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Abstract

Four-dimensional computed tomography (4DCT) provides not only a new dimension of patient-

specific information for radiation therapy planning and treatment but also a challenging scale of 

data volume to process and analyze. Manual analysis using existing 3D tools is unable to keep up 

with vastly increased 4D data volume, automated processing and analysis are thus needed to 

process 4DCT data effectively and efficiently. In this work, we applied ideas and algorithms from 

image/signal processing, computer vision and machine learning to 4DCT lung data so that lungs 

can be reliably segmented in a fully-automated manner, lung features can be visualized and 

measured on-the-fly via user interactions, and data quality classifications can be computed in a 

robust manner. Comparisons of our results with an established treatment planning system and 

calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment 

but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-

based quality measure delivered performances closely emulating human experts. Three machine 

learners are inspected to justify the viability of machine learning techniques used to robustly 

identify data quality of 4DCT images in the scalable manner. The resultant system provides tools 

that speeds up 4D tasks in the clinic and facilitates clinical research to improve current clinical 

practice.

Index Terms

Biomedical image processing; Image analysis; Classification algorithms; Morphological 
operations; Machine learning algorithms; Data visualization; Computed tomography

I. Introduction

In radiation treatment planning, 4-dimensional computed tomography (4DCT) images—a 

stack of 3DCT images along the temporal dimension—provides not only a new dimension 

of patient-specific information for radiation therapy planning and treatment but also a 

challenging scale of data volume to process and analyze. Clinically 4DCT is useful to 

delineate the internal tumor volume (ITV), which is the tumor motion envelope or union of 
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all gross tumor volumes within the breathing cycle, as the treatment target. Although 4DCT 

is very informative in both spatial and temporal scales, it has been under-utilized clinically, 

mostly because of the high demand of manual involvement with limited automatic tools. 

Processing and analysis on 4DCT images are innately challenging: 1) big data volume: a 

single set of 4DCT images, typically consisting of ten phases and each phase having about 

150 Dicom slices where each pixel is represented by 16 bits, accounts for close to one 

gigabyte; 2) rampant motion artifacts: 4DCT images are known for high rate of motion 

artifacts. The retrospective reconstruction of 4DCT images with binning of projection 

images into different respiratory phases assumes a periodic respiration. However, human 

beings, especially lung patients, do not breathe like a ventilator, but vary from breath to 

breath. The breathing irregularities and heart beating at a different frequency render images 

distorted, blurring and noisy. The nature of 4DCT images makes manual 4D analysis and 

measurements extremely time-consuming, error-prone and thus impractical.

Thoracic 3DCT image segmentation has been established and applied in every radiotherapy 

treatment planning system. Most systems require a point seed or region of interest defined 

by a user, although implicit anatomic knowledge can be used [1]. Manual segmentation is 

always available to modify the result of a semi-automatic segmentation. The dependence on 

user initial input limits automatic image segmentation. From 3D to 4D CT, the increase in 

the number of image makes 4D planning cumbersome. Deformable image registration (DIR) 

can be applied to map the segmented organs from a reference CT to other phase CTs [2] [3] 

[4]. Usually, DIR is performed within a pair of images, so this has to repeat nine times for 

ten-phase 4DCT and results have to be visually checked.

To better visualize, measure and analyze the static and dynamic signatures of 4DCT lung 

images, state-of-the-art techniques from signal/image/video processing, computer vision, 

data mining and machine learning should apply. In the past decade immense progress have 

been made in these topics, such as the celebrated Viola-Jones’ cascade real-time face 

recognition [5] used in almost all current digital cameras, “GrabCut” [6] is universally 

available in all digital photography software systems, and image in-painting approaches [7] 

which has found a broad spectrum of utilities [8]. Some algorithm ideas similar to these 

cutting-edge approaches find their use in our current work. In our recent researches, we have 

invented and applied algorithms for visual object classification [9], lung tumor detection and 

tracking [10], and fast-moving object detection in Infra-Red sequences [11].

To make possible ensuing visualizations, measurements and classification, by using image 

processing techniques such as anisotropic smoothing, adaptive thresholding and 

mathematical morphological processing, we develop a procedure to automatically segment 

out lung region from each phase without any human interactions or interventions. This 

establishes the basis for further visualization and measurement of the 4D respiratory process.

Based on the segmented lungs several measures are developed to determine the quality of 

4DCT images, aiming to filter out low quality 4DCT images from clinical studies or identify 

poor breathers as candidates of breath coaching for improvement. In the presence of random 

and systematic noises and especially motion artifacts, the poor quality of many 4DCT 

images renders them inappropriate for rigorous retrospective studies. Motion artifacts in 
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4DCT images impose a serious problem in tumor and anatomy delineation, causing a 

systematic error in radiotherapy treatment planning. The irregularity of respiration-induced 

organ motion is the direct cause for motion artifacts in 4DCT [12]. Gross tumor volume 

(GTV) delineated from different phase CT within a 4DCT image set can cause GTV to vary 

up to 90%–110%, primarily due to motion artifacts [13] [14]. Therefore, with appropriate 

margins to account for tumor microscopic extension and patient setup uncertainty, the 

radiation treatment plan based on the delineated GTV varies accordingly, causing potential 

marginal miss of the tumor or overdose to the surrounding normal tissue. Persson et al. [13] 

reported that the delineated peripheral lung tumor volumes (1 to 35 cm3) from 19 4DCT 

images varied as much as about 90%, primarily due to motion artifacts. Li et al. [14] 

reported a GTV variation in small peripheral lung tumors (<5 cm3) up to 110%. Great 

efforts have been made to quantify and reduce motion artifacts in planning CT image [15] 

[16], so that patient anatomy will be authentically represented in radiation dose calculation.

To quantify motion artifacts, a straightforward mobile phantom study, with known shape 

and volume of an object and controllable motion speed and range, provides the ground truth 

comparing the imaging result with physical measurements [15]. In patients, however, GTV 

quantification is difficult since the actual tumor shape and volume cannot be directly 

measured as the ground truth [16]. As an alternative, frequency and amplitude of motion 

artifacts appearing in 4DCT can be manually evaluated by scrolling through all 4DCT 

images [16]. This is a tedious and time consuming process with an outcome difficult to 

compare among patients. Moreover, manual visual evaluations depend upon observers’ 

experience and interpretation of various motion artifacts; inter-observer variations would 

likely occur, making the conclusion subjective and thus unreliable and irreproducible. 

Automatic evaluations are therefore necessitated.

To extract useful motion information, a high-quality 4DCT images should be used to 

reliably extract and analyze signals rather than chasing after noises. Images with smaller 

amount of noises and less serious motion artifacts should be given higher priority in the 

ensuing careful and painstaking analysis. Choices made by eyeballing and manual 

measurements are unlikely sustainable. An automatic scanning is the only viable and 

scalable way to filter out 4DCT images that are unfit for the follow-up intensive studies. 

Clinically, it is necessary to build a quantitative tool to assess and monitor 4DCT image 

quality. Such a tool will be useful to evaluate if a new clinical imaging protocol or 

methodology can in fact result in better performances, whereof the quality of the resultant 

4DCT images serves as a valuable proxy of the performance of new approaches.

To address the preceding needs, based on the segmented lung, a quality measure must be 

developed to reflect the noisy levels, motion artifacts and imaging qualities, to extend 

clinical use of the 4DCT images, and to betoken the efficacy of new protocols and 

methodologies. Several quality measures are developed to this end: one is a quality index 

based on Fourier analysis, the other is a set of methods based on machine learning 

techniques.

This paper is organized as below. Section II expanded on the technical details of the 

automatic segmentation, quality measurements and classification algorithms for 4DCT 
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images. To illustrate the performances of the proposed algorithms, Section III presents the 

experimental results over real patient data. We conclude in Section IV with more remarks 

and discussions about the new algorithms and work to be done in the near future.

II. Automatic segmentation, measurements and classification of 4DCT lung 

images

A. Automatic lung segmentation

The region associated with the lung was first segmented out from a 3DCT image, one phase 

of 4DCT images. To avoid commonly required initial seeds in segmentation, we designed an 

automatic procedure—without the need of any user interactions or interventions—which is 

the only viable and scalable way to handle the immense data volume induced by 4DCT 

images.

A.1 pre-processing step: Image de-noising based on partial differential 
equation (PDE)—The first step in any visual object detection procedure is image cleaning 

or de-noising with Gaussian smoothing [17] [18]. Mathematically Gaussian smoothing, G 

I,  being the convolution operator, is the solution to the following PDE of diffusion type:

(1)

where Δ is the Laplacian operator. The random noise due to central limit theorem can be 

effectively removed. To clean images without unduly diffusing strong edge and object 

boundaries, a de-noising step other than conventional Gaussian smoothing is needed. The 

anisotropic smoothing can achieve exactly what we need. This approach was first introduced 

by Perona and Malik [18] with some recent new developments, e.g., [19]. The gist of all 

anisotropic diffusion is that: The smoothing operations along the normal direction of edges 

and visual object boundaries should thus be suppressed. The corresponding controlling PDE 

is given below:

(2)

where div is the divergence operator, ∇ I is the gradient of 3DCT image I, α() is a 

decreasing function, a typical choice is defined in the following form:

(3)

K is a controlling constant to decide the magnitude of smoothing. Due to Eq. (3) for 

locations of weak high frequency energies, namely, small |∇ I|, α(|∇ I|) approximates value 

1, and Eq. (2) is roughly equivalent to Eq. (1), an actual Gaussian diffusion. Whereas for 

regions with significant |∇ I| the smoothing operations along the normal direction ∇ I is 

close to 0 and thus being suppressed effectively. Therefore the valuable lung boundaries and 

textures are preserved as random noises are mitigated. In our lung segmentation algorithm, 

the pre-processing step is to use anisotropic diffusion for noise removal purposes. 

Considerably fewer errors are committed after this de-noising pre-processing step.
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A.2 Adaptive thresholding for 3DCT image binarization—To facilitate automatic 

lung region segmentation, the “gray-scale” (two bytes per voxel) of 3DCT images are 

converted to binary or logical ones so that the rich arsenal of mathematical morphological 

operations, the valuable suite to analyze geometrical and topological features for viable 

features and objects [20], can apply. The most widely used method for this transformation is 

Otsu’s threshold method. This method however is global: a single threshold is determined 

that causes the minimal combined variances σtotal
2(t) for the bi-modal gray-scale histogram 

[21], defined as below:

(4)

where w1(t) and w2(t) (w1(t) + w2(t) = 1) are the percentages of voxels whose intensity 

values are smaller and larger than threshold t, respectively; while σ1
2(t) and σ2

2(t) are the 

corresponding two variances determined by t. The assumption behind the workings of this 

method is that both the foreground region and background regions are compact and well 

distinguishable. In 3DCT images, however, it is impossible to assure this compactness in the 

presence of rampant systematic and random noises. The adaptive thresholding approach 

makes a more humble assumption in determining the threshold: the illumination due to CT 

imaging instrument is assumed to be constant only in a small 3-D window where the Otsu’s 

method is applied. A voxel is labeled as foreground or background only if it is so denoted 

according to the local 3-D window it is situated. The resultant binary 3D image produced by 

the adaptive version of thresholding procedure serves as the foundation for our upcoming 

morphological operations. The resulting binary 3D matrix is denoted by B.

A.3 Lung region segmentation using morphological operations—To separate the 

lung and the outside region, from the logical 3D matrix B produced in Subsection A.2, the 

segmentation procedure skips the top several axial slices until reaching the slice where the 

foreground regions were cut into 2 or 3 separate connected components with non-ignorable 

size due to trachea and one or both of the two lung apexes, which is reached by applying the 

2D component labeling algorithm using 8-neighborhood system on 2D slices [8]. This way 

the foreground region due to the lung is effectively separated from the outside regions. To 

avoid false positives caused by CT imaging instruments (such as those significant horizontal 

and vertical stripes caused by clinical tubing and beddings which may also form a closed 

foreground regions), a Hough-transform-based line searching algorithm [8] applies to 

identify and delete them. Instead of resorting to human interactions to place the seeds of 

lung regions, this morphological-operation-based step effectively separates the lung region 

from outer regions, both having the same foreground (with value 1) voxel values in B. The 

resultant reduced logical matrix is denoted by B′.

Afterwards a 3D component labeling algorithm [17] partitions all foreground regions in B′ 

into connected components based on 3D 18-neighborhood system over the 3DCT data. The 

components were sorted according to their sizes in descending order. The largest component 

was deemed the outside region and thus discarded. While the components rank 4th or higher 

were too small to be relevant to the lung. The ratio of the 2nd and the 3rd component 

determines if the left and right lungs (ratio ~1) are well-separated. In the system, after 

testing a great array of known lung regions offline, the threshold δr used to decide if these 
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two components are close is set at 0.3, that is, if the ratio of the size of the 3rd largest 

foreground component over that of the 2nd largest foreground component is larger than 0.3, 

the lung consists of both components. Otherwise, the 2nd component alone accounts for both 

the left and right lungs, and the 3rd component is discarded. In most cases the two lungs are 

connected.

In Fig. 1, the boxplot of the ratios of the 2nd and 3rd components for 40 3DCT lung data are 

illustrated: Group 1 corresponds to the case when the 3rd component should be discarded, 

where the median and largest ratios are 0.02 and 0.09, respectively. Whereas Group 2 

indicates the case when the 3rd component is the other half of lung, the median and largest 

ratios in this group are 0.71 and 0.44, respectively. The threshold δr (0.3) shown as the 

horizontal line hence separates these two groups with adequate margin, which aligns with 

the experience of medical physicist well.

Because some air bubbles may exist next to the lung in the stomach that can connect the 

lung regions, an image opening using a 3D ball of radius 5 voxels is performed to eliminate 

possible bubbles and thus separating authentic lung from belly regions that was falsely 

connected by air bubbles. Thereafter a second application of the same 3D component 

labeling is conducted. The largest connected component in the upper part is claimed to be 

the lung. Image closing and opening operators using a small ball of radius 3 voxels next 

cleanse possible noises and thus finalizing the lung region.

The resulting binary 3D lung mask is denoted by a binary matrix M. In the ensuing 

computation it is of interest to separate the left lung from the right lung when they are 

connected in M. This separation is approximated by searching for the sagittal cut planes of 

the lung around the center with the smallest possible lung area, the corresponding two lungs 

are denoted by ML and MR, respectively [22].

Based on M, one can compute the numerical and geometrical information for the lung just 

segmented such as the volume, the apex (the most superior point of the lung) and the 

diaphragm (the inferior border of the lung), the corresponding body volume around lung 

region in-between the apex and diaphragm, average density, and other related physiological, 

geometric and topological features. Visualization of 3D/4D anatomy provides the necessary 

tool to verify automatic results. Each of the extracted parameters can be visually verified in 

a graphics user interface (GUI) as shown in Fig. 2. The automatic segmentation of the lung 

and visualization controlled by user interactions make exploratory studies possible, which 

lays a solid foundation for future clinical research on radiotherapy planning and treatment.

In a previous automatic lung segmentation method [23], the regions other than the lung 

region is assumed to be already excluded. However, in most protocols, the field of view 

(FOV) for CT images is fixed, thus the FOV covers not only the human subject, but 

additional regions outside of the human body, including the bed region. Selecting the largest 

two regions without handling these system noise, as done in [23], will cause mis-

classification. Special care, i.e., the Hough-transform-based step, is taken by our 

segmentation algorithm so that the fully automatic processing, without any human 

interventions, can be effected. The dynamic programming (DP) procedure was used in [23] 
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to separate the left and right lungs by searching for the optimal. From our prior work and 

observations [24] [11], DP-based partitions are too sensitive to noises rampant in CT 

images, our simple approach of finding the vertical plane with smallest lung areas to 

partition the two lungs yields more acceptable segmentations.

B. 4DCT image quality measure

In response to the needs to identify 4DCT qualities as described in Section I, we developed 

two different approaches to automatically analyze 4DCT images and produce numeric 

indicators measuring their quality in batch mode: one applies Fourier analysis, a widely used 

signal processing technique [25], to assign a probability value corresponding to the goodness 

of the image quality; the other applies three supervised learning methods from machine 

learning [26], namely, Naïve Bayes, Support vector machine, and Random forests, to 

classify 4DCT data into either good or bad based on known training data.

B.1. Fourier-analysis-based quality measure—It is a norm in signal processing 

communities that in order to gain deeper insights into the signals in hand one always studies 

them in the spectral (frequency) domain, i.e., conduct investigations over the Fourier 

coefficients [25]. In 2D signal and image processing, the discrete cosine transform (DCT), 

the actual Fourier transform of even functions where all sine functions are nullified, is more 

appropriate since by reflecting 2D signals across their boundaries fewer artificial 

discontinuities will be induced thus resulting in more concise Fourier descriptors [27]. In 

this work, the discrete cosine transform (DCT), the discrete Fourier transform of even 

functions, is used instead of the original discrete Fourier transform.

The main reason behind the popularity of DCT lies in the optimality of DCT basis: the basis 

subtended by DCT is extremely similar to the basis image dictionaries adaptively and 

actively learned from big datasets [27]. Our intensive studies on 4DCT data representation 

and indexing confirmed the representational power of DCT: after trying a wide array of 

image/video analysis methods, global Fourier analysis turns out to be the best method giving 

rise to the best representational prowess that we can find so far. Preliminary results of this 

section were reported in [28].

Each phase of the original 4DCT data, an actual 3DCT image, is first filtered by the logical 

lung mask M, as described in Subsection II.A, that is, only the intensity values inside lung 

will be considered by the ensuing indexing procedure. The resulting lung data is denoted by 

L. The 3-dimensional DCT is then performed on L to yield 3D matrix D:

(5)

where DCT3 operator first conduct 2D DCT over every slice of L, then a 1D DCT is 

performed for the 2D DCT coefficients of the same frequency, an actual 1D data sequences 

along the vertical direction.

We hypothesized that for quality measuring purposes some frequencies played a more 

important role than others: regions of the lowest frequencies reflect the global shape and 

layout of the lung, which carries little information about noises or motion artifacts; and 
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regions of considerably higher frequencies reflect exceedingly busy local noise-like changes, 

which is of relatively little interest in our global quality indexing efforts. Consequently, to 

categorically indicate the global quality of 4DCT data we should focus on those spectral 

bands in the middle. A band-passing analysis in signal processing [25] is a potential 

solution.

To substantiate our hypothesis, for ease of analysis, we first transfer the 3D spectral space D 

from Eq. (5) (as usual the DC coefficient D(1,1,1) is set to 0 and afterwards D is L2 

normalized, that is, the sum of the energy of D is normalized to one.) as defined in Eq. (6) to 

a 1-dimensional array:

(6)

According Eq. (6), E(k) essentially summarizes the energies of the DCT coefficients where 

exactly one of the three frequency indexes is k. Our preceding logical reasoning suggests 

that our quality measure should focus on E(k) for k neither too large nor too small. From 

4DCT image data with known quality designations after intensive regression exploratory 

data analysis, feature selections [29] and k-fold cross validation [30] we found that only 

E(k)’s for k between 5 through 8 are related. More concretely, for 3DCT’s of known good 

quality (according to medical experts’ judgments by inspecting the CT data from their prior 

training and experience, which may take several minutes or longer, depending on the 

specific nature of each CT data), the magnitudes of E(k) for k between 5 to 8 only change 

mildly since they represent rich textures inside lung, the busy macro-level 3D textures 

caused by bronchial trees dictates milder changes at these spectral regions. Conversely, for 

3DCT’s of bad qualities, due to motion artifacts and systematic noises during imaging 

process, E(k)’s for k=5 and 6 are considerably larger than those for k=7, 8, these inflated 

coefficients at k=5 and 6 cannot be caused by global shape due to the relative higher 

frequencies represented by these indexes k’s, and they cannot be explained by pure random 

noise since random noises are unable to increase E(k), k=5 and 6, as E is normalized. Fig. 3 

depicts the median values and standard deviations for E(k) as error bars with k=1 to 10 for 

randomly chosen 30 good and 30 bad quality 4DCTs.

The statistical properties of E(k)’s for good and bad quality 4DCT data demonstrated in Fig. 

3 aligns well with the foregoing reasoning: The values for E(k) when k=1 to 4 and 9 and 10 

cannot be clearly distinguished between different quality designations due to the almost 

entirely overlapping error bars at those points. E(k) values for k=5, 6 for bad 4DCT data are 

larger than those of good ones with only minimal error bar overlapping; while the E(k)’s for 

k=7, 8 for good 4DCTs are significantly larger than those for bad quality ones.

Consequently, we can designate the ratio of the sum of E(k), k=7, 8 over that of E(k), k=5, 6 

as the motion artifacts index for a 4DCT, i.e.,

(7)
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A considerably small index R thus signifies inflated energy at E(5)+E(6), suggesting the 

poor imaging quality and the presence of motion artifacts. 4DCT quality classification based 

on this numeric measure performs well, as presented in Section III.

B.2. Machine learning data classification—In the preceding section, through 

exploratory studies and trials and errors the quality indicator R was developed by Eq. (7), 

whose benefit is its explanation power: based on the meaning of energy function E as 

defined in Eq. (6), the systematic noises and motion artifacts demonstrate different 

behavioral properties in E(k)’s from 5 to 8, consequently R is a plausible index about this 

impact as a proxy for the presence of system noises and motion artifacts. However, in the 

presence of more available data that defies careful investigations, more scalable approaches 

should be employed. Machine learning methods, the workhorse behind many of the 

successful applications of computers, serve us better in this regard. With data labeled by 

medical experts, instead of looking for a quality measure with plausible explanations, if we 

want to analyze these labeled data and try to emulate the known classification performance 

delivered by human experts, machine learning, especially the supervised learning 

methodology [30], is the route to be taken. Instead of using Eq. (7), which was obtained by 

trials and errors during offline training and exploratory data analysis, to discriminate 3DCTs 

of good or bad quality, the supervised machine learning procedure tries to learn a classifier 

that can strike a valuable compromise between the fitting of the known labels on the training 

set and the conformation to the known labels (ground truth) provided by human experts over 

the validation set, a proxy of generality of the classifier. Each 3DCT is represented by a 

point in the 4-dimensional space whose coordinate is E(k), k=5..81, which effectively serves 

as the explanatory variables or features; while the labels given by human experts are the 

response variable or referred to as the outcome class labels. Therefore, the ith instance is a 

5-D tuple (Ei(5), Ei(6), Ei(7), Ei (8), Ci), where the class labels Ci is 1 or 0 indicating its 

good and bad quality, respectively. Three learners are trained in this work2:

1. One is the simplest possible one, Naïve Bayes (NB) method that treats the four 

features as statistically independent [31]. Although extremely simple-minded and 

naïve, this method nonetheless performs well in many fields, e.g., speech 

processing.

2. The second one is the support vector machine (SVM), one of the most popularly 

used classifiers in machine learning in the last decade [26]. It works by looking for 

the classifier that has the largest possible separating margin between the positive 

and negative instances, and thus attaining better generality.

3. The third one is one of the most complex classifiers, random forest (RF). It is an 

ensemble method, which intentionally chooses diversified subsets of features in 

formulating a set of decision trees [32]. The collection of these diversified decision 

trees work together as a committee to classify new instances, which consistently 

delivers top performances.

1E(k) for k between 5 and 8 are automatically selected by using subspace feature selection method as described in [27].
2In MATLAB, the training and classification functions for Naïve Bayes, SVM and Random Forest are NaiveBayes.fit/predict, 
svmtrain/svmclassify, and Treebagger/predict, respectively.
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Equipped with a wealth of training data, machine learning methods can achieve exceedingly 

impressive performances, as reported in the next section. And the more high quality training 

data, namely, more representative 4DCT data designated as good and bad quality by medical 

experts, are made available, the more knowledge will be encoded into the classifier and thus 

the better results the machine learning algorithm can deliver. One major problem of the 

machine learning methodology lies in its lack of explanatory power, especially more 

involved and successful ones such as RF where the number of decision trees and the 

randomized subsets of features used for individual trees are entirely and intentionally left to 

chance, thus one cannot pinpoint specific (medical or signal) reasons why it can attain its 

classification performance. It is thus problematic to use machine learning approaches in 

clinical work due to the lack of satisfactory explanations of the cause and effect for their 

workings. However, in our retrospective medical research, they forms the ideal arsenal to 

emulate human experts in choosing high quality 4DCT sequences for further studies.

III. Experimental results

Experimental results based on patient data are reported. The next two subsections present 

test results corresponding to the methods described in the two subsections in Section II in 

the same order.

A. Automatic lung segmentation results

All the functionalities described in Section II were implemented in a mainly MATLAB-

based system, with some functions in C++ for performance considerations. To make them 

more accessible to clinical researchers a GUI was also developed. Fig. 2 illustrates the main 

GUI of this system when a 3DCT was loaded. The top row presents three views of a one-

phase CT image, while the bottom row shows the corresponding lung segmented using the 

algorithm described in Section II.A. Numerical measures such as lung volumes and apex/

diaphragm values are shown in the text area on the left side.

To check the correctness of this algorithm, a treatment planning system for research and 

planning purposes, was employed to segment out human lungs and compute the lung 

volumes as the ground truth, whereof intensive human interventions and interactions are 

needed to assign initial seeds and change thresholds in different regions for high quality lung 

segmentation. The Lung volumes are compared with those estimated by our algorithm, 

“Auto Volume” column, to test if our volume estimates are similar to those from the 

standard approach. The volumes are tabulated in Table I.

The time for segmenting a 4DCT lung volume took about 30 minutes using a clinical semi-

automatic tool, whereas the automatic segmentation of a 4DCT took 3–5 minutes.

Because the volumes on each row of Table I correspond to the same lung, paired t-test (ttest 
in MATLAB), which conducts a Student test of the hypothesis that two matched samples 

come from distributions with equal means, is performed to test the similarity between the 

data shown in the two columns: the corresponding p-value, the probability of obtaining a test 

statistic result at least as extreme as the one that was actually observed, is 0.92. This can be 

further justified by inspecting the relative differences demonstrated in the Difference column 
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of Table I, the mean and standard deviation of which are −0.38% and 2.30%, respectively. 

All these consistently suggested that the lung segmented by the proposed algorithm delivers 

results similar to that by the planning system. Keep in mind that in our system this similar 

segmentation result is achieved by an automatic procedure without any human interventions. 

Conversely, in the planning system initial seeds must be provided by human experts for each 

lung, which is non-scalable in the presence of many 4DCTs. On a Dell Precision M6600 

laptop with Intel® Core™ i7-2820QM CPU @ 2.30GHz, to load and segment lung region 

from a 3DCT (512×512×150 voxels) takes about 21 seconds. It thus only takes the laptop 

less than four minutes (~210 seconds) to generate all the volume estimates reported in Table 

I. By contrast, it cost the human expert more than two hours to obtain the ten volumes from 

the planning system. The data reported in Table I are purely test data: they were not used to 

train the algorithm to obtain the optimal parameters

After segmenting out and showing the lung regions, users can explore lung regions 

interactively. In this interactive mode, users can drag the three slider bars between the two 

rows to navigate through the 3D images. Window/level, colorized grey scale, and image 

location can be changed at will on the left panel. Numerical measurement outputs from the 

currently displayed lung data such as body volume, apex and diaphragm locations, as 

described in II.A.3, are presented in the text area, which can be saved by clicking the save 

button. The visualization and corresponding numeric evaluations readily available to clinical 

researchers make possible the interactive exploratory data analysis, one of the most time-

consuming and important task in any scientific investigations [26].

The average of discrepancy between our new method and an existing planning system is 

0.5% in volume difference, which is better than DIR-based method with higher uncertainty 

[2–4]. In addition, the performance of our method is 3–5 minutes for a 4DCT, superior to 

DIR-based methods, which may consume 30 minutes for all 10-phase CT with user 

intervention. Comparing with a previous method that also applied anatomic information 

implicitly [1], this method has better rate (100%) in finding the appropriate lungs and 

calculates the volume.

B. Tests of 4DCT quality measures

B.1. Tests for Fourier-analysis-based quality measure—The indexes R’s defined 

by Eq. (7) in Subsection II.B.1 are computed for five randomly chosen 4DCTs, which are 

labeled by human experts as three “bad” images with many artifacts and two “good” ones 

with few artifacts. The R’s for all ten phases of all five 4DCTs are tabulated in Table II. In 

Table II, Breathing periodicity index, denoted by BPI, is defined as the sum of the largest 

five Fourier components of the breathing curve analysis [29]. Motion artifact severity, 

denoted by MAS, is the average artifacts in cm measured at each scanning bed junction in 

cine 4DCT scan across the diaphragm range. This MAS is normalized to maximum 

diaphragm displacement [29] [33].

To perform paired t-test, all 30 R’s for bad 4DCTs and 20 R’s for good 4DCTs are pooled 

respectively to form two groups, the unequal sample size t-test can then apply, the resultant 

p-value is 1.26e-21, hence further indicating the fact that the difference between these two 

groups is conclusively statistically significant. For our 4DCT quality selection problem, after 

Wei and Li Page 11

IEEE J Transl Eng Health Med. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



an intensive bootstrapping statistical study [34] with available data, a threshold 0.7 is chosen 

to discriminate good from bad quality 4DCT data—if the average R is larger than 0.7, the 

4DCT is labeled as good one; bad one otherwise. For different scenarios or data sets, a new 

threshold different from 0.7 may be needed based on data with different quality criteria and 

imaging quality.

For ease of visualization, the line graph of R indexes for the five 4DCTs is depicted in Fig. 

4, where the wide gaps among the R’s between good and bad quality 4DCTs clearly 

demonstrate themselves.

B.2. Tests for machine learning data classification—To inspect the performances 

of the three learners described in Subsection II.B.2, namely, NB, SVM4 and RF, the same 

five 4DCTs with known labels (assigned by a medical expert) as reported in Table II and 

Fig. 4 are used. To demonstrate their effective classification power, the randomized k-fold 

cross validation approach, the one widely employed in machine learning communities [26], 

is used. A two-fold cross validation is intentionally selected to provide a challenging 

situation for the classifiers: 50%, or 25, randomly chosen instances, of the 50 known 

instances, serve as the training samples to train the 3 classifiers. The remaining 25 instances 

are held out as validation samples. The errors of the trained learners over the hold-out test 

cases signify the classification performances of the corresponding approach. To reduce 

random fluctuations of error rates incurred by the necessarily randomized choice of training 

and validation data set, we ran the above-mentioned two-fold cross validation process 100 

times and save the sum of errors throughout the 100 runs. Table III presents the total errors 

generated by this loop of cross validation process.

The average error rates for these three classifiers are 0.47%, 0.38% and 1.32%, respectively, 

which is obtain via dividing the total errors by the product of 100 (number of iterations) 

times 25 (number of test instances for each cross validation call). Although in general RF is 

a better methodology, as widely accepted in the machine learning community [30], its 

performance trails the other two significantly. By contrast, although NB is sometimes even 

referred to as a simple-minded or silly approach [31], in this 4DCT quality measuring 

problem it delivers better performance than RF: the t-test p-value for columns NB and RF is 

0.0122, thus conclusively suggesting their significant differences. SVM achieved the best 

performance. However, its performance is insignificant from that by NB: the t-test p-value 

between columns NB and SVM is 0.1132.

One plausible rationale behind the superiority of the NB and SVM over the more involved 

random forest lies in the fact that the quality of 4DCT images is determined by a relation 

among the E(i)’s for i ranging from 5 to 8, one possible relation being the empirical formula 

Eq. (7). The statistically significant gap for R values between the good and bad quality 

4DCTs, as demonstrated in Fig. 4, can also be picked up by NB and SVM (with linear 

kernel) classifiers. The RF, however, works by randomly choosing a subset of these E(i)’s: if 

4The results reported here are based on the SVM using linear kernel that delivered the best performance. Other complex kernels such 
as quadratic and Gaussian radial basis yield significantly worse results (similar to those attained by RF).
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only E(5) and E(6) or E(7) and E(8) are selected to construct some decision trees, more 

errors are bound to arise.

Besides performing better than RF, NB and SVM attain these results more rapidly: On 

average, the time consumed by the 100 iterations of the two-fold NB, SVM and RF is 3.62, 

1.72, and 9.84 seconds, respectively. SVM (with linear kernel) is also the fastest of these 

three typical learning methods, besides attaining the best classification performances.

IV. Conclusion

To achieve personalized cancer treatment planning, the spatial and temporal data within the 

4-dimensional computed tomography (4DCT) images serve as the foundation to retrieve 

crucial geometric, topologic and dynamic knowledge. Despite its information contents, the 

effective processing and analysis of 4DCT are hindered by its unprecedented data volumes. 

The need of constant human intervention makes it unsustainable and impossible to scale for 

the large set of 4DCTs. In this work, based on current image processing, computer vision 

and machine learning techniques, several algorithms were developed to automatically 

segment out the lungs from 4DCT data, generate an array of useful numeric data, provide 

user-friendly exploratory data analysis tools, and effective measures gauging the data quality 

of 4DCT. Based on patient data, the algorithms consistently deliver desirably accurate 

results with high efficiency in a consistent manner: while the numeric results by the 

algorithms are statistically similar to those by human experts, the algorithms generates these 

results faster in time by at least one order of magnitudes, in 4DCT lung segmentation.

Satisfactory performances delivered by the system against ground truths or their proxies 

were reported here. An initial 4DCT platform was formed by putting these features together. 

This 4DCT analysis platform not only allows users to use existing features currently 

available, but also enables us to add new features to extract new respiratory information in 

the process of clinical research and clinical practice in the radiation therapy clinic. Currently 

we are actively working on more features such as surface imaging manipulations, motion 

registration for better tracking, and the establishment of internal-external relationship [35] 

[33].
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Fig. 1. 
Ratios of 1 lung region over the largest non-lung region (Group 1) and 2 lung regions 

(Group 2).
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Fig. 2. 
Main GUI of the MATLAB based system. Text input/output are on the left and graphical 

display of the CT (top) and segmented lung (bottom) are on the right in axial, coronal and 

sagittal views.
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Fig. 3. 
Median values of E(k) with error bars for k=1 to 10 for 30 good and bad quality 4DCT data.
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Fig. 4. 
Line graph of index R’s according to Eq. (7) for five 4DCTs tabulated in Table II.
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TABLE I

VOLUMES COMPUTED BY TREATMENT PLANNING PACKAGE AND THE PROPOSED 

SEGMENTATION ALGORITHM FOR 11 LUNG CANCER PATIENTS

Patient Ref Volume (cm3) Auto Volume (cm3) Difference (%)

1 3603.3 3652.0 1.35%

2 3411.9 3418.0 0.18%

3 2385.2 2376.0 −0.39%

4 3011.1 3032.0 0.69%

5 3494.2 3457.0 −1.06%

6 2162.8 2118.0 −2.07%

7 1545.0 1448.0 −6.28%3

8 4377.1 4388.0 0.25%

9 3812.0 3837.0 0.66%

10 2644.7 2685.0 1.52%

11 5303.9 5356.0 0.98%

Average −0.38%

3Considerable many (>11) large tumors present in this 4DCT, thus causing larger errors in both volume evaluations.
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TABLE III

TWO-FOLD CROSS VALIDATION STUDIES OF NB, SVM AND RF FOR five 4DCT DATA WITH 

KNOWN LABELS. EACH ROW REPORTS NUMBER OF ERRORS FOR 100 CALLS OF CROSS 

VALIDATION

Run NB SVM RF

1 8 11 32

2 15 8 63

3 12 7 33

4 11 16 37

5 2 5 65

6 17 13 15

7 10 4 29

8 18 14 10

9 16 11 24

10 9 5 22

Average 11.8 9.4 33.0
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