Co(Pc) 

was added to this reaction. c Reaction was run at 60 °C.
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Scheme 3. 
Preliminary enantioconvergent coupling of a secondary benzyl chloride with an aryl 

bromide. Configuration assigned by comparison of the optical rotation to those reported in 

the literature.
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Table 1

Cross-electrophile coupling of Bn-OH with Ar-X.
a

Entry X Catalyst
b

Yield 3 (A%)
c 3:4

1 Br [Ni] only 3 1:1

2 Br Co(Pc) only 0 ND:3

3 Br [Ni], Co(Pc) 73 1:ND

4 Br [Ni], CoCl2 4 4:1

5 Br [Ni], NaI (25 mol%) 25 1:1

6 Br [Ni], Co(Pc), Mn instead of Zn 64 4:1

7 Br NiBr2•3H2O, Co(Pc) 1 1:6

8 Br No [Ni] and no Co(Pc) 0 0:1

9
d
,
e I [Ni] only 71 7:1

10
e I Co(Pc) only 0 ND:1

11
d
,
e I [Ni], Co(Pc) 83 17:1

12 I [Ni], Co(Pc) 83 83:1

13 I [Ni], NaI (25 mol%) 64 8:1

14 I [Ni], Co(Pc), Mn instead of Zn 42 1.4:1

a
Reactions run at 0.25 M in DMA. BnOMs was formed in situ from BnOH, Ms2O (1.44 equiv), and EtN(i-Pr)2 (1.6 equiv). See Supporting 

Information.

b
[Ni] = 7 mol% NiBr2•3H2O and 5 mol% dtbbpy.19 Co(Pc) = 1 mol% cobalt phthalocyanine.

c
Yields and ratios reported as GC Area%.

d
Reaction run at 60 °C.

e
Reaction complete within 1 h.
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Table 2

Reaction with benzyl diethyl phosphate, a less reactive electrophile.
a

Entry Co(Pc) (mol %) T (°C) Yield
b

1 3 rt
ND

c

2 3 40
ND

c

3 1 80
3
c
,
d

4 3 80
36

c
,
d

5 6 80
(70)

d

a
Reactions run at 0.25 M in DMA using pre-formed 6 for 15-22 h. See Supporting Information.

b
Yield of 3a’ from GC area% data. Yields in parentheses are isolated yields of purified product.

c
Significant amounts of starting materials remain.

d
Only byproduct observed by GC analysis was small amounts of benzene from hydrodehalogenation of Ph-Br.
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