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Abstract

Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low 

percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of 

glioma patients may have increased over the past decade. Current therapeutic options for glioma 

patients include tumor resection, chemotherapy, and concomitant radiation therapy with an 

average survival of approximately 16 months. The rapid progression of gliomas has spurred the 

development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. 

Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and 

negative sides of the virotherapy approach. Here we present a detailed overview of the glioma 

virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting 

clinical efficacy of GBM virotherapy treatment.
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Glioma as a target for gene therapy

Glioblastoma Multiforme (GBM) is the most common primary brain cancer in humans. In 

the cancer hierarchy, patients with brain tumors represent a relatively small cohort with an 
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estimated 500,000 total cases diagnosed, and 20,000 – deaths reported annually. The 

incidence of GBM has risen1 lately in Europe and North America with 3.19 cases per 

100,000 patients diagnosed yearly2 in the US alone. While current GBM diagnostic 

techniques have improved tumor detection sensitivities, the average survival is a dismal 16–

20 months, and less than 20% of GBM patients survive more than 5 years after diagnosis.3

Histologically GBM can be defined as a tumor of astrocytes, which represent 80% of normal 

brain tissue. Astrocytomas are characterized based on several parameters, such as tumor 

localization in the brain, molecular features and invasiveness. According to the WHO 

classification, there are 4 different stages of brain cancer progression (where stage 4 is the 

most advanced), based largely on cell differentiation markers. Transition of astrocytoma 

grade 2–grade 4 (GBM) is associated with changes in cellular signaling pathways such as 

TP53, EGFR, PTEN, etc. Also, it is well documented that during this transition 

astrocytomas incur genomic deletions (IDH1, PTEN), which activate various signaling 

pathways responsible for new aggressive phenotypes. Based on such genomic 

rearrangements Verhaak et al. grouped gliomas into mesenchymal, classical, neural, and 

proneural subtypes.4 Each glioma subtype is characterized by a specific gene expression 

pattern that ultimately determines the tumor behavior.

Another constituent of glioma tumors is glioma stem cells (GSCs), or cancer stem cells, 

which demonstrate the ability to form tumors upon intracranial injection. Cancer stem cells 

are capable of forming spherical structures in vitro, called neurospheres, which may account 

for both chemo- and radioresistance of glioma tumors in patients.5,6 Stem cell properties 

have been ascribed to those cells based on their capability to maintain the tumor cell 

population, which implicates them in tumorigenesis and tumor recurrence mechanisms.7,8 It 

remains unclear whether the differentiation of cancer stem cells into a tumor requires 

environmental factors to accelerate tumorigenesis. However, scientific reports in the last 10 

years suggest that one of the most devastating human cancers, such as glioma, originates 

from neural progenitor cells with a strong proliferative capability. Moreover, infection of 

progenitor cells with cytomegalovirus (CMV) significantly promotes progression of glioma 

in mouse experimental models of the disease.9 Additionally, a growing body of evidence 

suggests that both immunotherapeutic10 and chemotherapeutic11 approaches targeting CMV 

improve overall patient survival. This data points towards CMV as a new potential 

etiological factor of GBM progression, representing an ideal target for gene therapy.

Gene therapy is an alternative approach for glioma therapy

Treatment of extremely vascularized tumors, such as gliomas is very challenging. The 

standard of GBM patient care includes surgical resection, radiation, and chemotherapy. 

Although, temozolomide, bevacizumab and carmustine provide longer survival times, 

neither drug prevents glioma recurrences, mainly due to the activation of a mechanism that 

enables immune evasion and causes drug resistance. For instance, a recent study suggests 

that bevacizumab treatment promotes tumor invasion via activation of MMP2,12 while other 

scientific reports implicate activation of the mTOR pathway.13,14 This is one of the key 

pathways responsible for the induction of cellular autophagy, which negatively affects 

glioma cells and triggers an inflammatory response. The fact that glioma stem cells (GSCs) 

Ulasov et al. Page 2

Genes Dis. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cannot be targeted and destroyed by chemotherapy and radiation implicates them in the 

observed resistance of gliomas to traditional therapies, which makes treatment of the disease 

extremely challenging. Therefore, there is an urgent need for a new therapeutic approach 

with an improved efficacy that would target both the tumor cell, and the stem cell 

components of gliomas. Such new therapeutic approaches should target GSCs, while 

simultaneously comprising the existing therapeutic options, such as ionizing radiation and 

temozolomide. Since conventional chemotherapeutic agents exhibit strong toxicity towards 

cancer cells, and in most cases do not spare normal cells, cancer gene therapy seems 

promising with regard to its higher potential specificity and efficacy. Cancer gene therapy, 

therefore, is a unique approach capable of utilizing a multifunctional platform for tumor 

targeting, imaging, and gene delivery. This approach is based on the design of vectors 

capable of delivering any payload to the tumor cells using various injection routes. Viral 

vectors exhibit great advantages over non-viral means of gene delivery owing to their 

natural capability of highly efficient cell attachment and entry (perfected in the course of 

viral evolution) as a crucial part of gene delivery mechanism, and provide the highest level 

of transgene expression as part of the viral replication cycle, resulting from high 

amplification of transgene expression (for replication-competent vectors).

Adenoviral vectors: Exclusive and not exclusive for glioma therapy

In the late 1950's Levy and Rowe discovered a new agent capable of passing through 

bacteria retention filters and infecting mammalian cells.15,16 It took more than 40 years after 

discovery of adenovirus (Ad) to accumulate knowledge about adenoviral biology critical for 

the development and advancement of the Ad-based vector technology for tumor targeting. 

Today, human Ad-based vectors have been recognized as a major tool for gene therapy with 

more than 100 various adenoviral vectors developed for glioma targeting. The attractiveness 

of adenoviruses, especially the most studied human serotypes 2 and 5, for glioma targeting 

applications is largely based on the knowledge that some parts of the viral genome 

(implicated in modulation of the host immune and inflammatory responses), can be omitted 

without affecting viral replication, assembly, and can be replaced with a gene of interest for 

therapeutic purposes. Furthermore, currently available capsid-modified Ad vectors can 

recognize a large variety of cell surface molecules as primary and secondary receptors 

allowing efficient infection of both quiescent and rapidly proliferating tumor cells 

independently from the expression of the Ad native primary coxsackieadenovirus receptor 

(CAR). The ability to use complementing and non-complementing cells of mammalian 

origin allowing human Ad propagation to high titers in culture, represents an important 

biotechnological advantage of using these vectors for gene and cancer gene therapy (Fig. 1). 

Given that many self-amplifying, or “replication-competent” Ad vectors with cancer-

selective replication properties, also known as Conditionally Replicative Adenoviruses 

vectors (CRAds), exhibit strong oncolytic anti-glioma effects, those vectors are the primary 

focus of our review.

Adenovirus generation (“rescue”) systems

Various strategies have been proposed to design replication-competent Ad vectors. To 

generate or “rescue” a replication-competent vector, a two-phase approach is commonly 
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used. In the first phase, all necessary Ad genetic modifications/alterations are made in the 

viral genome. This includes initial genetic manipulations within one or more genomic 

regions (typically E1, E3, E4, hexon, or Fiber genes) in the context of a small “shuttle” 

plasmid using conventional DNA cloning technologies, followed by sequential transfer of 

the resulting modifications to a large size intermediate (“backbone construct”) and/or a full-

size genome (“rescue vector”) by homologous recombination (HR) in mammalian cells or 

bacteria (E. coli strain BJ5183). Those modifications typically involve mutations in Ad 

capsid (structural) proteins, replacement or incorporation of promoter elements (constitutive 

or tumor-specific), along with the transgene(s) of interest. In the second phase, a linearized 

form of recombinant full-size genomic DNA is transfected into mammalian (helper 

HEK293) cells, where the Ad genome termini, formed upon restriction digestion and release 

of the vector's plasmid (bacterial) portion, create a replication fork to initiate DNA 

replication (doubling), followed by intracellular production of viral mRNAs, proteins, and 

the assembly of viral particles. Most recently, Stanton et al. proposed to utilize a high 

throughput AdZ rescue system that allows a direct, single-step insertion of PCR products or 

synthesized sequences into the Ad genome and obviates the need in vector linearization 

prior to transfection into packaging cells.17

Glioma-associated alterations in signaling pathways offer molecular 

strategies for engineering anti-glioma CRAds

The rapidly growing body of knowledge on signaling pathways activated in glioma cells 

offers an important insight into potential molecular strategies for increasing antitumor 

efficacy of CRAd vectors. Genetic analysis of clinical samples demonstrates aberrations in 

the PTEN, p16INK4A, EGFR, and P53 signaling pathways. About 80% of glioblastoma 

specimens presented in The Cancer Genome Atlas (TCGA) possess aberrations in CDKN2A 

and Rb pathways. The latter regulate astrocytoma survival and tumor cell proliferation.18,19 

Furthermore, deletions of the PTEN gene are observed in ~50% GBM specimens, while 

30% of clinical samples exhibit EGFR amplification, and about 11% of samples reveal 

mutations in P53 and IDH1 genes.20

Ad capability for selective replication in gliomas is determined by genetic information 

encoded by the self-amplifying Ad genome. The first anti-glioma CRAds were designed 

using deletion of Immediate Early (E1) viral genes such as E1B-55K, which blocked vector 

replication in normal, but not in cancer cells. The glioma-specific oncolytic vector, referred 

to as ONYX105 or dl1520, was designed to replicate in the p53 deficient tumor cells with 

functional defects in p53 tumor suppressor signaling21 and induce non-apoptotic cell death 

during viral infection.22 However, over the past several decades, multiple scientific reports 

have evidenced that dl1520 can also replicate in normal (non-cancer) cells, suggesting 

involvement of a p53-independent replication mechanism.23,24

The delta24 CRAd vector (also known as dl922-947, or ONYX-838) was constructed by 

introducing a 24 bp deletion in the E1A gene. In the course of Ad infection, the E1A-

encoded protein binds to the cellular tumor suppressor protein retinoblastoma (pRb) to 

displace transcription factor E2F from the intracellular E2F/Rb complex, thereby controlling 

the intracellular pool of free E2F. The release of E2F results in entry of the infected cell into 
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the S-phase, a prerequisite for Ad DNA replication. The delta24 Ad mutant can replicate in 

actively dividing cells that have an aberrant G1-S checkpoint.25 While normal cells do not 

support replication of the delta24 CRAd, the virus is effective against U251 and U87 glioma 

cells at doses of 10 infectious units per cell (iu) in vitro, and 100 iu per cell in vivo.26 

Recently, Gomez-Manzano et al. reported a new vector E1A-E1B (CB1), which combines 

both delta24, and E1B-55K deletions. Although the CB1 vector demonstrates a more robust 

replication, resulting in greater cytotoxicity in vitro than delta24, intracranial injection of the 

double mutant vector into mice results in the same animal survival rates (p = 0.28, Mean 

percent survival is 59 vs. 51 days) as those found for delta24 CRAd.27

Clinical use of dl1520, delta24, or the double mutant CB1 as individual vectors 

(monotherapy) for gene therapy applications demonstrated limitations for each of those 

agents. For instance, Geoerger et al demonstrated that 5 consecutive intratumoral injections 

of human xenografts with dl1520 are not sufficient to prevent tumor progression in mice. 

This observation suggests that additional modifications are required to create a more specific 

and efficacious CRAd agent. Therefore, combinations of various strategies based on 

utilization of molecular features of glioma tumors are needed to design a potent anti-glioma 

therapeutic CRAd.

Improving Ad targeting and internalization

It is unclear if incorporation of capsid modifications into recombinant Ad genomes that 

could potentially affect therapeutic potency of the vector is always justified, i.e. whether 

those modifications are really necessary to achieve successful gene targeting. For example, 

to treat prostate cancer Freytag and collaborators used a capsid-unmodified oncolytic 

adenovirus for successful delivery of cytokines and two suicide genes.28 On the contrary, 

given that glioma cells express low levels29 of primary Ad5 receptor (Coxsackie-and-

adenovirus receptor, CAR), payload delivery to the tumor cells via capsid-unmodified viral 

particles might be inefficient, and could induce normal cell toxicity due to CAR expression 

on healthy cells (Fig. 2). This evidence exposes one of the major limitations of Ad vectors, 

i.e. the intrinsically low efficiency of tumor cell transduction.

To increase Ad vector specificity several strategies have been developed. One of them 

involves Ad serotype chimerism. Currently, over 100 types/serotypes of the Adenoviridae 

family have been characterized. Those comprise 5 genera, capable of infecting humans and a 

large number of animal species. Human Ad species belong to the Mastadenovirus genus 

comprising 57 characterized sero-types (Ad1–Ad57) and 7 distinct species/groups (A-G) 

based on the variety of serotype-specific and group-specific characteristics. An important 

group-specific characteristic is the ability to recognize common (group-specific) receptor(s) 

located on the surface of target cells, such as a glioma cells. Adenovirus type 5 of group C 

has been a predominant vector used for gene therapy applications.

Adenoviral particles transduce target cells by a mechanism involving a direct initial 

interaction between the fiber protein of the Ad capsid, and the primary Ad receptors on the 

surface of tumor cells. It has been suggested that Desmoglein 2 (DSG2) and CD46 

molecules represent such native primary receptors of the Ad group B2 serotypes (Ad11, 14, 
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34 and 35 and others), or group B1 serotypes (Ad3, 7, 16, 21, 50 and others), respectively. 

Therefore, replacing the Ad5 fiber knob (C-terminal) domain, or the knob-shaft region of the 

wild type Ad5 with those of other serotypes allows potential retargeting of adenoviral 

particles from CAR (Ad5 native receptor) to alternate (other serotype-specific) receptors 

such as DSG2, CD46 etc. In line with this, Nandi et al.,30 Wohfahrt et al.31 and Li et al.32 

independently demonstrated that pseudotyping Ad5 particles with fibers from serotypes 3, 

35 or 11 significantly improved transduction of glioma cells compared to the wild type 

(WT) Ad5 both in vitro, and in vivo.

The lack of the CAR receptor on glioma cell surface is the reason for the poor gene transfer 

in those cells by recombinant Ad vectors with an unmodified fiber. Therefore, it would be 

valuable to improve Ad target cell transduction for therapeutic uses. Retargeting of particles 

to alternate receptors abundant on the surface of glioma cells may circumvent their 

intrinsically low CAR expression. One group of such surface molecules characteristically 

expressed on glioma cells is represented by integrins. It has been shown that insertion of 

RGD-4C ligand (cyclic peptide) into the fiber protein of the adenoviral capsid allows 

interaction of virions with cellular αv intergrins, enhancing glioma transduction.33 

Moreover, combining the integrin targeting of Ad vectors with their transcriptional targeting 

by placing the E1 genes under transcriptional control of tumor-specific (survivin34 or 

telomerase35) promoters (TSPs), or mutations (delta24) in E1 genes that abrogate their 

binding to Rb or p53 can further improve specificity and efficacy of glioma targeting.36–42

Another type of genetic modification that redirects Ad particles to alternate receptors is 

incorporation of a polylysine motif at the C-terminus of the fiber protein. While this 

modification does not ablate CAR-mediated binding and internalization of viral particles, it 

improves Ad infectivity through a positively-charged heparan sulfate proteoglycan (HSPG) 

molecules abundant on the surface of cancer cells.33 Zheng et al. tried to determine which of 

the HSPG receptors is needed for transduction using pK7-modified Ad vectors. Treatment of 

glioma cells with pK7-modified Ad vector in the presence of neutralizing antibodies against 

syndecan 1 and perlecan decreased efficiency of the cells transduction by 30–50%, 

implicating those molecules in attachment to the Ad5pK7 virus. The first Ad vector targeted 

to HSPGs through incorporation of 7 lysine amino acids (heptalysine) into the C-terminal 

domain of the wild type Ad5 fiber was designed by Wickham et al.43 The attachment of Ad 

particles to the target cells can be significantly augmented given that the viral capsids retain 

capability of binding to CAR, typically expressed by rapidly proliferating cells, as well as to 

cellular integrins through an RGD motif in the penton base. However, these receptors are 

also expressed on muscle cells, macrophages, and endothelial cells, making them a less 

desirable transduction targets.43 Although most cancer cell lines are highly permissive for 

Ad vector transduction, its efficiency in patient-derived primary tumor cells is rather poor. 

To further improve gene transfer of Ad5 vectors enhanced by RGD-4C or pK7 fiber 

modifications, the viral tropism could be expanded to additional set of receptors, not used by 

group C species. This can be achieved by using a small peptide/ligand (RGD-4C) 

modification in the context of Ad3 fiber pseudotyping.44 Although studies using the 

replication deficient (ΔE1) Ad5/3-RGD vector showed a great promise for gliomas,44 the 
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benefit of this combined fiber modification for GBM oncolytic virotherapy is yet to be 

determined.

Expression of EGFR localized to the cell surface is upregulated in 40–60% of gliomas.45 

Transductional targeting of the EGFR receptor was first proposed by Grill et al., in 2001.46 

Ad5 particles can be re-directed to this receptor by a bi-specific single chain antibody (scFv) 

expressed from either E1 or E4 regions of the Ad5 genome that would bridge the fiber knob 

and the EGFR receptor on the target cell surface. However, retention of the CAR-binding 

site within the genetically-unmodified (WT) Ad5 fiber knob could interfere with the cancer 

specificity of transduction due to the potential ability of the scFvcomplexed Ad5 to 

simultaneously recognize CAR receptor on the surface of non-cancer cells. Although, 

incorporation of 425-S11 single chain antibody into the fiber knob domain improves 

transduction of CAR-negative tumors by 2- to 11-fold,46 further ablation of the native CAR 

tropism is required. For instance, redirection of adenoviral particle to EGFR with 

simultaneous ablation of CAR and αv integrin binding ability provides selective gene 

transfer to glioma cells.47 These promising results led investigators to design an 435-S11 

scFv-modified CRAd48 to target and destroy CAR-deficient tumors. The mutant version of 

EGFR (EGFRvIII) is present on the majority of glioma cells as well as breast and ovarian 

cancer cells49 and regulates pro-survival pathways, which makes it a promising candidate 

for cancer gene therapy.50

In conclusion, the data published by Nandi et al.30 suggest that retargeting Ad particles by 

genetic pseudotyping of fiber can greatly improve CRAd cytotoxicity for tumors. However, 

in many cases tumor-specificity of such Ad vectors remains poor since the alternate 

receptors such as CD133 (expressed on the surface of glioma stem cells and neural stem 

cells) and CD46 they are often retargeted to, are also found on the surface of non-cancer 

cells. Therefore, further capsid modifications are needed to optimize CRAds for cancer gene 

therapy.

Limiting adenovirus transcription to glioma cells

Genetic incorporation of tumor-associated gene expression control elements into the Ad 

genome for regulating its early (E1) gene expression (transcriptional or post-transcriptional), 

improves CRAd vector specificity by restricting viral replication to tumor cells, and thereby 

preventing unfavorable vector toxicity in normal cells. To achieve this specificity, 

incorporation of transcription factor recognition motifs and/or microRNA binding elements 

upstream of the Ad5 E1 genes has been proposed. The rationale behind this approach was to 

provide conditional (selective) expression of the E1A protein, crucial for triggering Ad early 

gene transcription and genomic DNA replication. A prototypical tumor-specific promoter 

(TSP) is known from the literature to selectively regulate/activate Ad early gene expression 

in tumor cells, yet remain inactive in healthy tissues, such as liver, involved in efficient 

uptake of most Ad5 entering the circulation. The “tumor on/liver off” expression ratio is a 

commonly accepted tumor-specificity characteristic of a TSP.

Recently, Guvenc et al., showed that tumor cells highly resistant to therapy exhibit high 

expression level of the survivin gene.51 The latter codes for an anti-apoptotic protein that 
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governs spindle formation and chromatin separation during tumor cell mitosis.51–53 The 

high level of survivin protein correlates with high level of its mRNA, suggesting activity of 

the survivin promoter and stability of its mRNA in those cells. A ~200 bp fragment of the 

survivin promoter (short version) was found to be sufficient to confer Ad replication 

specificity to glioma cells.34,54 Moreover, since the survivin promoter contains radiation-

inducible elements, ionizing radiation can sensitize exposed glioma cells to infection by 

survivin-E1 bearing CRAd vectors.55

Midkine (MK) is a heparin-binding growth factor encoded by the MDK gene. Induced 

during ontogenesis and inflammation, syndecan 1 is the midkine receptor regulating cell 

proliferation, angiogenesis, fibrinolysis, and mRNA expression in several cancers including 

glioblastoma and neuroblastoma. Since MK is implicated in cancer cell proliferation, it has 

become a target for gene therapy. However, there are also effects of MK on genesis of 

normal cells such as fibroblasts, myoblasts, and renal cells,56 and therefore cancer 

specificity of CRAd vectors with MK promoter-controlled replication is questionable. 

Nevertheless, an oncolytic vector with a ~600 bp MK promoter element, driving expression 

of adenoviral E1A, has been demonstrated to eradicate MK-positive glioma cells in vitro 

and in vivo.57

The Promoter of the telomerase related gene (TERT ) is also active in glioma cells. 

According to scientific literature, more than 85% of cancers express telomerase, which is 

required for cell proliferation. A 455 base pair (bp) promoter of the human gene, coding for 

the telomerase catalytic subunit, was successfully used for construction of OBP-301 CRAd 

(also known as Telomelysin) transductionally-retargeted to intergrins on glioma cell lines 

U87, U373, U251, and patient-derived MDC-01.35 However, not all glioma cells exhibit 

high telomerase activity. For instance, according to studies by Jafri et al., only 26.1% of 

high-grade glioma specimens exhibit high telomerase activity.58,59 Under certain conditions, 

normal cells, such as fibroblasts, possess very low levels of telomerase activity, which, 

however, could be induced by drugs, such as HDAC.60,61 This data points to some 

limitations for targeting primary tumors in clinical settings.

Another study conducted by Hoffmann et al evaluated potential glioma-specific promoters 

for oncolytic virotherapy including those of VEGF, GFAP, FGF, Ki-67, Nestin, and 

Midkine gene alone, or in combination with an SV40 promoter/enhancer.62 According to 

this data, elevated activity of promoters was manifested by expression of the Lucif-erase 

reporter. Based on this assay conducted in several patient-derived and established glioma 

cell lines (D54, U251, and U87), the top 7 promoters included: MK, hTERT, VEGFlong, 

VEGFshort, Ki67, GFAP, and E2F/SV40. Furthermore, in vitro promoter activity testing 

showed that the long version of the human GFAP promoter restricts replication of the 

CRAd5/35 vector to glioma cells with both high and low level of proliferation capability. 

Those in vivo data corroborate the ones in vitro and suggest that GFAP promoter-controlled 

CRAd prolongs survival of mice harboring fast growing U251 xenografts. A study 

performed by Horst et al.63 showed that rapidly dividing glioma cells can be targeted by a 

CRAd vector with GFAP promoter-controlled replication. Since GBM cells are sensitive to 

ionizing radiation and temozolomide treatment, virotherapy with the GFAP promoter-

controlled CRAd could be used to augment current therapeutic modalities.
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Tumor selective transcription: is CMV promoter the best reference?

Several studies have compared efficiency of various promoters against that of CMV. A 

study by Zheng et al.64 demonstrated that replacement of the E1A gene promoter with the 

CMV major late promoter (MLP) failed to provide cancer specificity to Ad replication. 

Furthermore, utilization of the CMV promoter to control CRAd replication (E1 

transcription) resulted in lower replication efficiency as compared to the native (E1) 

promoter-bearing CRAd in OE33 and OsACL cancer cell lines. In contrast, equal levels of 

CRAd replication resulted from the CMV-driven E1 expression and the one controlled by 

the native promoter in A549 (lung adenocarcinoma cells), or WI-38 non-tumor cells. These 

observations suggest that the CMV promoter does not confer tumor-specificity to CRAd 

replication. Similar results were also obtained in other studies.65 To date, experimental 

evidence suggests that most tumors,66,67 including brain tumors,68–70 contain 

cytomegalovirus proteins, DNA and RNA transcripts, particularly the ones of the early and 

immediate early CMV genes. Besides its robust activity in tumors, the CMV MLP promoter 

is also active in normal cells, which reduces specificity of CRAd vectors utilizing this 

promoter to control expression of the E1 genes.

Recent reports have indicated that glioma resistance to conventional treatment modalities 

may be determined by expression of therapy-resistant proteins, such as the Y-box protein 

YB-1, a cellular transcription factor implicated in GBM cell survival.71,72 Treatment of cells 

with UV radiation and chemotherapy translocates YB-1 from the cytoplasm to the nucleus, 

indicating its possible role in DNA repair.73,74 Since expression of multidrug-resistance 

genes correlates with YB-1 activity, it is logical to expect a YB-1-dependent CRAd to 

selectively replicate in chemo-resistant glioma cells. In line with this expectation a YB-1-

dependent CRAd dl520 (ΔE1A-13S) demonstrated oncolytic activity in glioma cells, 

resistant to Irinotecan and Trichostatin A.75 Most recently, a dl520-derivate Ad-Delo3-

RGD, carrying an additional E1B gene deletion and the integrin binding motif in the fiber 

protein, also demonstrated a selective replication in chemo-resistant glioma stem cells.76

The other genetic alteration in gliomas that impacts cell division is p16INK4a, leading to 

phosphorylation of Rb and activation of E2F1 transcriptional factor.77 To restrict expression 

of the adenoviral E1A protein to target (glioma) cells deficient in the Rb pathway, authors 

placed E1A transcription under control of endogenous E2F1 transcription factor by cloning 

an E2F1 response element in place of the E1 promoter region.42 As a result, replication of 

such CRAd (ICOVIR5) in normal cells with low level of free E2F1 (trapped in the form of 

Rb/E2F1 inactive complex) was suppressed. On the contrary, an excessive amount of E2F1 

in glioma activated ICOVIR5 vector's replication in target cells. Thus, replication activity of 

this CRAd directly correlates with the E2F1 expression in the virus-infected cells.78 

However, since high level of E2F1 expression is a feature characteristic for any rapidly 

dividing cells,79 the E2F1-controlled CRAd vector cannot discriminate between rapidly 

dividing normal cells and malignant cells.

Suppression of endogenous gene expression on post-transcriptional level involving 

microRNA (miRNA), found in gliomas, can also be utilized in gene therapy approaches. 

MicroRNAs are small non-coding RNAs complimentary to target cellular mRNAs. 
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MicroRNA binding to target mRNA leads to specific repression of regulatory genes either 

on transcriptional or translational levels. It is well documented that gliomas exhibit diverse 

microRNA expression patterns or “signatures”. Given that miRNAs can regulate cell 

proliferation, invasion and angiogenesis, incorporation of miRNA coding sequences into 

CRAds could aid to CRAd's cytotoxic activity. It was recently shown that glioma cells 

express high levels of microRNA 124,-128,-146B and 218,80 and therefore incorporation of 

microRNA recognizing elements (MREs) into the Ad genome could inhibit CRAd 

replication in tumor tissues. It remains to be investigated whether the microRNA-mediated 

CRAd targeting approach will be efficient in human tissues with regard to patient's age, and 

the course of treatment as those might affect miRNA expression.

Analysis of scientific literature suggests that cancer specificity of CRAd agents can be 

achieved by proper selection of transcription regulatory elements and their genetic 

incorporation in CRAd genomes to control viral E1 transcription. However, despite strong 

antitumor effects, incorporation of a given TSP may not prevent E1A transcription leakage 

from the inverted terminal repeat (ITR) sequences in the Ad genomic DNA.81 For instance, 

previous studies have shown that multiple enhancer elements and cryptic promoter elements 

exist within the Ad ITRs, which can contribute to undesired “leaky” E1 transcription in 

healthy cells.64,82,83

Strategies to improve anti-glioma efficacy of CRAds

As it was mentioned above, glioma cell populations responsible for tumor recurrence exhibit 

strong resistance to conventional treatment modalities. Therefore, it is critical to find a new 

and more effective therapeutic approach devoid of cytotoxicity caused by the conventional 

anti-glioma treatments. Besides, a growing body of evidence suggests that intratumoral 

injection of CRAds activates antiviral immune response. To circumvent the immune 

response problem various Ad shielding methods, such as coating with polyethylene glycol 

(PEG) or using stem cells as Ad delivery vehicle, have been developed.

a) Strategies to improve CRAd-mediated toxicity: RT and chemotherapeutic drugs

In has been shown that chemotherapeutic agents activate cellular pathways that contribute to 

CRAd-mediated toxicity. We54,84,85 and others86–91 have shown that CRAds induce cell 

death via two main mechanisms: apoptosis, and autophagy. Despite activation of pro-

apoptotic genes, such as BAX2, BIM, and BIK, CRAd infection does not trigger caspase-

dependent apoptosis. Several reports suggest that CRAds induce autophagy, which involves 

the formation of double-membrane phagosomes. Moreover, recent evidence suggests that 

the E4 region of the Ad genome is required to induce autophagy upon the viral infection. 

Augmentation of CRAd-induced autophagy is one strategy to boost CRAd toxicity. Ionizing 

radiation,36,40,55,89 RAd00135,39 and clinically approved temozolomide (TMZ)35,38,76,92 

have been utilized to promote CRAd-mediated autophagy. However, it is, still unclear 

whether this effect can be directly attributed to CRAd, or is merely a result of CRAd-

induced cell defense mechanism that requires more inhibition to improve CRAd 

cytotoxicity.
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b) Sensitization of cells to the CRAd-mediated toxicity using TRAIL and CD gene 
expression

To successfully design and develop effective treatments for GBM, combinational 

approaches to targeting several molecular pathways may be necessary. Despite our 

advancing knowledge of the genetic alterations involved in this disease, identification of 

new therapeutic combinations may prove advantageous. To augment CRAd-mediated 

toxicity, expression of pro-apoptotic molecules, such a TRAIL (TNF-related apoptosis-

inducing ligand), represents a new anti-glioma approach. TRAIL represents an extracellular 

carboxy-terminal portion of the type II trans-membrane protein that sensitizes tumor cells to 

apoptosis via binding to the DR4 (DR5) receptor. This, in turn, activates caspase 8/10 or the 

intrinsic cytochrome C release pathway, which subsequently activates SMAC/DIABLO to 

translocate pro-apoptotic BIK, BID and BAX.93–96 The common activation of BAX and 

suppression of anti-apoptotic BCL-2 apparently provides a mechanistic link for the additive 

effect between CRAd and TRAIL expression.97–99 Wolhardt et al.31 first proposed targeting 

glioma cells with the CRAd-TERT-5/35 vector encoding TRAIL as a therapeutic transgene, 

while expressing proteins of the E1 region under control of the human telomerase promoter. 

In addition, the capsid of this vector was retargeted to an alternate receptor by replacing the 

wild type fiber knob domain with that of serotype 35. Later, this approach was elaborated by 

Li et al.,32 who used a delta24-5/11 backbone, and by Tsamis et al.,100 who used a delta24 

backbone with the WT fiber. In all cases, expression of TRAIL in the context of an 

oncolytic vector resulted in strong anti-cancer effect compared to the unarmed CRAd.

In 2005 Conrad et al.101 attempted to combine an oncolytic Ad vector and pro-drug therapy 

to suppress gliomas. In addition to the oncolytic effect the virus elicited cytotoxicity owing 

to the expression of the delivered “suicide” gene (humanized form of yeast cytosine 

deaminase, hyCD) converting 5-FC substrate to a toxic metabolite 5-FU in tumor cells.102 

Given the limitation in achieving an effective therapeutic dose without hepatotoxicity in the 

U87 intracranial glioma mouse model, delivery of pro-drug therapy in the context of an 

oncolytic vector holds a great promise.

c) Modification of CRAd genome to improve CRAd-mediated cytotoxicity

The adenoviral genome encodes immediate early and early genes transcribed before the 

onset of DNA replication, as well as late genes transcribed after DNA replication. The 

functions of the Ad5 early proteins include: controlling cell division (E1), containment of 

host immune responses to Ad infection, preventing apoptosis (E3) and activation of Ad 

replication91 (E2). The E3 genes encode 7 proteins, including adenoviral death protein 

(ADP), which is exclusively expressed during the late stage of infection103 and is 

responsible for efficient cell lysis and progeny release.104 In efforts to improve adenoviral 

oncolysis Yun et al. designed an anti-glioma CRAd that harbors a 55Kda-E1B deletion and 

expresses ADP under the control of the adenoviral Major Late Promoter (MLP) or CMV 

promoter.91 The vector expressing a CMV-driven ADP exhibited a strong cytotoxicity 

towards human U343 glioma cells. Although, in vitro data suggest that ~40% of glioma cells 

were sensitive to infection with ADP-overexpressing CRAd, this observation has not been 

confirmed in vivo. Taken together, all this data suggest that overexpression of ADP 

facilitates CRAd-mediated oncolytic effect.
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d) Improvement of CRAd-mediated toxicity by indirect activation of viral replication in the 
presence of hypoxia

One of the disadvantages of using adenoviral vectors in cancer gene therapy is uneven 

dissemination of the vector across the tumor mass.105 One study showed that hypoxia may 

compromise blood supply to certain regions of tumor tissue, which ultimately limits 

intratumoral distribution of CRAds.106 Given that hypoxia contributes to GBM invasion and 

proliferation by maintaining its CSC component,107–109 targeting GBM CSCs via 

accelerating CRAd replication under hypoxic conditions may improve anti-glioma therapy. 

It has been shown that hypoxia affects tumor progression through the blood, and regulates 

activity of target genes via binding of hypoxia induced-transcription factors to hypoxia 

response elements (HRE). These transcriptional regulators allow cells to survive hypoxia by 

activating proliferation.110 Therefore, CRAds designed to aggressively replicate in hypoxic 

environment by utilizing hypoxiainducible factors (HIF) to control their replication may be 

effective in suppressing gliomas108 In line with the above Post et al demonstrated that 

incorporation of HRE in the E1 region improved CRAd replication in hypoxic areas of 

tumors.111

e) Strategies to modulate the anti-Ad immune response?

It is known that patients with GBM develop a strong immunosuppression resulting from 

chemotherapeutic drugs, ionizing radiation, accumulation of cancer stem cells, etc. This 

evidence has initiated the debate as to whether brain tumor patients might benefit from 

immune system stimulation through experimental therapies, such as gene therapy with 

CRAds, which have been shown to induce a proinflammatory response in glioma mouse 

models. Since the mechanism of antitumor effect achieved by glioma virotherapy is still 

unclear, it cannot be ruled out that modulation of the patient's immune response might 

strongly interfere with the effectiveness of the treatment. A recent publication by Liikanen et 

al.112 reignited discussions about the role of immune system activation in CRAd-mediated 

tumor oncolysis. Considering that immune response to Ad vector could significantly 

compromise the efficacy of CRAd-mediated tumor oncolysis by rapid clearing of the viral 

particles, the overall impact of immune response on the clinical outcome of glioma 

virotherapy treatment is still in question.

The immunological responses to CRAd infection has been investigated by several research 

groups. One study using immunosuppressed hamsters suggested that the host immune 

response neither significantly contributes to CRAd clearance, nor to the antiviral immune 

response.113 Moreover, steady levels of the virus were detected in immuno-suppressed 

hamsters, similar to those found in mouse xenografts. In immunocompetent animals, the 

level of CRAd dropped 22 days after tumor implantation, suggesting activation of viral 

clearance. In this regard, of interest is a recent data from Klejin et al.114 demonstrating that 

the immune response to delta24-RGD affects therapeutic efficacy in the rodent 

immunocompetent glioma model. In fact, a local production of proinflammatory cytokines 

in response to intratumoral vector injection increased along with the number of infiltrating 

CD4+ and CD8+ lymphocytes and macrophages. It still needs to be determined whether the 

observed immune response was activated due to the host's protective response against CRAd 

replication, or was a result of the viral mechanism contributing to its replication.
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The main role of stem cell-based vectors is to preserve and deliver CRAds to tumors in 

tumor-specific fashion, while avoiding activation of anti-Ad immune responses. Delivery of 

CRAd payloads to tumors and passing those payloads on to neighboring cancer cells within 

the tumor mass by means of GSCs is based on their intrinsic tumor homing properties. 

Glioma cells release chemokines and angiogenic factors, such as TGF-β,115 PDGFβ,116 

VEGF,117 which attract stem cells administered via various routes. Indeed, the bone-

marrow-derived mesenchymal stem cells (MSC) have been reported to improve CRAd 

persistence and dissemination in vivo.118,119 Moreover, a delta24 CRAd MSC-delivered to 

glioma xenografts, significantly prolonged mice survival in glioma xenografts.120 Of note, 

regardless of the delivery route, intravenous,115 or intracranial (delivery of payload from one 

brain hemisphere to another hemisphere bearing a tumor), MSC successfully targeted 

glioma xenografts. Similarly, we have shown that HB1.F3.CD NSCs, which lack HLA class 

I antigen, when loaded with the CRAd-S-pK7 vector, exhibit a robust anti-glioma effects in 

vitro and in a U87 intracranial mouse model121 A side-by-side comparison between the 

MSC (mesenchymal stem cells)-and NSC (neural stem cells)-based CRAd delivery cell 

vectors showed that the NSC delivery system is more advantageous.122 One significant 

disadvantage of using NSCs for targeted CRAd delivery is their sensitivity to CRAd 

infection, which prevents effective migration and delivery of CRAd payload to other sites 

within the tumor due to CRAd leakage. To circumvent this drawback Kim et al.123 utilized 

N-acetylcysteine (NACA) for treatment of NSCs loaded with CRAd-S-pK7 to attenuate the 

CRAd-induced apoptosis. The NACA-treated loaded NSCs lived longer and maintained 

properties necessary to deliver their payload. Although these results suggest that stem cells 

improve CRAd distribution in vivo, the use of immunocompromised animal models makes it 

difficult to assess the induction of an antiviral immune response.

Safety concerns of using CRAds: Should we care?

Although the efficacy of CRAd delivery to glioma is a critical factor of the experimental 

therapy, safety of the treatment is of high importance too, especially since ongoing 

investigations emphasize the role of new etiological agents in glioma progression. CRAd 

safety testing has been performed in vitro using human culture of healthy adult 

astrocytes30,124,125 or cultured fibroblasts63,75,91,126 and in vivo, using animal models for 

neurotoxicity testing. As can be seen from the data summarized in Table 1, human non-

malignant cells exhibit various sensitivities to CRAd infection, which is important to assess 

prior to in vivo CRAd testing in glioma animal models. A preliminary survival experiment in 

the form of a brain neurotoxicity test, using CRAd intracranially implanted into mice brain 

at lowest and highest doses, is recommended to determine the maximum tolerated dose 

(MTD) of the viral vector. Since mice are not permissive for human Ad replication as 

opposed to hamsters or cotton rats, those rodents represent better animal models for 

neurotoxicity testing.

The use of NSCs to deliver a CRAd payload requires safety testing as well. An important 

study by Aboody et al. showed that HB1.F3.CD NSCs (which lack HLA class I antigen) are 

non-tumorigenic after activating CD gene expression by pro-drug 5-fluorocytosine (5 

FC).127 Considering that cytomegalovirus was found to persist in NSCs,128 it is important to 

assess the risk of stem cells application for patients. In case of high permissiveness, addition 
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of 5FC or any other cytotoxic agent would eliminate the stem cells but may not kill 

cytomegalovirus harbored by those cells. Moreover, recent data suggest that the presence of 

cytomegalovirus may impact activation of pro-tumorigenic adenoviral regions, such as 

E1A.129 Of note, it has been shown that E1A genes under certain conditions may elicit 

formation of oncogenic fusions130 and form tumors in newborn hamsters131,132 Therefore, it 

is highly unlikely, but still possible that CMV-mediated protein expression (IE1) can trans-

activate E1A to produce tumorigenic phenotype in stem cells. From a therapeutic standpoint, 

it remains unclear whether NSC passage can affect efficacy of CRAd delivery, as well as 

whether aged stem cells are capable of inducing tumor formation.

Concluding remarks and future directions

Obtaining an FDA approval for the use of CRAd vectors in human clinical studies requires 

significant time and efforts from investigators. Although in many cases in vitro data 

obtained from tumor clinical samples and in vivo data from mouse xenograft models look 

very promising, a single modality treatment is often less effective than a combination of 

other therapeutic approaches. Moreover, recent studies suggested that inflammation and 

immune response might affect efficacy and specificity of CRAds as anti-glioma agents. 

Although various immunomodulation strategies have been suggested, which involve either 

genetic modifications of the Ad genome to suppress anti-Ad immune response, or shield 

viral particles from the immune system by means of coating with molecular polymers or 

loading inside GSC as vector delivery vehicles, they all require additional experimental 

evaluation. Finally, the established role of autophagy in promoting Ad-mediated oncolysis 

and suppression of the host immune response to Ad will help determining the marker of cell 

resistance controlling anti-viral response at the cellular and organismal levels. It remains 

unclear whether delivery of anti-angiogenic or immunomodulatory factors by Ad vectors 

actually improves oncolytic effect in patients with brain tumors. This data need to be 

analyzed in the future. Although oncolytic adenoviruses alone demonstrate a substantial 

anti-glioma potency in vitro and in vivo, recent studies suggest that the combination of 

virotherapy with chemotherapy and/or immunotherapy may provide greater therapeutic 

benefit. Therefore, tackling glioma progression from different directions, i.e. by utilizing a 

combination of immunotherapy, angiogenic therapy, oncolytic virotherapy, radiotherapy, 

and chemotherapy could provide the most benefits for patient survival.
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Abbreviation

GBM glioblastoma multiforme

Ad Adenovirus

DNA Deoxyribonucleic Acid
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RNA Ribonucleic acid

Wt wild type

CSC Cancer stem cells

GSC Glioma stem cells

IFN interferon

FACS Fluorescent Assisted Cell Sorting

PCR Polymerase chain reaction

RTPCR Reverse Transcriptase Polymerase Chain Reaction

mRNA Messenger mRNA

MLP Major Late Promoter

CMV cytomegalovirus
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Figure 1. 
CRAd replication cycle resulting in target cell oncolysis. A schematics illustrating the basic 

mechanism of CRAd-mediated cell killing starting with binding of a CRAd particle to a 

tumor-specific cell surface receptor(s). This is followed by viral internalization via the 

endosome pathway and subsequent capsid disintegration and trafficking of the released 

genomic DNA (still complexed with core proteins) to the nucleus, where the recombinant 

genomic DNA is transcribed to produce mRNAs coding for viral proteins. Following mRNA 

transport into the cytoplasm and its translation into virus-specific proteins, adenoviral 

progeny particles are assembled from capsomers in the nucleus, following nuclear import of 

the Ad structural proteins. Ad progeny is then released form the infected cells via a 

replication-dependent (onco)lytic mechanism.
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Figure 2. 
Retargeting of adenoviral particles to an alternate receptor improves targeting specificity of 

replication-competent adenoviral vectors.
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Table 1

Comparative toxicity of CRAd vectors.

Cell type/sell type system Vendor Method to detect CRAd 
specificity/toxicity

Cytotoxic dose of CRAd/
effect

Reference

Human astrocytes Adult primary astrocytes Lonza LDH 10 vp per cell/~25% dead 
cells

30

Lonza Crystal violet toxicity test 
and CRAd replication

10 vp per cell/~90% toxicity 124

Lonza Progeny titration 10 MOI per cell/CRAd 
replication from 1.9 × 102 to 
1 × 106

125

Human fibroblasts Fetal lung fibroblasts MRC5 ATCC Ad replication ratio to 
AdWT

0.1 MOI per cell/0.2−0.5 63

Dermal fibroblasts Hs68 ATCC Cytopathic effect, light 
microscopy

50 MOI per cell 75

Normal skin fibroblasts BJ ATCC Crystal violet toxicity test Various toxicity from 10 to 
0.01 MOI per cell

91

Normal skin fibroblast BJ; fung 
fibroblasts IMR90; lung 
fibroblasts WI38

ATCC Crystal violet toxicity test Various toxicity from 100 till 
10 MOI

126
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