
Robust parameter extraction for decision support using
multimodal intensive care data

G. D. CLIFFORD1, W. J. LONG2, G. B. MOODY1, and P. SZOLOVITS2

1Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2Computer Science and Artificial Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA

Abstract
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in
technology and computational biology. Recent developments in the integration and archiving of these
data have resulted in new opportunities for data analysis and clinical feedback. New problems
associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse,
asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent
exogenous perturbations by clinical staff. Relationships between different physiological parameters
are usually non-linear (except within restricted ranges), and the equipment used to measure the
observables is often inherently error-prone and biased. The prior probabilities associated with an
individual’s genetics, pre-existing conditions, lifestyle, and ongoing medical treatment all affect
prediction and classification accuracy. In this article, we describe some of the key problems and
associated methods that hold promise for robust parameter extraction and data fusion for use in
clinical decision support in the ICU.
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1. Introduction
Intensive care provides one of the most challenging locales for both clinicians and the engineers
who try to support clinical activities. Intensive care unit (ICU) patients are often the sickest,
frequently having several pathophysiologic problems that must be managed simultaneously to
avoid death or severe morbidity. Both physiological state and external interventions change
frequently, demanding rapid analysis and quick, high-stakes decisions.

Advances in the development of technology, computational signal processing and biological
modelling have led to a growing interest in the archiving and utilization of extensive hospital
medical databases. Although current clinical practice is centered on human expert assessment
of the correlations between parameter values and symptoms, there is a growing awareness
within medical communities that the enormous quantity and variety of data available cannot
be effectively assimilated and processed without automated or semi-automated assistance.
Automated systems have been in place in the ICU and operating theatre (OR) for several
decades, including automated arrhythmia analysis of the bedside electrocardiogram (ECG) and
low (or high) oxygen saturation warnings from the photoplethysmograph (PPG). However,
each device acts in an isolated fashion with no reference to related signals or an individual’s
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prior medical information, such as genetics or medical history. Some patient-specific data are
used in an ad-hoc manner, such as body weight (for the adjustment of drug rates), allergies (to
restrict medications) and age (for arrhythmia alarm thresholds). However, automated use of
such information is rare.

In this article, we outline a long-term approach to develop systematic bases for extracting
information in order to provide assistance to clinicians faced with the enormous challenges of
providing high-quality ICU care. We are currently collecting large data sets of actual patient
experiences in the ICU, developing methods to analyse and abstract those data, retrieval
systems to allow selection of events of interest, creating models that relate such data to patients’
clinical conditions and pathophysiologic status, and building both physiologic and statistical
models to enable sophisticated decision support systems that base alarms on an integrated view
of the patient and that can assess or even suggest alternative courses of action. Although we
frame these ideas within a wider context, here we will focus principally on the problems we
have encountered and the solutions we have developed for collecting ICU patient data and
extracting information that is useful for decision support.

We have instituted a large-scale systematic collection of data about ICU patients (Saeed, et al.
2002) to provide a baseline understanding of what currently happens in the ICU and to allow
us to learn to model patients’ conditions and their responses to various interventions. These
data derive from a heterogeneous set of sources, including: bedside monitoring equipment;
clinical observations by doctors and nurses; laboratory measurements; records of both
continuous and discrete drug administration; reports from physical examinations, referring
physicians, radiologists, pathologists and other specialists; and records of past conditions,
treatments and outcomes, as normally recorded in discharge summaries. Each of these sources
of data carries its own set of technical problems, ranging from mundane issues of data
standardization to difficulties in assessing the quality of recorded data and dealing with missing
data. To date, we have collected data on about 30,000 patients from 4 different intensive care
units at a large tertiary-care teaching hospital. About 10% of those records include high-
frequency physiological signals recorded from the bedside monitors, including multichannel
ECG, invasive arterial blood pressure (ABP), and PPG. Associated derived parameters, such
as heart rate, systolic/diastolic blood pressure and oxygen saturation are also available.

In succeeding sections, we describe issues we have encountered in

1. the collection, measurement, transmission, transcription and storage of these data,

2. abstraction and robust parameter extraction from often noisy and incomplete data,
and

3. extraction of clinically-relevant concepts from unstructured text, which is the form in
which many notes and reports are stored.

2. Errors in collection, measurement, transmission, transcription and storage
of data

The first problem faced in gathering ICU data is the necessity of collecting the data from a
variety of sources: instruments that acquire and digitise continuous signals; devices such as
respirators and intravenous drug delivery systems that must be interrogated to record their
settings; laboratory results that may have been automatically or manually transcribed into
clinical information systems; and medical histories, admitting notes, progress notes, problem
lists, and discharge summaries that must be obtained from on-line or paper medical records.
These diverse data streams must be synchronised in order to make sense of their inter-
relationships. Even establishing basic causal relationships among data elements (did the
patient’s symptoms prompt a change in medication, or did the medication change cause the
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symptoms?) can be problematic when time is recorded by independent and unsynchronised
clocks. At an even more basic level, it is necessary to match each recorded data stream with
the correct patient among all those currently in the hospital, a problem that should be trivially
easy to solve but is often complicated by instruments with poorly designed setup procedures
that are not always completed in the context of urgent care, human transcription errors (Hug
& Clifford 2007, Vawdrey, et al. 2007), and policies intended to protect patient privacy. The
use of proprietary formats and protocols for medical data storage and communications is slowly
giving way to open formats (e.g. EDF, WFDB, XML (Clifford and Oefinger 2006)) and
protocols (such as HL7, and the IEEE Medical Information Bus standard P1073 (Alsafadi, et
al. 1994)) which will reduce transcription errors. However, the processes of capturing and
digesting these data into a consistent format remain complex.

Having solved all of these problems by whatever means necessary, it may be possible to
assemble an electronic medical record containing most of the information upon which medical
decisions are founded. Just as traditional medical records may contain errors from a variety of
sources, so may their electronic equivalents. Measurement errors may stem from incorrect
calibration, improperly located or malfunctioning transducers, artefact, environmental noise,
or from errors in transmission, transcription, storage, or retrieval. Some of these errors can be
minimised by use of good biomedical, computer, and human engineering practices, for example
by: stabilizing sensors to limit motion-related artefact; minimizing the area of low-voltage
sensing circuits and using shielded cables to avoid signal contamination by induced currents;
using error detecting and correcting codes when transmitting and storing packets of digital
data; employing data communications protocols that incorporate handshaking, retransmission,
and redundancy to avoid data loss; redesigning work flow to capture data automatically, to
avoid manual transcription of data where possible, and to verify data that must be transcribed
at the time of transcription; and by regular reviews of data-collection practices to identify and
address deficiencies.

Conscientious use of best practices can reduce but not eliminate measurement errors. The
effects of those errors that remain upon subsequent analysis of the record can be minimised by
searching for logical inconsistencies (such as when the systolic blood pressure is lower than
the mean or diastolic blood pressure), or by comparing multiple redundant measures of the
same physiological parameters. For example, heart rate may be derived from the ECG, an
invasive ABP line, and the PPG. These issues are explored further in section 3(d), after
discussing problems and solutions related to noise reduction, signal quality, artefacts and
missing data.

3. Abstraction and robust parameter extraction
In order to provide information for medical experts (or automated decision support systems)
to make choices concerning patient care, the wealth of available data must be reduced to a set
of distinct concepts and features. Although many parameters are derived from patient data ‘on-
the-fly’ and recorded for later review, trust metrics or signal quality measures associated with
these parameters are rarely stored. Therefore, it is difficult to ascertain the credibility of a given
parameter unless the original data from which the parameter was derived is available, either
to visually verify the data, or in order to derive independent quality metrics.

Noise reduction algorithms often introduce misleading distortions in medical time series data
and, therefore, they should be applied only when the data are determined to be too noisy for a
feature extraction algorithm to be applied accurately. However, it is often necessary to extract
features and compare them to a population norm, or a patient’s history, in order to determine
whether significant amounts of noise are present. A method for simultaneously (or recursively)
extracting features and estimating noise levels is, therefore, appropriate.
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In this section, we describe a generic approach to noise reduction and signal quality analysis,
together with a data fusion framework that provides for a robust estimate of extracted
physiological parameters which evolve over time.

(a) Noise reduction
After appropriate formatting, storage, and initial coding of data, perhaps the most important
stage in data processing is the application of signal processing algorithms to deal with the noisy
and transient nature of physiological signals. Even when the data are continuously available
and the sampling rate high enough, data can still be masked by periods of intense noise due to
movement artefact. Strategies for detecting and (where possible) removing noise in
physiological data depend on the nature of both the noise and the data source and typically
include infinite impulse response (IIR) filters, finite impulse response (FIR) filters, principal
component analysis (PCA) (Moody & Mark 1989), independent component analysis (ICA)
(McSharry & Clifford 2004, He, et al. 2006) and wavelets (Addison 2005). Much of the data
recorded in the ICU are non-linear or non-stationary, however, and the mixing between the
noise and signal is also non-stationary. Therefore, techniques such as ICA cannot work reliably
unless calculated over small, quasistationary segments of data, and frequently updated.
Furthermore, the noise and signal are not independent, such as when heart rate increases due
to activity is associated with increasing frequency of artefact (Clifford, et al. 2002) and methods
to separate them, which assume independence (such as PCA and ICA), only work when the
coupling between signal and noise is weak. It should be noted that PCA-based techniques have
proved extremely effective for filtering on a beat-by-beat basis, particularly in applications
such as QT-analysis (Okin, et al. 2002), ST-analysis (Moody & Jager 2003, Jager, et al.
2004), QRS subtraction and QRS classification (Moody & Mark 1989).

Takla et al. provide a thorough review of the types of contamination of signals in the OR and
methods that have been proposed to deal with the noise (Takla, et al. 2006). Although much
of this information is pertinent to monitoring in general, the ICU is more problematic than the
OR, since the latter is more highly controlled, with a higher staff-to-patient ratio. ICU data is
often only available on an infrequent basis (relative to the underlying dynamics), and removal
of noise becomes problematic. The best method to deal with noise is often simply the use of a
median filter to reject outliers (Mäkivirta, et al. 1991). For example, heart rate and blood
pressure averages recorded by nursing staff every hour sometimes exhibit artefacts that are
significantly different from the underlying waveform data (Hug & Clifford 2007). Although a
median filter is able to reduce the average magnitude of the error in this scenario, this is only
because patients tend to be stable and exhibit the same physiological parameter values from
hour to hour. However, there is no guarantee that the outlier is not a real event. In fact, it is the
rare outliers that are often of interest in biomedical time series data, since they indicate that
the aim of managed stability for a patient may be unsuccessful and that changes in treatment
are required.

To allow for the non-stationary nature of ICU data, an adaptive filter is often more appropriate,
where the transfer function changes in response to each new data sample or feature (Takla et
al. 2006). Adaptive filters are generally either ad-hoc (Husoy, et al. 2002, Martinez, et al.
1997) or model-based (Clifford, et al. 2005, Clifford 2006, Sameni, et al. 2007). Although
model-based filters provide a much more effective suppression of noise, they tend to be more
computationally intensive, and their effectiveness is dependent on the accuracy and
applicability of the model employed. In (Sameni et al. 2007), the authors recently proposed an
adaptation of a model-based filtering approach to the ECG which is particularly suitable to a
realtime implementation. By using an Unscented Kalman Filter (UKF), a non-linear version
of the Kalman filter (KF), they leveraged the beat-to-beat dynamics (and similarities) to allow
a computationally efficient Bayesian approach to ECG model parameter estimation. Although
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Sameni et al. demonstrated that the technique out-performs the best of previously described
ECG filters on normal sinus rhythm ECGs, performance on arrhythmic data is unclear. In all
likelihood, unless a preclassification algorithm is employed, the model will have to be re-fitted
to the data for moderate changes in morphology, and classified as abnormal or artefactual. It
is also worth noting that, since the model is based upon a superposition of Gaussians, it is easily
adapted to filtering and classification of other cardiovascular signals such as the blood pressure
(Clifford & McSharry 2004, Clifford et al. 2005).

(b) Artifacts and missing data
Most filtering techniques are also sensitive to artefacts and missing data. In particular, even
when signals have been sampled above the Nyquist limit, intervals of missing data may be
frequent, due to disconnections, sensor errors, equipment changes, intrusive diagnostics, and
request-based data (such as blood tests). Sometimes noise and artefact can be so high that it is
best just to discard the section of data, effectively making an evenly sampled signal irregularly
sampled.

Often the sampling frequency is inherently uneven, particularly in the case of diagnostic data,
which are ordered when an event or combination of observations indicate a particular test is
required. Missing data and irregular sampling are highly related concepts, although the former
implies that useful data may exist between each sample point and may carry further information
about the state of the patient (such as a significant change in a given variable). Some form of
interpolation may, therefore, be useful in estimating the unobserved information. However, it
may not be appropriate to guess the values of missing or hidden data, since any slight error
might lead to an erroneous decision, there are cases when an estimate is useful. Furthermore,
reporting the bounds of error in an estimate allows a clinician to make safe-harbour decisions.

For single-parameter time series, little more than a sample-and-hold approach (with a time-
out) is generally used to fill in missing data. This is generally a good approach for frequently
sampled data from ICU patients who are usually managed for stability, and thus exhibit
infrequent large changes in the value of a physiological parameter. However, the situations
that are often more interesting and informative, are the infrequent changes and re-sampling
schemes are often used (such as sample-and-hold, linear or cubic spline interpolation).
However, these approaches introduce spurious low and high frequency noise and can be
extremely sensitive to the number of missing data points or to the irregularity of the missing
data (Clifford et al. 2005).

Other more complex methods for filling in missing data involve using the statistical and/or
dynamic nature of the data (rather than just neighbouring gradients) to form estimates of the
intervening sample values such as min-max interpolation (Fessler & Sutton Feb 2003), auto-
regressive modelling (Rajan, et al. Aug 1997, Cassidy & Penny 2002) and KF methods (Chin
2001, Yarita, et al. 2007). Sometimes, however, it is more appropriate to use methods
specifically designed to be used with missing data (or irregularly sampled signals). For spectral
estimation, the Lomb-Scargle periodogram (LSP) (Lomb 1976, Scargle 1982) is a particularly
robust method for extracting frequency estimates of unevenly sampled data, and has been
shown to be particularly suited to spectral quantification of heart rate variability (Moody
1993, Laguna, et al. 1998). The LSP does not require the interpolation of any data, as it performs
a least-squares fit of sinusoids at each frequency to form an estimate of the power spectral
density. The LSP has been shown to be relatively insensitive to the density of missing data and
removed artefact with relatively insignificant changes for up to 20% missing data (Clifford et
al. 2005).

When multiple sources of related information are available, it is possible to exploit the
covariance of the data, such as when using PCA or imputation. However, such techniques again
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assume stationarity of the dynamics of the data (unless incremental updates are calculated on
a frequent basis), and they require that the missing data be missing at random or that an accurate
model of how the missing data are distributed be known. Furthermore, these techniques are
sensitive to outliers and non-removed errors. Since no accurate model exists of how missing
or noisy data are distributed, the interpolation of missing ICU data is extremely difficult
(Abdala & Saeed 2004). (In general, data are missing because they are perceived to be irrelevant
for the current clinical problems, or because exogenous interventions or endogenous activity
has rendered the data useless. Neither of these circumstances is random, or amenable to simple
models.)

It should be noted that the frequency at which a parameter needs to be sampled depends both
on the parameter type and the question we are asking about the patient. For example, although
blood pressure can exhibit large changes over a period of a few seconds (during a head-up tilt,
for example), if we are looking for evidence of haemorrhage we may not need to sample more
frequently than once every five or ten minutes to capture the dynamics of the situation. The
required sampling frequency is also related to the intrinsic dynamics of the parameter, so that
heart rhythm, which can change over a few beats, is sampled rapidly (at 100 Hz or more),
whereas blood creatinine (abnormal levels of which indicate renal insufficiency) may change
only over hours. Consequently, creatinine values are sampled much less frequently and can be
reliably interpolated over several minutes, whereas heart rate estimates cannot. The effective
Nyquist frequency for a particular parameter also depends on an individual’s physiology and
medical condition, and so it is difficult to be sure if parameters are being under-sampled.
However, clinical teams tend to sample parameters more frequently when they believe a patient
may be unstable with a rapidly changing (usually degenerating) physiological condition.
Therefore, the clinical team often notices signs or symptoms indicative of rapid changes and
adjusts the sampling rate so that loss of important information does not occur.

(c) Signal Quality Analysis
Since robust methods for dealing with missing data are not always available, it is sometimes
more appropriate to define a signal quality measure for a given data stream, and simply ignore
the segments of data which have a signal quality below a given value. However, metrics for
signal quality are both signal-specific and application-specific. For example, noise above 20
Hz, which doesn’t distort ABP estimates, can disturb ECG peak-detection algorithms and cause
heart rate variability algorithms to report incorrect values, while leaving heart rate estimation
algorithms unaffected. Low frequency noise (< 1 Hz), which only disturbs subtle features in
the ECG such as the QT-interval or ST-segment, can cause significant errors in the estimate
of the blood pressure. A general treatment of signal quality measures is therefore not possible.
However, signal quality indices (SQIs) can generally be constructed by thresholding on known
physiological limits such as the maximum field strength for the ECG, the maximum rate of
change of the blood pressure, or the distribution of energy in the frequency domain. However,
it is the relationship between physiological parameters that provides the greatest opportunity
to construct SQIs. For example, if heart beats are detected in several ECG and/or pulsatile
waveforms within an expected period of time, all signals can be considered to be of reasonable
quality.

SQIs are generally calculated by bedside monitoring equipment but are rarely used by clinical
teams or automated alert systems, since there is often an assumption that the monitor will
provide either no information or a best guess of a parameter in the absence of good quality
data. However, as we have already discussed, it is very difficult to make an accurate or useful
guess of a missing parameter in non-stationary data, such as that found in the ICU, and a sample-
and-hold approach is often used. Although this can be useful to a human attempting to observe
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the current state of the patient, this is an inappropriate solution for passing data to an automated
or semi-automated algorithm.

With current trends towards semi-automated analysis, it is important that SQIs are available
for each datum and, if possible, be calibrated to provide a known error for a given value of the
SQI. In this way, another algorithm can make informed choices concerning the validity of the
datum for a given application, and derived estimates can be provided with accurate error
bounds. In (Li, et al. 2008), we calibrated a set of ECG signal quality metrics (based upon
statistical, temporal, spectral and cross-spectral features of the ECG) so that a given value of
an SQI metric equated to known error in heart rate. A similar approach was also taken to arterial
blood pressure (ABP), and hence error bounds in derived estimates that rely on heart rate and
blood pressure (such as the cardiac output) can easily be estimated from the standard compound
error formula. Generally, data in the ICU are processed in isolation from other parameters and
signal quality labels are therefore rarely constructed with reference to other signals. In our
approach to SQI derivation, we have concentrated on the relationships between signals, such
as the transit time between the ECG and ABP (Zong, et al. 2004) and the inter-ECG lead
relationships (Li et al. 2008). By comparing related signals and thresholding these relationships
on known physiological limits, it is possible to determine if the data are logically consistent.
Since it is rare that a sequence of extracted features will randomly manifest in a physiologically
plausible manner, internal consistency between signals can indicate high signal quality on the
contributing leads.

Frequently measured parameters (such as heart rate and blood pressure) are amenable to SQI
analysis because there is usually an underlying rapidly sampled waveform from which the
metrics can be derived. When the sampling rate of the data available drops to around ≤1 Hz,
signal quality measures become problematic, since it is almost impossible to differentiate
between a real physiological change and an artefact.

Errors in less frequently sampled clinical data (such as blood tests) are more difficult to
determine for two reasons. Firstly, the sampling rate is low compared to how rapidly a variable
can change. (It should also be noted that there is often a considerable delay between the
biological samples being sent for testing, and the received results, and so an accurate knowledge
of the time of the original sampling must be known.) Secondly, the relationship of a blood test
to other signals is extremely complex, and testing the ‘truth’ of a measurement would require
an extremely complex and accurate model of an individual’s physiology. The general approach
is that a clinician makes a hypothesis concerning the outcome of the test, based upon current
monitored data, and a medical history. If the prediction turns out to be accurate, then the belief
in the result is high. Otherwise, a test may be re-ordered, particularly if subsequent data
indicates that the test results are contradictory. This type of modelling is extremely complex
and the reader is referred to (Long 2001) for more details.

(d) Robust data fusion
Exploitation of the covariance structure of the data is one method of data fusion, since a non-
diagonal covariance matrix implies redundancy in the individual data streams. However,
weighting different data streams can be difficult when the measurement units are different and
the distributions of the data are different (and non-Gaussian). For instance, what blood pressure
change (measured in mm Hg) is equivalent to a 5% drop in oxygen saturation? Townsend and
Tarassenko (Nairac, et al. 1997, Tarassenko, et al. 2001, Tarassenko, et al. 2002b) approached
this problem by using a large ICU database to renormalise five clinical parameters (heart rate,
blood pressure, respiration rate, oxygen saturation and temperature) to zero-mean unit-
variance. Large statistical deviations in this five-dimensional space equate to abnormality that
has been shown to be predictive of future interventions (Tarassenko, et al. 2006).
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When the data to be fused pertain to the same parameter, the data fusion is technically more
straight-forward, although it requires a method for arbitrating between conflicting estimates.
In a recent work, we have extended the work of Tarassenko and Townsend (Tarassenko, et al.
2002a, Tarassenko, et al. 2003) to fuse multiple observations of different physiological signals
(such as heart rate and blood pressure) from multiple sources, recorded at arbitrary times, within
a KF framework (Li et al. 2008).

The KF is an optimal state estimation method for a stochastic signal that estimates the state of
a discrete-time controlled process, x, with observable measurement data z. The KF uses the a
posteriori state estimate, , a state transition matrix H and the Kalman gain Kk to recursively
predict the a priori kth state estimate such that

(3.1)

The Kalman gain is given by  where  is the error covariance of the
a priori estimate and R is the state noise covariance. The above estimate minimises the
measurement innovation η (or residual, sometimes denoted r) given by  (the error
between the prediction and the observation).

Note that K is inversely proportional to R, the measurement noise covariance, and represents
how rapidly the KF will adapt to new observations. In a recent article (Li et al. 2008) we
proposed a modification to R by a multiplicative factor such that R→γR where

(3.2)

and s is a signal quality threshold raging between zero (poor signal) and one (excellent signal
quality) inclusively. This modification has the effect of forcing a KF tracking algorithm to trust
any given observation when the SQI, s, is high. (Since as s → 1, γ → 1). When the SQI, s, is
low, γ tends to infinity and the resultant large increase in R results in a low Kalman gain.
Therefore, the KF no longer trusts the current observation to make a prediction, and relies on
previous observations instead. This approach turns out to provide a low error, unbiased
estimator for cardiovascular time series of heart rate and blood pressure, even in extremely
high noise scenarios since noisy segments of data are automatically rejected.

This KF approach also provides a robust framework for fusing multiple observations of the
same parameter from different sensors. Tarassenko and Townsend (Tarassenko et al. 2002a,
Tarassenko et al. 2003) proposed weighting each observation, xk, of a physiological parameter
by the inverse of the normalised innovation, η, for each channel. In the two channel scenario
(k = 1, 2) the weighted estimate of a parameter becomes

(3.3)

In their application, x was separately given as a scalar heart rate, or respiration rate.
Furthermore, H was assumed to be unity and so the current state is approximately the same as
the last state (xk ≈ xk-1). For beat-to-beat or breath-to-breath updates, this can be considered
approximately true.

Although equation 3.3 weights observations with low innovations more heavily, the higher
innovation can sometimes be associated with the more accurate estimate. Therefore, we added
a scaling function to the innovation such that η2 → η2s-2 for each channel and low quality
estimates are ‘un-weighted’. For N-channels this becomes:

CLIFFORD et al. Page 8

Philos Transact A Math Phys Eng Sci. Author manuscript; available in PMC 2010 January 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.4)

where the 0 ≤ λ ≤ 1 are trust factors for each of the channels of data. This formulation is
particularly useful for the ICU data where multiple estimates of the same physiological
parameter can be derived. For example, one might use the PPG, or pulmonary arterial pressure,
as well as the ABP and ECG to determine physiological parameters such as HR, ABP or cardiac
output.

The trust factor, λ, can be useful when two measurements of the same variable come from
devices that are known to have independent and different error profiles, such as the invasive
and non-invasive cuff measurement of blood pressure. In this case, the λ for the invasive arterial
line could be set to 0.9 (to reflect a 10% error) and the λ for the sphygmomanometer cuff
measurement could be set to 0.8 (to reflect an inherent 20% error in the reading).

This approach can also be thought of as a robust weighted interpolation scheme, with a
sampling frequency of the combined set of observations. That is, the KF is updated at every
observation, and every channel of data provides an estimate of the physiological parameter at
a different time point. Therefore, the resultant time series has a sample point at each observation
that is fit to a weighted sum of previous and current measurements.

The signal quality modified KF approach described above involves a scalar observation model
with the simplest dynamical approach (assuming that the next observation will be
approximately equal to the last observation). Extensions that employ models of the dynamic
evolution of the cardiovascular system, or vector KF formulations that employ models of how
each signal is related to each of the other recorded signals are likely to improve this method of
tracking and noise rejection approach.

For example, Pueyo et al. use a KF to fuse information from the QT and RR intervals to
dynamically characterize beat-to-beat adaptation of the repolarisation period to changes in
heart rate (Pueyo, et al. 2008). Our group has also made significant progress in building both
statistical (Roberts, et al. 2006) and explicit cardiovascular models (Parlikar, et al. 2006;
Parlikar et al. 2007) for ICU data. In particular, cycle averaged models of blood pressure
changes have proved accurate for modelling changes in the blood pressure and estimating
cardiac output (Parlikar, et al. 2007).

However, considerable barriers remain, including modelling non-stationarities in the
parameters and dealing with the underlying noise. Without good methods for rejecting (or un-
weighting) noise, no system of modelling, data fusion or missing information estimation is
likely to work reliably. Signal quality measures should therefore be evaluated on large
databases and then calculated and stored for all possible signals in the ICU.

(e) False alarms in the ICU
One example of where we have applied the concepts of signal quality and data fusion is in the
arena of false alarm suppression in the ICU. False alarms in the ICU can lead to a disruption
of care, impacting both the patient and the clinical staff. The resultant excessive noise pollution,
desensitization to warnings and slowing of response times (Chambrin 2001) can lead to missed
alarms, decreased quality of care (Donchin & Jacob 2002, Imhoff & Kuhls 2006), sleep
problems (Meyer, et al. 1994, Parthasarathy & Tobin 2004), stress for both patients and staff
(Baker 1992, Novaes, et al. 1997), depressed immune systems and longer patient stays
(Hagerman, et al. 2005).
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Tsien et al. conducted a prospective, observational study in a multidisciplinary ICU to record
the occurrence rate, cause, and appropriateness of all alarms from tracked monitors (Tsien &
Fackler 1997). After 298 monitored hrs, 86% of a total 2,942 alarms were found to be false-
positive alarms, while an additional 6% were classified as clinically irrelevant true alarms.
Only 8% of all alarms tracked during the study period were determined to be true alarms with
a clinical significance associated with them.

Recently Zhang et al. (Zhang, et al. 2007) designed a system to simultaneously collect
physiological data and clinical annotations at the ICU bedside, and to develop alarm algorithms
in real time based on patient-specific data collected while using the system. After deployment
of a prototype in a pediatric ICU equipped with a newer generation bedside monitoring system,
a data set of 196 hours of vital sign measurements at 1 Hz together with associated alarms was
collected. About 89% of the recorded alarms were found to be clinically relevant true positives;
6% were true positives without clinical relevance; and 5% were false positives (Zhang et al.
2007). Real-time machine learning showed improved performance over time and generated
alarm algorithms that outperformed the previous generation of bed-side monitors and came
close in performance to the latest generation of bedside monitor alarm algorithms (Zhang
2007). Interestingly, this work shows that an algorithm trained only on data from a specific
patient can approach the level of performance of commercial algorithms that are trained on
much larger data sets (Zhang & Szolovits 2008).

Our recent analysis concerned the suppression of false life-threatening arrhythmia alarms
issued by the bedside ECG monitor. Using two independent reviewers, we annotated 5,386
alarms from a total of 447 adult patient records spanning 41,301 hours of simultaneously
acquired ECG and ABP. A third reviewer then checked each alarm to adjudicate discrepancies
and check overall quality of the alarms. The critical arrhythmia alarm types were selected to
be a) asystole, b) extreme bradycardia, c) extreme tachycardia, d) ventricular tachycardia
(VTach), and e) ventricular fibrillation (VFib). Annotation revealed the false alarm rates of
these five alarm types to be 90.7%, 29.3%, 23.1%, 46.6% and 79.6% respectively, with an
average false alarm (FA) rate of 42.7%. An algorithm to suppress these FAs was then
developed, which used a signal quality measure, sN, derived from the ABP waveform to decide
on the truth of the ECG arrhythmia alarm. (In this application, sN was actually a signal
‘normality’ index (Sun, et al. 2006). Signal normality equates to a high signal quality and no
features indicative of a non-sinus rhythm.) At each ECG alarm point, a reference was made
back to a 20 second synchronous segment of the ABP waveform, and if sN was higher than a
given threshold, the blood pressure was considered to be commensurate with a sinus rhythm,
and the ECG alarm was suppressed if the ABP-derived heart rate was too slow (or fast). The
threshold, sN, was expected to differ for each alarm type since abnormalities in the ECG will
differ depending on rhythm and heart rate. Therefore the annotated alarms were divided into
two sets; a training set and testing set. Each sN was then optimised (together with other alarm
specific thresholds, such as number of beats from which to calculate the heart rate), to determine
the highest FA reduction rate, with the lowest true alarm (TA) suppression rate.

This approach provided an overall FA reduction rate for the five alarm categories above of a)
93.5%, b) 81.0%, c) 63.7%, d) 33.0%, and e) 58.2%, with an overall suppression rate of 59.7%.
This equates to an equivalent FA rate of a) 5.5%, b) 5.5%, c) 8.4%, d) 30.8%, e) 33.1% and
an overall FA rate of 17.2%. However, it should be noted that invasive arterial lines are not

available for all patients in the ICU (only about  of the population), and so to provide this
level of FA suppression for all life-threatening alarms would require an extension of the
algorithm to use the oxygen saturation waveform. TA suppression rates were all zero except
for VTach, indicating that VTach does not always manifest as an abnormal ABP waveform,
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and referencing back to the ECG is required. A full description of the method and results can
be found in (Clifford, et al. 2006) and (Aboukhalil, et al. 2008).

Significant work still remains in the arena of FA reduction, particularly with respect to lower
priority alarms, which although less important, still add significantly to the problem of false
alarm pollution in the ICU. In fact, non-critical alarms constitute over 90% of the alarms in the
ICU. Furthermore, these alarms are not split into groups relating to clinically insignificant,
clinically relevant and immediately actionable. The data and annotated alarms, a subset of the
MIMIC II database, have therefore been made publicly available via PhysioNet (Goldberger,
et al. 2000, LCP 2008) in the hope that public collaboration will rapidly improve this situation.

4. Coding of clinically relevant events and concepts
Once parameters have been robustly extracted, they must be provided with a useful label. In
the case of standard cardiovascular parameters, the label is self-evident (heart rate, blood
pressure, cardiac output, etc.). However, combinations of parameters can provide a richer
picture of the state or class of a patient. For example, a series of desaturations during the night
followed by cessations in breathing are indicative of apnea. The prior probability of placing
the patient into a given class can be extremely important and a rich database of ICU data also
provides the opportunity to extract information for such prior probabilities from alternative
sources.

(a) Medical lexicons for annotating ICU data
The objective (or semi-objective) classification of ICU data requires a standardised lexicon or
system of labelling. Although such systems exist for some signals (such as the ECG), many
labels rely on subjective observations with high inter-observer variability. Furthermore, for
many medical diagnoses there are no agreed definitions, and the divisions between categories
are fuzzy. For example, more than 30 different definitions of acute renal failure have been used
in the literature (Bellomo, et al. 2004). However, with multiple experts and a well-defined set
of criteria, the labelling of a given event or condition reach agreement levels of 95%
(Neamatullah, et al. 2008, Douglass, et al. 2004). Labelling of ICU data can occur manually,
automatically or in a semi-automated fashion, but in each case, a standard lexicon is required.
There are several standard lexicons for labelling ICU data, depending on the category of data.
These include Logical Observation Identifiers Names and Codes (LOINC; for laboratory and
other diagnostic results), the Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT; for diseases, findings, procedures, microorganisms, pharmaceuticals etc.),
Medical Subject Headings (MeSH; the National Library of Medicine’s controlled vocabulary
thesaurus of naming descriptors organised in a hierarchical structure), and the International
Classification of Diseases (ICD), (Chen, et al. 2007).

The Unified Medical Language System (UMLS) acts as an umbrella lexicon for many of these
subsystems (although with some enhanced features (Zhang, et al. 2005)). The UMLS is very
large and complex, however; it poses significant comprehension problems for users and
database maintenance personnel (Gu, et al. 2000). Furthermore, the UMLS contains omissions
of concepts, errors of semantic type classification, and concept ambiguities. In particular, there
is no one-to-one mapping between sub-lexicons and often multiple UMLS terms are required
to describe a particular event or procedure.

We have therefore developed open source Java software for using a subset of the UMLS to
construct descriptors of events in ICU data (Shu, et al. 2004). The UMLS descriptors associated
with a given event generally consist of an event code (such as ‘C0340535; Acute massive
pulmonary embolism’) or a state code (such as ‘C0018802; Congestive heart failure’). The
codes are often associated with a qualifier (such as ‘C0184511; Improved’, ‘C0205360; Stable’,
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or ‘C0332271; Worsening’). Although many of these codes are pre-defined in drop-down lists
to enable rapid and accurate coding, some events necessarily require a new code. In this case,
a free text string can be entered by the clinician to see a range of possible codes to select from.
We found that spell checking, general abbreviation dictionaries, and personalised abbreviation
dictionaries were necessary to enable clinicians to find relevant codes in a timely manner.

(b) Extracting clinical data from text
Much of the data about patients that is not directly measured by computerised instruments is
available only in the form of unstructured natural language statements by clinicians. These data
can be typed directly by a clinician or transcribed from dictation or hand-written notes.
Unfortunately, manual data entry practices and conversion of data into electronic medical
records are prone to error. In 1995 one study (Dean, et al. 1995) showed that the most common
types of data errors in 1995 were omitted and incorrect doses (in U.K. hospitals) and incorrect
doses and unordered doses (in U.S. hospitals). More recently, Lisby et al. (Lisby, et al. 2005)
showed that errors in medication ordering and transcription can be frequent and lead to
potentially adverse events. However, the most common types of error throughout the
medication process were found to be lack of convenient input modalities (forms or entry
terminals), unordered drugs, omission of drugs/dosage levels, and lack of identity control.

However, inaccurate transcription and data entry is not confined to medications. Recently we
compared manual acceptance of measurements of heart rate and blood pressure from bedside
monitors with measurements gated by robust automatic measures of signal quality (Hug &
Clifford 2007). Results showed that the clinically-verified BP values exhibit a small but
significant bias towards over-estimation. In particular, we demonstrated that hypotensive
events are often missed by the action of human recording. Other studies (Nelson, et al. 2005,
Vawdrey et al. 2007) have also demonstrated the inherent errors in human recording of
physiological signals.

Regardless of the method of transcription, the notes must be interpreted by fairly sophisticated
algorithms in order to turn them into a structured form that is suitable for searching, modelling
and further analysis. We have found that the notes taken by clinicians during the delivery of
care are often most difficult to analyse, even when they are typed rather than hand-written.
Perhaps because of the pressing need for speed, these are often poorly organised, full of non-
standard abbreviations and typographic errors, and thus pose the greatest challenges to
automated processing. By contrast, more formal notes such as discharge summaries, which
summarise a patient’s hospital stay, are often more carefully written, consciously trying to
inform readers other than the writer, and are thus easier to analyse.

We have developed a computer program to extract diseases and procedures attributed to
patients in discharge summaries as an aid to semi-automated annotation of our large case
collection. The program maps phrases from the text to the approximately six million terms that
represent about 1.5 million concepts listed in the UMLS, and then maps these to the
approximately one million listed SNOMED-CT concepts. (In practice, of course, very few of
these actually appear in clinical texts.) As reported in (Long 2007), this program was able to
find 93% of the 1,326 clinically significant concepts that had been identified in 96 discharge
summaries through a manual review by one to three clinicians. However, the program achieves
this high level of recall by allowing many irrelevant and misclassified concepts (almost three
times as many as the relevant concepts that it finds). Because the purpose of this program was
to help annotators find all the relevant concepts, and because it is much easier in annotation to
reject an unneeded concept than to code a concept de novo, this bias is acceptable for our
application. Nevertheless, we would prefer to have an automated annotation tool that finds
almost all the needed concepts but few spurious ones.
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If we could build a program that “understands” natural language, then it would be relatively
easy to pick out the concepts we want to recognise. However, the problem of understanding
text is thought to be Artificial Intelligence (AI) complete—it would require a program with true
human-level intelligence. Of course, we are not anywhere near that in our technical abilities.
Therefore, researchers have taken a range of approaches to the extraction problem. At one
extreme are systems that use the best available computational linguistics methods to assign
likely parts of speech and semantic categories to individual words, to parse the linguistic
structure of the phrases, clauses, sentences and paragraphs that express information, and thus
to do a deep analysis of the text. Our program takes a more minimalist approach, dividing the
text using punctuation, conjunctions, numbers, and a few verbs into phrases. Within these it
looks for the maximum length sub-phrase that matches a UMLS concept, without regard to the
surrounding text. We have demonstrated that this approach works well when sensitivity is the
overriding concern. It needs further enhancement when elimination of irrelevant concepts is
important (e.g., when a disease name is mentioned in a note, but is not associated with the
patient).

5. Summary
Over the last five years, we have encountered significant barriers to the analysis of data in the
ICU. These include inaccuracies in time stamps, the sparseness or incompleteness of
information (such as when databases are not fully integrated, or events are not recorded),
nonspecific labelling (such as when free text is used instead of a standard medical lexicon),
contradictory information (such as when two monitors disagree about a measurement), and
simply incorrect information (such as false alarms). To some extent, we have addressed many
of these issues using data fusion techniques, model construction and automated coding.
However, the issues described in this article still present significant barriers to the use of ICU
data for decision support, particularly with respect to the sparseness of the data, and the non-
specific labelling of clinical information in free text. Despite this, current trends in hospital
information systems provide for an optimistic horizon, as increasing volumes of more frequent
data are being captured automatically from monitors (together with event codes and signal
quality indicators). Hospital information systems are also moving towards using universal
lexicons. Furthermore, current trends toward open data storage formats and interchange
protocols mean that open source tools we have developed are likely to be generally useful on
a wide variety of data.
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