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Abstract

This study investigates the correspondence of the cortical sensitivity of electroencephalography 

(EEG) and near-infrared spectroscopy (NIRS). EEG forward model sensitivity to the cerebral 

cortex was calculated for 329 EEG electrodes following the 10-5 EEG positioning system using a 

segmented structural magnetic resonance imaging scan of a human subject. NIRS forward model 

sensitivity was calculated for the same subject using 156 NIRS source-detector pairs selected from 

32 source and 32 detector optodes positioned on the scalp using a subset of the 10-5 EEG 

positioning system. Sensitivity correlations between colocalized NIRS source-detector pair groups 

and EEG channels yielded R = 0.46 ± 0.08. Groups of NIRS source-detector pairs with maximum 

correlations to EEG electrode sensitivities are tabulated. The mean correlation between the point 

spread functions for EEG and NIRS regions of interest (ROI) was R = 0.43 ± 0.07. Spherical ROIs 

with radii of 26 mm yielded the maximum correlation between EEG and NIRS averaged across all 

cortical mesh nodes. These sensitivity correlations between EEG and NIRS should be taken into 

account when designing multimodal studies of neurovascular coupling and when using NIRS as a 

statistical prior for EEG source localization.

Keywords

electroencephalography; near-infrared spectroscopy; diffuse optical tomography; forward model; 
inverse model; sensitivity

1 Introduction

Electroencephalography (EEG) studies aim to gain insight into the mechanisms of brain 

function and the effects of disease, age, therapy, and medication on the brain. EEG measures 

the electric potentials on the scalp that are generated by neural source currents.1 The 

interpretation of EEG measurements relies on knowledge of the correspondence between the 

scalp coordinates of the EEG electrodes used to record the signal and the underlying 

anatomical and functional regions of the cortex.2,3 Similarly, near-infrared spectroscopy 

(NIRS) measures hemodynamics associated with functional brain activity that arises from 

changes in blood oxygenation and blood volume in the area of activation.4 The 
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interpretation of NIRS signals also relies on knowledge of the correspondence of scalp 

measurements and the underlying brain regions.

In the brain, there are complex subsystems composed of neurons, capillaries, astrocytes, and 

microglia, that are referred to as neurovascular units.5 The components within these 

neurovascular units function in intricate ways to maintain the homeostasis in the brain. The 

functional connection between neural activity and hemodynamics mediated by the 

neurovascular unit is referred to as neurovascular coupling. It is important to understand the 

neurovascular coupling to gain greater insight into the physiology of brain function and to 

ascertain what constitutes normal or pathological neurovascular coupling in a healthy brain 

compared with the one that suffers from disease.6 Neurovascular coupling decline could be a 

significant factor in neurodegenerative diseases as it has been observed in disorders such as 

Alzheimer’s disease, hypertension, and ischemic stroke.5–7 In addition to providing further 

knowledge regarding brain function, studies of neurovascular coupling aim to yield new 

metrics for the diagnosis and treatment of neurodegenerative diseases.8,9

In order to study the neurovascular coupling, multimodal neuroimaging systems that 

measure neural and vascular signals are required. A multimodal neuroimaging approach is 

typically used, such as integrating EEG with functional magnetic resonance imaging 

(fMRI),10 magnetoencephalography (MEG) with NIRS,11 or EEG with NIRS.12 Combining 

EEG and NIRS is particularly advantageous because of the comparatively low cost and 

portability of these systems in contrast to other imaging systems such as magnetic resonance 

imaging (MRI), MEG, or positron emission tomography. Multimodal studies, such as those 

that combine EEG and NIRS, examine the combined neurovascular origins of the brain 

activation signals. In such studies, interpretation of the data for EEG and NIRS can be done 

independently for the signals measured from each system, or concurrently, to understand the 

relationship between the signals during the period of activation. Analyzing neurovascular 

coupling information provided by the neural activity measured with EEG and the 

hemodynamic activity measured with NIRS requires that the signals measured by each 

system originate from the same activated regions of the brain. The sensitivity 

correspondence between the two modalities is what allows the spatial and temporal 

relationship between the signals to be studied.

Sensitivity maps for source localization analysis can be computed from the EEG and NIRS 

forward models. These sensitivity maps are often computed when analyzing the signals of 

the EEG and NIRS independently.13–16 The inverse of the forward model can be used to 

compute tomographic maps of the cortical activity. Joint reconstructions of the cortical 

activity often rely on statistical priors that apply the appropriate weighting between NIRS 

and EEG data.17,18 Interpretation of EEG data can be improved upon and the number of 

electrodes needed for measurement can be reduced by using NIRS hemodynamic responses 

as statistical priors.18

In this study, we computed the forward and inverse models for EEG and NIRS and 

calculated their correspondence to help with analysis and interpretation of multimodal 

studies. The forward models were computed for both systems by drawing from 329 scalp 

positions following the 10-5 EEG positioning system, which is an extension of the 10–20 
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International EEG positioning system.2 Then, the intersection and correlation of the 

sensitivity to the brain for both systems were analyzed. The inverse models for both EEG 

and NIRS were computed from their corresponding forward model solutions. Correlations 

between the inverse models were computed for the whole cortical surface and for the 

regions of interest (ROI) distributed throughout the cortical surface. The results are 

discussed in terms of the correspondence of the brain regions to EEG, NIRS, and their 

intersection. Also, the influence of the correlation between EEG and NIRS signals on 

neurovascular coupling studies is discussed.

1.1 EEG Forward Model

The neural activity measured by EEG is generated by millions of neurons firing in spatial 

and temporal synchrony. Focal neural activity is often modeled as a current dipole in the 

cerebral cortex.1 Electric potentials from neural currents can be measured at the surface of 

the scalp with EEG electrodes. The EEG forward problem simulates the distribution of 

electric potentials at locations on the scalp where EEG electrodes are placed that result from 

current dipoles in the cortex, assuming infinite impedance between the electrode and the 

scalp.19–21 The electric potential distribution on the scalp generated by the dipoles depends 

on the orientation of the dipole, so the forward model simulation must account for the 

cortical folds of gyri and sulci. The solution to the forward model is obtained using the 

quasistatic solution to the Maxwell equations in a conducting medium, which is the Poisson 

equation

(1)

where σ [(Ωm−1)] is the tissue conductivity within the region, V (V) is the electric potential, 

f is the electric dipole source, and the divergence of the current source density is J (A/

m2).1,22 The resulting forward model formulation yields a linear relationship between the 

scalp potentials V and the current dipoles J. There are several methods to compute the 

forward model such as using a boundary element mesh (BEM) method or a finite element 

method using a tetrahedral mesh. These two methods require anatomical segmentations from 

a MRI structural scan to generate either boundary or volume meshes of the different tissues 

in the head such as the scalp, skull, cerebrospinal fluid (CSF), and white and gray matter. 

For each electrode position, the forward model is a distribution of the contribution of each 

current dipole to the electric potential measured at that electrode, in units of V/(A m).21

1.2 NIRS Forward Model

The NIRS forward model accounts for the transport of light that is illuminated onto the head 

from optode source locations on the scalp, migration of light through the head tissues, and 

re-emission at the scalp locations of the optode detectors. The propagation of light in tissue 

is modeled throughout the head volume using the radiative transport equation (RTE).23,24 

The RTE is an expression for conservation of radiance over a controlled volume
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(2)

where cm (m/s2) is the speed of light in the medium, and L(r, t, ŝ) (Wm−2 sr−1) is the 

radiance in position r, at time t, and direction ŝ. The total attenuation coefficient μt (m−1) is 

the sum of the absorption coefficient μa (m−1) and the scattering coefficient μs (m−1). The 

term (1/cm)·[∂L(r, t, ŝ)]/∂t in the RTE is the rate of change of the radiance, or the difference 

between the photons entering and leaving the volume; ∇ · ŝL (r, t, ŝ) is the flux of radiance 

out of the volume; −μtL(r, t, ŝ) accounts for the losses of radiance due to absorption and 

scattering; μs∫4πL(r, t, ŝ)fph(ŝ, ŝ′)dω′ accounts for the corresponding radiance gains where 

fph(ŝ, ŝ′) is the normalized differential scattering phase function, or the probability that a 

photon traveling in direction ŝ′ will be scattered toward direction ŝ; and S(r, t, ŝ) (Wm−3 

sr−1) is a source term that accounts for irradiance on the tissue or fluorescence within the 

tissue. In the case of NIRS, the source term is the light illuminated by the optode source.4

The forward model is computed from a perturbation of the system modeled by the RTE in 

the form of localized small changes in the optical properties. Specifically, the effects of 

small changes in the absorption coefficient can be modeled as the linear relationship 

provided by the modified Beer Lambert law that relates optical density and light intensity 

measurements25,26

(3)

where ΔOD is the change in optical density, and Isd,t is the light intensity from the source s 

measured at the detector d at time t.4 The forward model F relates the measured light 

intensity to the changes in chromophore concentration Δ[C]. The forward model is specified 

by the mean optical pathlength 〈L〉, which is the average distance that the photons travel 

from entering the tissue from the optode sources until being scattered back toward the 

detector at the surface and is weighted by the wavelength-dependent molar extinction 

coefficient of the tissue ελ as

(4)

where F is the forward model and ζ is the differential pathlength factor, which relates the 

mean optical pathlength to the distance Lsd between the source and the detector for each 

pair. Optical properties of tissue, such as the extinction coefficient, are often given in terms 

of the absorption coefficient μa, since they are directly related by

(5)

Therefore, given tissue absorption coefficients, source and detector scalp coordinates, the 

forward model provides a direct way of obtaining tomographic reconstructions of 

chromophore concentration changes in the brain from light intensity measurements. The 
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forward model represents the sensitivity of each NIRS channel to the chromophore changes 

of interest. NIRS channels correspond to source-detector pairs rather than individual 

detectors as NIRS measurements require both a source and a detector. Although the forward 

model is often computed in order to generate the inversion and the tomographic 

reconstructions of the chromophore concentrations, the forward model alone provides a lot 

of information for NIRS studies of the human head. The sensitivity matrix resulting from the 

forward model calculation provides information about the extent of the head that is 

examined with NIRS, what regions of the brain are investigated, and the effect of other 

tissues on the NIRS signal measured.16,27

A common method for calculating the forward model is to use a Monte Carlo technique to 

simulate the light transport of photons through the tissues. An alternative method of 

simulating the forward model is to use the diffusion approximation to the RTE instead of 

simulation.4,28 The diffusion approximation is accurate except when modeling light 

transport through the CSF layer, which is a very low-scattering medium.29–31 The Monte 

Carlo simulations of the RTE account for the low-scattering CSF regions and thus yield 

more accurate results.

1.3 EEG and NIRS Inverse Models

The EEG forward model linearly relates the current dipole sources in the cortex to the EEG 

measurements obtained at the electrode locations on the scalp. The dipole source strengths 

can be estimated from measured EEG data by inverting the forward model. The EEG inverse 

model specifies the linear relationship between the EEG measurements V and the dipole 

sources J. The NIRS forward model specifies the linear relationship between the tissue 

optical properties and the NIRS measurements obtained at the optode locations on the scalp. 

Similar to the EEG inverse model, the NIRS inverse model relates the changes in optical 

density to localized changes in the optical properties of the tissue. Inverting EEG and NIRS 

forward models is generally an ill-posed problem and requires the application of several 

specialized techniques.32–34

2 Methods

2.1 EEG Forward Model

The sensitivity of the brain to the EEG electrodes was computed for 329 electrodes from an 

EEG forward model solution using the 10-5 positioning system.2,35 To compute an EEG 

forward model, surface meshes of the head tissues, tissue conductivities, and EEG electrode 

positions are required. A simulated adult human MRI structural scan was obtained from 

BrainWeb, a publicly available database of head tissue segmentations, and simulated T1 

images using a SFLASH (spoiled FLASH) sequence with TR = 22 ms, TE = 9.2 ms, a 30 

deg flip angle, and 1 mm isotropic voxel size, generated from real-MRI head scans obtained 

under IRB approval.36,37 Freesurfer (Athinoula A. Martinos Center for Biomedical Imaging, 

Cambridge, Massachusetts) and Brainstorm (documented and freely available for download 

online under the GNU general public license)38 were used to segment the MRI head scan 

into four BEM surfaces (scalp, skull, CSF, and brain) and to calculate the EEG forward 

model. The process involved several steps.

Giacometti and Diamond Page 5

Neurophotonics. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



First, Freesurfer was used to segment the cortical surface from the MRI head scan in order to 

obtain a BEM.16,35,39–42 Then, the MRI head scan and the segmented cortical BEM were 

loaded into Brainstorm. The scalp surface was segmented from the MRI using the 

Brainstorm function “Generate head surface.” Using the scalp and brain surfaces, BEMs of 

the outer and inner sides of the skull were generated with a 4-mm skull thickness using the 

“Generate BEM Surfaces” function. The scalp BEM was then exported to MATLAB, where 

an EEG electrode positioning algorithm was used to calculate 329 electrode scalp 

coordinates using the 10-5 positioning system.35 Those positions were then imported back 

into Brainstorm. The scalp, outer skull, inner skull, and cortex BEM surfaces were used in 

conjunction with the 10-5 EEG scalp coordinates to compute the forward model, using the 

Open MEEG routine.21,22 The forward model was computed using tissue conductivity ratios 

of 1 for the CSF/brain regions, 0.0125 for the skull/ CSF regions, and 1 for the scalp/skull 

regions.20,22 The air/ scalp region ratio was set to 0 because air was assumed to be 

nonconductive. The electrical conductivity for each tissue type was assumed to be uniform 

within each region. Dipole sources were placed at each node of the brain BEM surface. The 

BEM method was used to calculate the forward model for the electrode positions placed on 

the scalp. The BEM surfaces used had 1082 nodes for the scalp, 642 for the outer skull, 642 

for the inner skull, and 325,987 for the brain. The matrix resulting from the computation 

contained gain values for each node in the brain BEM for the x, y, and z directions for each 

electrode. To compute the EEG sensitivity for each electrode, the gain values at each node 

were projected along the local directional vector that is normal to the cortical surface

(6)

where Sn,e is the sensitivity of electrode e to brain mesh node n, G is the gain, and r is the 

node directional vector.

The contrast-to-noise ratio (CNR) was computed for the EEG forward model analysis in 

order to select the sensitivity above the noise floor. The CNR was computed from the 

sensitivity for each node and electrode Sn,e, using an instrument noise of 1.0 μVrms, a signal 

activation of 0.2 pAm per pyramidal neuron, and a volume of activation of 200,000 

synchronized neurons.43,44 The sensitivity of EEG was set to zero for all nodes with CNR 

values under 0 dB.

2.2 EEG Inverse Model

The matrix formulation of the EEG forward model S, obtained from Eq. (1), is

(7)

relating the scalp potentials V and the current dipoles J. The inverse model M was computed 

from the forward model S using a Bayesian approach

(8)
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where Γ is the signal covariance matrix prior and Λ is the noise covariance matrix. The EEG 

inverse model solution MEEG was calculated from the sensitivity matrix S, using the 

Brainstorm function “Compute Sources” which uses the L2-minimum norm estimation 

algorithm from Eq. (8).45 The noise covariance matrix was calculated from the ratio of 

instrument noise covariance and signal covariance using the same noise and signal 

activation as the EEG CNR calculations described in Sec. 2.1. The result is an inverted 

matrix with dimensions of the number of cortical nodes by the number of EEG electrode 

channels.

2.3 NIRS Forward Model

In this study, we computed the NIRS forward model for a human head using the tetrahedral 

mesh of a head segmented into four regions: scalp, skull, CSF, and brain. A Monte-Carlo 

simulation method was used to illuminate photons into the mesh at locations specified by the 

EEG 10-5 positioning system, using tissue optical properties commonly used in the field. 

The matrix formulation of the NIRS forward model is

(9)

which relates ΔOD from Eq. (3) to the NIRS forward model F and the change in 

chromophore concentrations Δ[C].4

The sensitivity of the brain to each NIRS detector was computed for 64 optodes (32 sources 

and 32 detectors) as a NIRS forward model solution using a subset of the 10-5 EEG 

positioning system. The layout of the optode sources and detectors, and the 156 optode 

pairings selected, is illustrated in Fig. 1. The NIRS forward model was computed using 

mesh-based Monte Carlo (MMC) (Athinoula A. Martinos Center for Biomedical Imaging, 

Cambridge, Massachusetts),46 which is a software tool for simulation of the RTE for light 

propagation in tissue. The simulation computes the trajectory and weight of millions of 

individual photons as they propagate through tissue undergoing absorption and scattering 

events. Photon re-emission at the detector locations is also tracked. The software generates a 

matrix of fluence (1/mm2) at each tetrahedral mesh node for each time step of the period 

specified.

The BEM surfaces used for the EEG forward model were exported onto MATLAB. MMC 

requires tetrahedral volume meshes instead of the triangular BEMs used for the EEG 

forward model computation. The complexity of the brain BEM made it impossible to 

maintain the 325,987 nodes at the surface when converting to a tetrahedral mesh. To avoid 

that issue, we computed the convex hull that envelopes each hemisphere of the brain. The 

surface meshes of the scalp, outer skull, inner skull, and left and right hemispheres of the 

brain were converted to a single-head mesh of 52,662 nodes, 300,742 tetrahedral elements, 

and multiple regions using the iso2mesh (Athinoula A. Martinos Center for Biomedical 

Imaging, Cambridge, Massachusetts)47 package function “surf2mesh.” MMC also requires 

that the source optode positions be inside of a tetrahedral element. Since the 10-5 scalp 

coordinates lie on the surface of the head rather than inside it, the centroid of the tetrahedral 

element closest to each position was chosen as the source optode position. This shifted the 
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positions by an average of 2.04 ± 0.7 mm, which altered the source-detector separations by 

an average of 0.45 ± 1.39 mm without affecting the results. A single simulation was 

computed with 10 million photons for each position for a time period of 5 ns using 0.1 ns 

time steps. The simulations were performed using a uniform refractive index η of 1.37, a 

uniform anisotropy coefficient g of 0.89, and the optical properties listed in Table 1.27,47–49

The sensitivity of NIRS was computed for each of the 156 source-detector pairs that are 

marked in Fig. 1. The positions chosen follow the layout of the NIRS–EEG head probe 

developed by our lab.50 The source-detector pairs chosen have a mean separation distance of 

42.30 ± 7.48 mm, as shown in Fig. 2. Although the source-detector pairs chosen yielded 

larger separations than those commonly used for analysis, a CNR threshold of 0 dB was 

used in the analysis to give less weight to channels with larger distances. The CNR variance 

for each channel is plotted against the channel source-detector distance in Fig. 2.

The results of the Monte Carlo simulations need to be further processed in order to obtain a 

sensitivity matrix. The result of each simulation was a value of fluence (Φ) at each node of 

the tetrahedral head mesh for the 50 time steps simulated. The mean transit time t̄tr was 

calculated for each source-detector pair selected as

(10)

where ti is the simulation time at step i, and Φs,ti (rd) is the fluence at time step ti from the 

source s at position rd of detector d. The mean transit time calculated for all selected source-

detector pairs was 1.03 ± 0.15 ns. From the mean transit time, the mean optical pathlength 

〈L〉 was calculated as

(11)

where c/η is the speed of light c in tissue with index of refraction η. The mean optical 

pathlength for all source-detector pairs chosen was 22.5 ± 3.2 cm. Finally, for each source-

detector pair, the differential pathlength factor ζ was calculated from the mean optical 

pathlength and the distance between the source and detector Lsd. To ensure accuracy, the 

mean transit time, mean optical pathlength, and differential pathlength factor were 

calculated from the fluence simulated at the source and at the detector positions, using the 

source-detector pair and the detector-source pair, and then averaging them. The differential 

path-length factor for all source-detector pairs had a mean value of ζ = 5.37 ± 0.44.

To compute the NIRS sensitivity matrix, the fluence was summed over time to obtain the 

total fluence during the simulation, yielding a matrix of fluence for each node by each 

source optode position. The sensitivity Ap(rn) of each source-detector pair p for each node at 

position rn was calculated from the fluence fields as
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(12)

where Φs(rn) is the fluence from source s at nodal position rn, Φd(rn) is the fluence from 

detector d at nodal position rn, and Φs(rd) is the fluence from source s at detector position rd. 

A normalization factor NF was calculated for the sensitivity of each source-detector pair to 

account for the source-detector separation distance as

(13)

where Ap(vj) is the volume sensitivity for tetrahedral element j and source-detector pair p, 

calculated as the average sensitivity at each node of the tetrahedron (rn1, rn2, rn3, and rn4), 

and Vj is the volume of the tetrahedral element j. The normalized sensitivity A†(r) for each 

source-detector pair was calculated as the sensitivity multiplied by its corresponding 

normalization factor. Since the normalization factor included the fluence at each nodal 

position, normalizing the sensitivity yielded a matrix with the form of a mean optical 

pathlength per unit volume at each node with units of (mm/mm3 → 1/mm2), the same units 

as the original fluence field.

Since our aim was to compare the NIRS forward model against the EEG forward model, the 

sensitivity was needed at each brain BEM mesh node rather than at the head tetrahedral 

mesh nodes. To obtain those values, a linear three-dimensional (3-D) interpolation was 

computed for all values of the sensitivity at all nodal positions. From the interpolation, the 

sensitivity values corresponding to the nodes of the BEM were computed, yielding a 

sensitivity matrix equal in size to the EEG sensitivity matrix for each NIRS source-detector 

pair.

The CNR was computed for the NIRS sensitivity matrix in order to select values above the 

noise floor. The number of photons Nph detected at each electrode was computed as

(14)

where Pi is the incident power of the system, set at 5 mW, Fc is the optical coupling loss 

factor, set at 50%, fs is the sampling frequency, set at 200 Hz, Eph is the energy of a photon, 

calculated using the wavelength of the laser source set at 808 nm, and Φ† (no units) is the 

normalized detected fluence, which was computed from the ratio of the fluence from the 

source at the detector position Φs(rd) and the fluence from the source at the source position 

Φs(rs).16,51 The shot noise Ns was calculated as the square root of the number of photons 

detected . The instrument noise Ni was computed as
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(15)

where the noise equivalent power Pne was set to 0.05 pW/Hz1/2. The measurement noise Nm 

(no units) for the detected fluence was computed as

(16)

The change in optical density from measurement noise was computed for each source-

detector pair p as

(17)

Finally, the CNR was computed for each source-detector pair at each node in dB as

(18)

for an assumed volume of brain activation of vact = 5·5·5 mm3 accompanied by a change in 

absorption coefficient ∂μa = 0.0001 mm−1. The normalized sensitivity A†(r) was set to zero 

for nodes with CNR values below 0 dB for each source-detector pair.16,51

2.4 NIRS Inverse Model

The NIRS forward model can be inverted such that the changes in chromophore 

concentrations can be computed directly from light intensity measurements as

(19)

where MNIRS is the inverse model for NIRS, calculated in the same way as was done for 

EEG using Eq. (8), but substituting the EEG sensitivity matrix S with the normalized NIRS 

sensitivity A†. The NIRS noise covariance matrix for this calculation was obtained from the 

ratio of the noise covariance and the signal covariance,

(20)

Figure 2 shows the CNR variance (CNRvar) used to weight each channel with respect to 

their corresponding source-detector separation, so that channels with larger separations have 

less influence on the analysis results. Tomographic calculations can be made using this 

method to transform linear NIRS measurements into diffuse optical tomography 
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reconstructions of brain activity in the form of chromophore concentration changes or blood 

volume changes.4

2.5 NIRS–EEG Sensitivity Correlation

The NIRS-EEG head probe electrode and optode layout was followed to select the NIRS 

source-detector pair sensitivities and electrode sensitivities such that each electrode 

corresponds spatially with an optode pair, as shown in Fig. 1. The area of the brain to which 

an EEG electrode is maximally sensitive is underneath the electrode, whereas the area to 

which a NIRS source-detector pair is maximally sensitive lies in the region between the 

source and the detector. Because of this, the colocation of EEG and NIRS channels does not 

correspond to colocalized EEG electrodes and NIRS optodes but rather to EEG electrodes 

and NIRS source-detector pairs. Spatially colocating electrode positions and the midpoint of 

source-detector distances attempts to maximize the simultaneous monitoring of the same 

brain regions using EEG and NIRS. The correlation Re,p of EEG and NIRS sensitivities was 

computed as

(21)

where Se,n is the EEG sensitivity from electrode e to brain mesh node n, and  is the 

NIRS normalized sensitivity from source-detector pair p to node n. The resulting correlation 

matrix has the size of the number of electrodes by the number of source-detector pairs.

Optimal groups of source-detector pairs that maximally correlated with each electrode were 

obtained using the following steps. First, the correlation matrix R was sorted from maximum 

to minimum correlations with respect to each electrode. The sorted matrix yielded the 

source-detector channels in descending order of correlation with each individual electrode. 

Next, groups of NIRS source-detectors were selected based on the sorted results. The first 

group was the sensitivity of the pair with the highest correlation to one electrode; the second 

group was the combined sensitivity of the pairs with the highest and the second highest 

correlations to the same electrode; the third group was the combined sensitivity of the pairs 

with the three highest correlations to the same electrode; this same process was carried out 

for the top 30 pairs and for all 329 electrodes. So, for each electrode, group g was computed 

as the sum of the sensitivities of the first k source-detector pairs with the highest correlation 

with that electrode. The grouping yielded a new NIRS sensitivity matrix that, instead of 

having the size of the 156 NIRS channels, had the same size as the EEG sensitivity matrix 

(329 channels). Then, new correlations were computed for each group of source-detector 

pairs’ sensitivity and their corresponding electrode sensitivity. The result was a correlation 

matrix with the size of electrodes by the 30 groups of source-detector pairs. Finally, the 

group that had the highest correlation for each electrode was selected as the optimal group 

for that electrode, yielding a set Re,g,max with a single-correlation value for each electrode e 

and group of source-detector pairs g. The number of group calculations (30) we performed 

was to ensure that we reached the maximum correlation in all cases to find the optimal 
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group. In reality, most optimal groups had significantly fewer pairs per group and required 

fewer calculations.

A reference table of optimal source-detector pair groupings with respect to each electrode 

was also generated, containing one source-detector pair group for each electrode that 

correlated maximally. A subset of 65 EEG electrode positions, corresponding to the 10-10 

positioning layout, was chosen from the 329 positions for displaying the tabulated results in 

order to follow the layout of the NIRS-EEG head probe we use in our lab.50 The electrodes 

selected for Table 2 are indicated in Fig. 1.

2.6 NIRS-EEG Inverse Model Correlation

The correspondence of the EEG and NIRS inverse models was computed for all nodes in the 

cortex. For each cortical node, a point spread function (PSF) was obtained across all EEG 

channels by multiplying the sensitivity of that node to all electrode channels by the EEG 

inverse model. This calculation was repeated for the NIRS forward and inverse models, 

yielding a PSF for each brain mesh node for both EEG and NIRS. A NIRS-EEG correlation 

value was calculated for each cortical mesh node from the correlation of the PSFs centered 

at that given cortical mesh node; the value of the PSF for each brain mesh node for both 

EEG and NIRS was set to zero for all nodes with CNR values under 0 dB. The diagram in 

Fig. 3 illustrates the process to calculate the NIRS-EEG correlation at each brain mesh node. 

The PSF for EEG and NIRS at each node was calculated as the product of the forward 

model F at node i for all channels by the inverse model M as

(22)

The PSF at the node shows the distribution of reconstructed activity from a point source at 

node i for each system as seen in Fig. 3(b) for NIRS and in Fig. 3(c) for EEG. The 

calculation of the correlation is visually represented in Fig. 3(d) as the slope of the 

regression line between the two distributions plotted against each other.

Lastly, a ROI analysis was performed for the correspondence of the EEG and NIRS inverse 

models. An EEG positioning algorithm was used to calculate the evenly subdivided 3-D 

coordinates of 329 positions on the surface of the scalp following the 10-5 positioning 

system.35 The scalp coordinates were then projected onto the cortical surface. To do this, a 

plane was fit to the set of cortical mesh nodes closest to each scalp position, as shown in 

blue in Fig. 4(a). Then, the normal to the plane (blue) that connects with each scalp 

coordinate (green point in space) was calculated. Finally, the projection point was calculated 

as the intersection point (red point on surface) between the plane normal and the triangular 

mesh element on the surface of the cortex. This method yielded 329 evenly distributed 

positions on the surface of the cortical mesh.

A region of the cortex was selected by identifying all mesh nodes that fall inside a sphere of 

variable radius centered on each of the 329 projected positions on the cortex, as illustrated in 

Fig. 4(b). The PSFs centered at each of the selected nodes were added for both EEG and 

NIRS. Then, a NIRS-EEG correlation value was calculated for each ROI from the 
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correlation of the added PSFs. Then, the correlation values were assigned to all nodes within 

the ROI; the correlation values were averaged for nodes that belonged to multiple regions. 

This ROI analysis was repeated for varying spherical ROI radii, as shown in Fig. 4(c). The 

correlation values were averaged across all nodes for each ROI size, and the optimal ROI 

size was calculated as the one that yielded the maximum average correlation. Finally, a 

correlation value for each node was calculated using the ROI method and the optimal ROI 

radius.

3 Results

3.1 NIRS-EEG Sensitivity Correlation

The correlations between each EEG electrode channel and NIRS source-detector pair 

calculated with Eq. (21) had a maximum value of Rmax = 0.28, as is shown in Fig. 5(a). All 

values of NIRS and EEG sensitivities below the CNR = 0 dB threshold set were set to zero 

to ignore the noise when calculating the correlations. The new correlations using the 

thresholded NIRS sensitivity had a maximum value of Rmax = 0.58, as is shown in Fig. 5(b).

NIRS source-detector pair groups, based on the maximum sensitivity correlation to their 

corresponding EEG electrode, were calculated. The optimal groups were selected based on 

the channels with the highest correlations from Fig. 5(b) for each EEG channel. The 

correlation values between each EEG channel and optimal NIRS source-detector pair group 

have a mean and standard deviation of R = 0.46 ± 0.08 across all 329 positions and are 

shown in Fig. 6. The correlation values are placed at each EEG electrode position.

The reference table of source-detector pair groupings with respect to each electrode 

generated contains the optimal source-detector pair group that corresponds to each electrode. 

The table was calculated from the subset of 65 EEG electrode positions (EEG 10-10) that 

were chosen. The number k of source-detector pairs required to obtain the maximum 

sensitivity correlation in each optimal group with respect to each EEG channel is shown in 

Fig. 7. Given that the top 50% of optimal groups required four pairs or less for maximum 

correlation with each EEG channel, the first four (or less) pairs for each group—sorted to be 

the ones with the highest correlation to that EEG channel—were were combined as 

individual effective NIRS channels. This threshold (k = 4) is shown in the red dashed line in 

Fig. 7. The thresholded grouped pairs required for maximum correlation are listed in Table 

2. For each electrode, Table 2 lists the first four optode source-detector pairs that will 

maximally correlate to it. The correlation between each EEG channel and its corresponding 

thresholded optimal NIRS source-detector pair group has a mean and standard deviation of 

R = 0.44 ± 0.08 across all 65 positions selected. The position for each source-detector pair 

included in each group, the corresponding EEG electrode, and their labels are shown in Fig. 

1.

3.2 NIRS-EEG Inverse Model Correlation

The correlation values at each node from the EEG and NIRS inverse models are shown in 

Fig. 8. The mean correlation between the PSFs for EEG and NIRS was R = 0.17 ± 0.10. 

Figure 8 illustrates the correspondence between EEG and NIRS tomographic sensitivities 

above the CNR threshold. The correlations between EEG and NIRS PSFs were computed 
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for 329 spherical ROIs evenly distributed throughout the surface of the cortex with varying 

radii. Spherical ROIs with a radius of 26 mm yielded the maximum correlation between 

EEG and NIRS averaged across all cortical mesh nodes, as shown in Fig. 9. Using 329 ROIs 

with radii of 26 mm, the mean correlation between the PSFs for EEG and NIRS ROIs was R 

= 0.43 ± 0.07, as shown in Fig. 10. Figure 10 also illustrates the correspondence between 

EEG and NIRS tomographic sensitivities above the CNR threshold for measurements 

performed using 26 mm ROIs.

4 Discussion

The sensitivity matrix of EEG and NIRS measurements to brain nodes illustrates the regions 

of the brain that are measured when using EEG or NIRS. Also, forward models can be 

combined to show sensitivity maps for the intersection of these two measurement types as 

applied in multimodal studies that combine EEG and NIRS to study the brain. Finally, the 

forward models provide the necessary data to compute inverse models for NIRS and EEG, 

yielding the tools needed to reconstruct tomographic maps of brain function. A principal use 

of the combination of EEG and NIRS in multimodal studies is to examine the relationship 

between neural signals and vascular hemodynamics as measured by EEG and NIRS, 

respectively. The interpretation of the data when using these systems depends on the 

location of the EEG electrodes and NIRS optodes and the intersection of the sensitivity to 

the brain from those locations. Meaningful conclusions regarding the neurovascular 

relationship can be drawn from NIRS and EEG data so long as the signals originate from the 

same region of the brain. In general, this can be assumed when using block studies to 

generate functional responses to a task that can be measured both with NIRS and EEG. But 

ultimately, these assumptions must be examined to understand the extent to which the origin 

of the EEG and NIRS signals spatially collocate. If the regions of the brain measured by the 

two systems do not intersect, then the interpretation regarding their relationship weakens. 

Neurovascular coupling studies that use NIRS and EEG will need to take into consideration 

the correlation between the sensitivities of the systems when interpreting the data, 

particularly when assuming that the recordings originate from the same brain regions. 

Likewise, the correspondence of the EEG and NIRS tomographic maps of the brain should 

be considered when drawing conclusions from the reconstructions of measurement data.

In order to understand the correspondence of the source of neural activity measured with 

EEG and hemodynamic responses simultaneously measured with NIRS, we studied the 

correlation of the sensitivity of NIRS and EEG to the brain using a layout that covers the 

whole head. The correlation values for each electrode and optimal source-detector pair 

group provide some insight into how multimodal data observe cortical activity, as illustrated 

in Fig. 6. The mean correlation of R = 0.46 ± 0.08 obtained in this study suggests that the 

relationship between neural signals and vascular hemodynamics can only be studied to a 

limited extent with these systems and that revealing more precise relationships requires 

systems with sensitivities that correlate more strongly. Innovative experimental paradigms 

may need to be designed or analysis methods and modeling may need to be used to 

overcome this limitation.51,52
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Also, the results (Fig. 6) show the spatial variation between the correlation of EEG and 

NIRS across different regions of the brain, suggesting that using EEG and NIRS for 

multimodal studies may be best suited to studies of certain cortical regions such as the 

primary sensorimotor areas. The causes of these regional differences could arise from a 

variety of factors including head and brain shapes, anatomical structure of head tissues, 

distance from the scalp to the brain, and the EEG–NIRS layout. Analysis of the relative 

contribution of these factors to the spatial variations in sensitivity correlation is beyond the 

scope of the present study. Given that NIRS and EEG sensitivities fall off with depth at 

different rates, the sensitivity of the intersection of EEG and NIRS is expected to be greatest 

near the surface. This can be seen in Fig. 8, where the nodal correlation is highest at the 

superficial regions of the gyri and lowest at the inner tissues within the sulci. The 

differences between the signal drop-off for EEG and NIRS can be seen in the example 

provided for the diagram in Fig. 3. The difference in sensitivity for each system possibly 

explains why a group of source-detector pairs is required—as opposed to a single pair—to 

correlate best to each electrode.

The spatial resolution of EEG and NIRS is the driving factor behind the ROI analysis results 

(Fig. 9). Computing correlations from individual nodal PSFs resulted in really low values 

(Fig. 8), suggesting that the analysis must be carried out using regions of activity as opposed 

to unitary sources. Computing correlations from larger regions yielded higher results and 

allowed the analysis of the size of those regions. Maximum average correlation across all 

nodes was obtained when running the analysis using a 26 mm radius ROI. This optimal ROI 

radius suggests that the interpretations regarding the correspondence between measurements 

carried out by EEG and NIRS may best be performed using regions of that size. The ROI 

analysis results highlight the need to consider the spatial extent of cortical activity when 

studying the multimodal data, a proposition consistent with studies that analyze sensitivity 

effects to spatial resolution of cortical activity.53 Since NIRS measurements are performed 

between a source and detector pair, the source-detector separation approximates the spatial 

resolution of the measurements, usually several centimeters in length.51,54 EEG has similar 

spatial resolution to NIRS, on the order of centimeters, depending on the number of 

electrodes placed on the scalp, the orientation of the neurons, and the synchronicity of the 

signal.55,56 The spatial resolution of these systems is comparable with the ROI correlation 

analysis results we obtained, where the maximum correlation is obtained for ROIs of a few 

centimeters.

The correlation between EEG and NIRS inverse models for the optimal ROI radius of 26 

mm is shown in Fig. 10 and has a mean of R = 0.43 ± 0.07. This result agrees with the 

analysis performed on the correspondence of the sensitivity for NIRS and EEG (Fig. 6). The 

agreement between the sensitivity correlation analysis, carried out in electrode/optode space, 

and the ROI inverse model tomographic analysis, carried out in cortical space, was apparent 

in terms of the magnitude of correlation and its spatial distribution. For example, it can be 

seen from Figs. 6 and 10 that NIRS and EEG correspond maximally in the motor cortex. 

This agreement could indicate that selecting the optimal NIRS optode source-detector group 

for each EEG electrode can yield measurements that correspond to signals originating from 

a region with a radius of several centimeters. The consistency among NIRS-EEG forward 
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model correlations and inverse model correlations also points out the potential spatial 

limitations of these systems to study neurovascular coupling.

Studies have found the sensitivity of NIRS to detect hemodynamic responses to visual 

stimulation to be 36.8% without noise filtering and 55.2% with noise filtering.57 This 

sensitivity is consistent with the joint NIRS-EEG sensitivities found in our correlation 

analyses. Innovative algorithms to reduce the noise from the signal may be needed in studies 

to improve the sensitivity of NIRS and EEG to the brain and to improve the correlation 

between the signals recorded with these systems. Computing the joint forward model for 

NIRS and EEG and using the systems simultaneously may be useful beyond the studies of 

neurovascular coupling, as their corresponding sensitivities can be used as statistical priors 

to obtain more information from the signals with respect to their independent analysis, to 

improve their spatiotemporal resolution, or to reduce the number of electrodes or optodes 

required for measurement of a ROI.18 NIRS hemodynamic responses have been shown to be 

useful statistical priors for the estimation of cortical currents from EEG signals.18 The joint 

forward and inverse models studied in this work can be used in similar ways to investigate 

the source of brain activity when simultaneously, consecutively, and independently 

measured by NIRS and EEG.

The forward model analysis yielded optimal source-detector groups that correlate maximally 

with each electrode. The agreement between the results obtained in forward model analysis 

(Fig. 6) and the inverse model analysis (Fig. 10) suggests that the correlation values we 

obtained in the cortex can be expected by experimenters using the source-detector pairs and 

electrodes we utilized without requiring the computation of the NIRS and EEG forward or 

inverse model analyses. For that purpose, we generated an itemized list (Table 2) of NIRS 

source-detector pair groups that best correspond to each EEG electrode (for a subset of 65 

electrodes that follow the EEG 10-10 layout). This list may be used by experimenters to 

select which electrodes and optodes simultaneously correspond to a cortical ROI. This 

information could be used for example by researchers to determine which electrodes and 

optodes to include when studying functional networks, by clinicians to select electrode and 

optode locations for chronic monitoring, or in the design of EEG and NIRS brain-computer 

interfaces where it is desirable to minimize the number of electrodes or optodes used. Also, 

Table 2 can be used by experimenters who have EEG electrodes and need to know which 

NIRS optodes will yield the best multimodal recordings or by those who have a specific 

region of the brain they are interested in studying and need to know where to place their 

electrodes and optodes to obtain the best results. It is worth noting that there is some 

expected variation in the correlation values obtained in this study when a different 

NIRS/EEG layout is used, when studying children, or when the electrical or optical coupling 

is not optimal, yielding a bad signal for certain channels.

Finally, the methods introduced in this study use the standard techniques from EEG 

electrode positioning and apply those same principles to NIRS in order to standardize NIRS 

channels, optode positioning, and the correspondence of optodes and cortical locations. The 

standardization of NIRS, particularly for EEG–NIRS studies, will aid in experiment-

planning and interpretation of the signals. In addition, joint forward model and inverse 
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model solutions as shown in this study provide the necessary data to perform tomographic 

imaging from multimodal studies combining EEG and NIRS.
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Fig. 1. 
Electrode and optode layouts and source-detector pair schematic. Note: Only 65 electrodes 

are displayed (10-10 positioning system) for the illustration purposes only. Also, source-

detector distances are not representative of true separation.
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Fig. 2. 
(a) Histogram of source-detector pair separation distances. (b) Contrast-to-noise ratio (CNR) 

variance (CNRvar) for each source-detector pair versus its corresponding separation 

distance.
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Fig. 3. 
Method for calculation of nodal point spread function (PSF) correlation. (a) Selection of 

brain mesh node. (b) Near-infrared spectroscopy (NIRS) PSF for selected node. (c) 

Electroencephalography (EEG) PSF for selected node. (d) Correlation of R = 0.7 between 

EEG (x-axis) and NIRS (y-axis) PSFs at selected node (normalized units).
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Fig. 4. 
(a) Method for the projection of scalp coordinates onto the surface of the cortex. (a1) Plane 

is fit to set of cortical mesh nodes (blue). (a2) Normal to plane (blue) that crosses scalp 

coordinate (green point in space) is selected. (a3) Intersection point between triangular mesh 

element and plane normal is calculated (red point on surface). (b) Regions of interest (ROI) 

selected throughout the brain. (The number of ROIs shown is less than the one used in the 

analysis for illustration purposes.) (c) Variable radius for a single ROI.
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Fig. 5. 
(a) Correlation between NIRS source-detector pair sensitivities and EEG electrode 

sensitivities. (b) Correlation between (noise-thresholded) EEG electrode sensitivity and 

(noise-thresholded) NIRS source-detector pair sensitivity. [The NIRS and EEG sensitivities 

were set to zero for CNR values below 0 dB].
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Fig. 6. 
Correlation between optimal NIRS source-detector pair group sensitivity and EEG electrode 

sensitivity for each corresponding EEG channel with mean R = 0.46 ± 0.08.
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Fig. 7. 
Histogram of optimal source-detector pair sensitivity groupings, displaying the amount of 

source-detector pairs required on each optimal group so that each group’s sensitivity 

achieves maximum correlation to the group’s corresponding EEG electrode. A subset of 65 

electrodes was selected for this calculation based on the EEG 10-10 positioning layout. The 

red dashed line displays the threshold (k = 4) for the optimal groups chosen.
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Fig. 8. 
Correlation between NIRS source-detector pair inverse model and EEG electrode inverse 

model for each brain mesh node with mean R = 0.17 ± 0.10.
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Fig. 9. 
Mean (bold line) and standard deviations (dashed lines) of the region of interest correlation 

between NIRS source-detector pair inverse model and EEG electrode inverse model for each 

ROI radius. The maximum mean correlation was obtained at a radius of 26 mm as marked 

with the vertical red line.
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Fig. 10. 
ROI correlation between NIRS source-detector pair inverse model and EEG electrode 

inverse model for ROI radius of 26 mm with mean R = 0.43 ± 0.07.
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Table 1

Tissue optical properties.

Tissue type
Absorption coefficient μa 

(mm−1)
Anisotropy coefficient g (no 

units)
Scattering coefficient μs 

(mm−1)

Reduced scattering coefficient 

Scalp 0.0170 0.89 7.8 0.858

Skull 0.0116 0.89 7.8 0.858

CSF 0.004 0.89 0.009 0.001

Brain 0.0178 0.89 9.1 1.0

Note: The reduced scattering coefficient ( ) combines the scattering coefficient (μs) and the anisotropy coefficient (g) as .
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Table 2

Optimal source-detector pair groups for each EEG channel. Calculations were made for 65 selected EEG 

positions based on the 10-10 EEG positioning layout. The EEG position corresponding to each source and 

detector position is labeled in parentheses. Source-detector pair groupings were thresholded at k = 4 pairs. The 

correlation between the thresholded source-detector groups and their corresponding electrode has a mean 

value of R = 0.44 ± 0.08.

EEG position
Source-detector pair 1 (EEG 

position)
Source-detector pair 2 

(EEG position)
Source-detector pair 3 (EEG 

position)
Source-detector pair 4 

(EEG position)

Nz Fps1 (AFp1)–Fpd2 (NFp2h) Fps2 (AFp2)–Fpd2 (NFp2h) Fps2 (AFp2)–Fpd1 (NFp1h) Fps1 (AFp1)–Fpd1 (NFp1h)

Fp1 Fps1 (AFp1)–Fpd1 (NFp1h) Fps1 (AFp1)–Fd7 (AFF5) Fps3 (AFp9h)–Fd7 (AFF5) Fps3 (AFp9h)–Fpd1 (NFp1h)

Fpz Fps1 (AFp1)–Fpd2 (NFp2h) Fps2 (AFp2)–Fpd1 (NFp1h) Fps2 (AFp2)–Fpd2 (NFp2h) Fps1 (AFp1)–Fpd1 (NFp1h)

Fp2 Fps2 (AFp2)–Fpd2 (NFp2h) Fps2 (AFp2)–Fd8 (AFF6) Fps4 (AFp10h)–Fpd2 (NFp2h) Fps4 (AFp10h)–Fd8 (AFF6)

AF7 Fps3 (AFp9h)–Fd7 (AFF5) — — —

AF3 Fps1 (AFp1)–Fd7 (AFF5) Fps1 (AFp1)–Fd3 (AFF1) Fps3 (AFp9h)–Fd7 (AFF5) Fs5 (FFC5h)–Fd3 (AFF1)

AFz Fps2 (AFp2)–Fd3 (AFF1) Fps1 (AFp1)–Fd4 (AFF2) Fps1 (AFp1)–Fd3 (AFF1) Fps2 (AFp2)–Fd4 (AFF2)

AF4 Fps2 (AFp2)–Fd8 (AFF6) Fps2 (AFp2)–Fd4 (AFF2) Fs4 (FFC4h)–Fd8 (AFF6) Fps1 (AFp1)–Fd4 (AFF2)

AF8 Fps4 (AFp10h)–Fd8 (AFF6) Fs10 (FFT10h)–Fd8 (AFF6) — —

F7 Fs7 (FFT7h)–Fd9 (AFF9h) Fs9 (FFT9h)–Fd7 (AFF5) — —

F5 Fs7 (FFT7h)–Fd7 (AFF5) Fs5 (FFC5h)–Fd7 (AFF5) Fs9 (FFT9h)–Fd7 (AFF5) Fs3 (FFC3h)–Fd7 (AFF5)

F3 Fs5 (FFC5h)–Fd3 (AFF1) Fs3 (FFC3h)–Fd7 (AFF5) — —

F1 Fs1 (FFC1h)–Fd3 (AFF1) Fs3 (FFC3h)–Fd3 (AFF1) Fs2 (FFC2h)–Fd3 (AFF1) Fs5 (FFC5h)–Fd3 (AFF1)

Fz Fs2 (FFC2h)–Fd3 (AFF1) Fs1 (FFC1h)–Fd4 (AFF2) Fs1 (FFC1h)–Fd3 (AFF1) Fs2 (FFC2h)–Fd4 (AFF2)

F2 Fs2 (FFC2h)–Fd4 (AFF2) Fs4 (FFC4h)–Fd4 (AFF2) Fs6 (FFC6h)–Fd4 (AFF2) Fs1 (FFC1h)–Fd4 (AFF2)

F4 Fs4 (FFC4h)–Fd8 (AFF6) Fs6 (FFC6h)–Fd4 (AFF2) — —

F6 Fs8 (FFT8h)–Fd8 (AFF6) Fs6 (FFC6h)–Fd8 (AFF6) Fs10 (FFT10h)–Fd8 (AFF6) Fs4 (FFC4h)–Fd8 (AFF6)

F8 Fs8 (FFT8h)–Fd10 (AFF10h) Fs10 (FFT10h)–Fd8 (AFF6) — —

FT7 Fs9 (FFT9h)–Td7 (FTT7h) Fs7 (FFT7h)–Td9 (FTT9h) Fs7 (FFT7h)–Td7 (FTT7h) Ts9 (TTP9h)–Td7 (FTT7h)

FC5 Fs5 (FFC5h)–Td7 (FTT7h) Fs7 (FFT7h)–Cd5 (FCC5h) — —

FC3 Fs3 (FFC3h)–Cd5 (FCC5h) Fs5 (FFC5h)–Cd3 (FCC3h) — —

FC1 Fs3 (FFC3h)–Cd1 (FCC1h) Fs1 (FFC1h)–Cd3 (FCC3h) Fs1 (FFC1h)–Cd1 (FCC1h) Fs3 (FFC3h)–Cd3 (FCC3h)

FCz Fs2 (FFC2h)–Cd1 (FCC1h) Fs1 (FFC1h)–Cd2 (FCC2h) Fs2 (FFC2h)–Cd2 (FCC2h) Fs1 (FFC1h)–Cd1 (FCC1h)

FC2 Fs2 (FFC2h)–Cd4 (FCC4h) Fs4 (FFC4h)–Cd2 (FCC2h) Fs2 (FFC2h)–Cd2 (FCC2h) —

FC4 Fs4 (FFC4h)–Cd6 (FCC6h) Fs6 (FFC6h)–Cd4 (FCC4h) — —

FC6 Fs6 (FFC6h)–Td8 (FTT8h) Fs8 (FFT8h)–Cd6 (FCC6h) Fs8 (FFT8h)–Td8 (FTT8h) Fs6 (FFC6h)–Cd6 (FCC6h)

FT8 Fs8 (FFT8h)–Td10 (FTT10h) Fs10 (FFT10h)–Td8 (FTT8h) — —

T9 Ts9 (TTP9h)–Td9 (FTT9h) Ts9 (TTP9h)–Td7 (FTT7h) Ts9 (TTP9h)–Pd9 (TPP9h) Ts7 (TTP7h)–Td9 (FTT9h)

T7 Ts9 (TTP9h)–Td7 (FTT7h) Ts7 (TTP7h)–Td9 (FTT9h) Ts7 (TTP7h)–Td7 (FTT7h) Fs9 (FFT9h)–Td7 (FTT7h)

C5 Cs5 (CCP5h)–Td7 (FTT7h) Ts7 (TTP7h)–Cd5 (FCC5h) Cs5 (CCP5h)–Cd5 (FCC5h) Ts7 (TTP7h)–Td7 (FTT7h)

C3 Cs5 (CCP5h)–Cd3 (FCC3h) Cs3 (CCP3h)–Cd5 (FCC5h) — —

C1 Cs1 (CCP1h)–Cd3 (FCC3h) Cs3 (CCP3h)–Cd1 (FCC1h) — —

Cz Cs1 (CCP1h)–Cd2 (FCC2h) Cs2 (CCP2h)–Cd1 (FCC1h) Cs2 (CCP2h)–Cd2 (FCC2h) Cs1 (CCP1h)–Cd1 (FCC1h)

C2 Cs4 (CCP4h)–Cd2 (FCC2h) Cs2 (CCP2h)–Cd4 (FCC4h) — —

C4 Cs4 (CCP4h)–Cd6 (FCC6h) Cs6 (CCP6h)–Cd4 (FCC4h) — —
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EEG position
Source-detector pair 1 (EEG 

position)
Source-detector pair 2 

(EEG position)
Source-detector pair 3 (EEG 

position)
Source-detector pair 4 

(EEG position)

C6 Ts8 (TTP8h)–Cd6 (FCC6h) Cs6 (CCP6h)–Td8 (FTT8h) — —

T8 Ts10 (TTP10h)–Td8 (FTT8h) Ts8 (TTP8h)–Td10 (FTT10h) — —

T10 Ts10 (TTP10h)–Td10 (FTT10h) Ts10 (TTP10h)–Td8 (FTT8h) Ts10 (TTP10h)–Pd10 (TPP10h) Ts8 (TTP8h)–Td10 (FTT10h)

TP7 Ts9 (TTP9h)–Pd7 (TPP7h) Ts7 (TTP7h)–Pd9 (TPP9h) — —

CP5 Cs5 (CCP5h)–Pd7 (TPP7h) Ts7 (TTP7h)–Pd5 (CPP5h) Ts7 (TTP7h)–Pd7 (TPP7h) Cs5 (CCP5h)–Pd5 (CPP5h)

CP3 Cs5 (CCP5h)–Pd3 (CPP3h) Cs3 (CCP3h)–Pd5 (CPP5h) Cs3 (CCP3h)–Pd3 (CPP3h) Cs5 (CCP5h)–Pd5 (CPP5h)

CP1 Cs1 (CCP1h)–Pd3 (CPP3h) Cs3 (CCP3h)–Pd1 (CPP1h) — —

CPz Cs1 (CCP1h)–Pd2 (CPP2h) Cs2 (CCP2h)–Pd1 (CPP1h) Cs1 (CCP1h)–Pd1 (CPP1h) Cs2 (CCP2h)–Pd2 (CPP2h)

CP2 Cs4 (CCP4h)–Pd2 (CPP2h) Cs2 (CCP2h)–Pd4 (CPP4h) Cs2 (CCP2h)–Pd2 (CPP2h) Cs4 (CCP4h)–Pd4 (CPP4h)

CP4 Cs4 (CCP4h)–Pd6 (CPP6h) Cs6 (CCP6h)–Pd4 (CPP4h) Cs4 (CCP4h)–Pd4 (CPP4h) Cs6 (CCP6h)–Pd6 (CPP6h)

CP6 Ts8 (TTP8h)–Pd6 (CPP6h) Cs6 (CCP6h)–Pd8 (TPP8h) Ts8 (TTP8h)–Pd8 (TPP8h) Cs6 (CCP6h)–Pd6 (CPP6h)

TP8 Ts10 (TTP10h)–Pd8 (TPP8h) Ts8 (TTP8h)–Pd10 (TPP10h) — —

P7 Ps9 (PPO9h)–Pd7 (TPP7h) Ps7 (PPO5)–Pd9 (TPP9h) — —

P5 Ps7 (PPO5)–Pd7 (TPP7h) Ps7 (PPO5)–Pd5 (CPP5h) Ps7 (PPO5)–Pd3 (CPP3h) Ps7 (PPO5)–Pd9 (TPP9h)

P3 Ps7 (PPO5)–Pd3 (CPP3h) Ps3 (PPO1)–Pd5 (CPP5h) — —

P1 Ps3 (PPO1)–Pd3 (CPP3h) Ps3 (PPO1)–Pd1 (CPP1h) Ps3 (PPO1)–Pd5 (CPP5h) Ps3 (PPO1)–Pd2 (CPP2h)

Pz Ps3 (PPO1)–Pd2 (CPP2h) Ps4 (PPO2)–Pd1 (CPP1h) Ps3 (PPO1)–Pd1 (CPP1h) Ps4 (PPO2)–Pd2 (CPP2h)

P2 Ps4 (PPO2)–Pd4 (CPP4h) Ps4 (PPO2)–Pd2 (CPP2h) Ps4 (PPO2)–Pd6 (CPP6h) Ps4 (PPO2)–Pd1 (CPP1h)

P4 Ps8 (PPO6)–Pd4 (CPP4h) Ps4 (PPO2)–Pd6 (CPP6h) Ps8 (PPO6)–Pd6 (CPP6h) Ps4 (PPO2)–Pd4 (CPP4h)

P6 Ps8 (PPO6)–Pd6 (CPP6h) Ps8 (PPO6)–Pd8 (TPP8h) Ps8 (PPO6)–Pd10 (TPP10h) Ps8 (PPO6)–Pd4 (CPP4h)

P8 Ps10 (PPO10h)–Pd8 (TPP8h) Ps8 (PPO6)–Pd10 (TPP10h) — —

PO7 Ps7 (PPO5)–Od3 (POO9h) Ps9 (PPO9h)–Od3 (POO9h) Ps7 (PPO5)–Pd9 (TPP9h) Ps7 (PPO5)–Od1 (POO1)

PO3 Ps7 (PPO5)–Od1 (POO1) — — —

POz Ps4 (PPO2)–Od1 (POO1) Ps3 (PPO1)–Od2 (POO2) Ps4 (PPO2)–Od2 (POO2) —

PO4 Ps8 (PPO6)–Od2 (POO2) — — —

PO8 Ps8 (PPO6)–Od4 (POO10h) — — —

O1 Os1 (OI1h)–Od1 (POO1) Os1 (OI1h)–Od3 (POO9h) Ps7 (PPO5)–Od3 (POO9h) Ps7 (PPO5)–Od1 (POO1)

Oz Os1 (OI1h)–Od1 (POO1) Os2 (OI2h)–Od1 (POO1) Os1 (OI1h)–Od2 (POO2) Os2 (OI2h)–Od2 (POO2)

O2 Ps8 (PPO6)–Od4 (POO10h) Os2 (OI2h)–Od4 (POO10h) Ps8 (PPO6)–Od2 (POO2) Os2 (OI2h)–Od2 (POO2)

Iz Os1 (OI1h)–Od2 (POO2) Os1 (OI1h)–Od1 (POO1) Os2 (OI2h)–Od2 (POO2) Os2 (OI2h)–Od1 (POO1)
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