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Abstract

The rapid technological developments following the Human Genome Project have made possible 

the availability of personalized genomes. As the focus now shifts from characterizing genomes to 

making personalized disease associations, in combination with the availability of other omics 

technologies, the next big push will be not only to obtain a personalized genome, but to 

quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, 

antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular 

components in individuals. Furthermore, omics profiling performed longitudinally can probe the 

temporal patterns associated with both molecular changes and associated physiological health and 

disease states. Such data necessitates the development of computational methodology to not only 

handle and descriptively assess such data, but also construct quantitative biological models. Here 

we describe the availability of personal genomes and developing omics technologies that can be 

brought together for personalized implementations and how these novel integrated approaches 

may effectively provide a precise personalized medicine that focuses on not only characterization 

and treatment but ultimately the prevention of disease.

Introduction

With the advent of high-throughput technologies genomic science has experienced great 

leaps, rapidly expanding its domain beyond the characterization of short genomic reads in 

the early days of sequencing to the possibility of obtaining personalized genomes, once 

considered the holy grail of genomic methodology and technology development. The value 

of personalized genomic analysis, and evaluation of variant associations to disease, is 

becoming more apparent, even spurring directly to consumer implementations. Further 

developments in the last few years now lead to a more ambitious goal: the longitudinal 

monitoring of multiple omics components in individuals and the characterization of the 

molecular changes associated with disease onset in individuals, at an unprecedented level. In 

this review we describe technological and methodological developments in personal 

genomics, and the new promise of multiple omics profiling, including transcriptomes, 

proteomes, metabolomes, autoantibodyomes and so forth, (sample omics analysis workflows 

shown in Figures 1–4). We then discuss a framework on how such data may be integrated 
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with a view towards the application of a personalized precise and preventive medicine, and 

describe an implementation of this approach. The technological developments and 

methodology allow for inroads into the future of quantitative personal medicine, which we 

can now plan carefully by taking into account not only the scientific developments that need 

to be implemented, but also the social implications coupled to ethical and legal 

considerations.

Genomic Sequencing

In 2001 the completion of the Human Genome Project (HGP) was announced effectively 

with the publication of the first complete human genome sequence. The HGP came at a 

hefty $2.7 billion cost using the best technology of the time, making it seemingly prohibitive 

to expect personal genome sequences to be achieved shortly thereafter. Yet the immense 

technological advancement, spurred by motivation by the National Institute of Health (NIH) 

and the National Human Genome Research Institute (NHGRI) to bring down genomic costs, 

led to an unprecedented growth in technology and methodology, enabling the drop in 

sequencing costs (http://www.genome.gov/sequencingcosts) to continue at a rate beyond the 

most optimistic projections of 2001 (< $4000 currently). While initially the human genome 

was a combination of multiple individual genomic data [1–3], the developments by 2008 

had allowed the determination of genomic individual makeup [4–7]. It is now possible to 

personalize Whole Genome Sequencing (WGS), and the dwindling sequencing costs 

promise the possibility of affordability for all in the near future [8]. These developments 

encouraged efforts to characterize disease on a genomic level, towards the application of an 

all-encompassing genomic medicine, at the molecular level. The initial goals were the 

characterization of populations for large studies, now shifting to the individual.

Multiple technologies development/dropping costs

The HGP relied on technology using Sanger-based capillary sequencing [1] with an 

estimated production of 115k base pairs per day (kbp/day) [9]. The NHGRI spurred progress 

by encouragement through the $1000 genome program (http://www.genome.gov/11008124-

al-4), leading to the industry development of multiple massively parallel [10] sequencing 

platforms (e.g., Roche/454, based on pyrosequencing [11–13]; Life Technologies SOLiD 

[14–16]; Illumina [5,6]; Complete Genomics based on DNA nanoball sequencing [17]; 

Helicos Biosciences [18]; and recently single molecule real-time technology [19,20] by 

Pacific Biosciences). These next generation sequencing platforms are now being 

supplemented but what has been termed as third-generation sequencing, [21], including such 

nanopore technologies as announced early in 2012 by Oxford Nanopore Technologies [22]. 

The technological developments and competition resulted in a drastic and continuing drop in 

sequencing cost, processing times and exponential increases in number of reads produced.

An alternative to sequencing the whole genome has been whole exome sequencing (WES) 

[23]. This technology aims to study the exonic regions of the genome (∼2%–3%), which are 

associated to several Mendelian disorders. It offers a lower cost option (e.g., Illumina, 

Agilent, and Niblegen platforms, see Clark et al. for a comparison of the latter two [24]) and 

has received immense attention, including the Exome Sequencing Project (ESP) (see the 
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Exome Variant Server at http://evs.gs.washington.edu/EVS/), supported by the National 

Heart, Lung and Blood Institute (NHLBI).

Quantitating genomic variation

Concurrently with the technological developments, our understanding of the human genome 

has grown immensely since the publication of the reference genome in 2003. The aim was to 

determine the precise role of each base in the genome and identify genomic variants (Figure 

1). Several collaborative large-scale efforts pursued such investigations. The International 

HapMap Consortium [25,26] tried to identify common population variants and led to the 

development of public databases, such as dbSNP [27] (http://www.ncbi.nlm.nih.gov/SNP/), 

which catalogues Single Nucleotide Polymorphisms (SNPs) (defined as occurring in >1% of 

the population to differentiate from Single Nucleotide Variants (SNVs)). This has revealed 

great genomic variation both in global populations [28,29] and populations of admixed 

ancestry [30–33].

Typically the technologies involve the assignment of reads to the reference genome to 

determine the structure of the underlying sequence, including variation (Figure 1). Beyond 

nucleotide variation, other genomic differences have been investigated, including small 

insertions and deletions (indels), copy number variations (CNVs) indicating varying 

numbers of segments and longer chromosomal segments that contribute to Structural 

Variation (SVs) — SVs are defined for segments of chromosomes larger than 1000 bp 

(Figure 1A). Such efforts have been based on microarray methodology [34–37] and even 

higher-resolution in structural variants may be achieved with other methods [38–41]. 

Structural variants have been publically made available in the database of Genomic 

Structural Variation (dbVAR; http://www.ncbi.nlm.nih.gov/dbvar/).

Furthermore, functional elements have been extensively catalogued by the Encyclopedia of 

DNA Elements consortium (ENCODE; http://genome.gov/encode ∼10 production projects), 

with funding from the NHGRI. ENCODE data, including regulatory elements and RNA and 

protein level elements, have now been released and the project has received widespread 

attention [42–45]. The ENCODE project aims at a biochemical genomic characterization, 

with a thorough mapping of transcribed regions, transcription factor binding sites, open 

chromatin signatures, chromatin modification and DNA methylation. Such extensive data 

still needs to be annotated [46] interpreted in terms of biological significance, mechanisms 

and connections to phenotype and will likely prove invaluable in our interpretation of 

personalized genomic differences.

Though initially limited by the number of complete genomic sequences, such data are now 

continuously updated and expanded by information from other projects such as the 1000 

Genomes Project [47] as discussed below, which has allowed us to have a better view of the 

great variability in each individual genome (∼3–4 × 106 SNPs, > 200000 SVs of varying 

sizes, ∼1500 SVs>2 kbp), with much of the variation considered rare (1%–5%). Genome-

Wide Association Studies (GWAS) try to associate the common variants to disease, by 

combining the now readily available extensive variant information and allelic variability, 

with linkage disequilibrium (a description of the correlation patterns between proximal 

variants). The NHGRI provides a publically available catalogue of published GWAS (http://
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www.genome.gov/gwastudies) [48]. The early expectations of finding common traits and 

genomic features unique to diseases have proven more complicated, as the genomic 

variability turns out to be higher than expected and additionally the genetic variants need 

further validation.

Use of WGS and WES has been successful in the identification of somatic mutations. 

Mendelian disorders including neurological disorders, and cancer have been characterized 

using WES [49–58], including some recent single-cell studies [59,60]. Genomics may help 

classifying cancer subtypes, and possible treatment, and such research is at the center of 

WGS, with projects such as the Cancer Genome Atlas [61] (http://cancer-genome.nih.gov/), 

and the International Cancer Genome Consortium (http://www.icgc.org). Additionally, 

cancer specific public databases already are available [62], including a cancer cell line 

encyclopedia [63], and genome characterization has been carried out, for example in ovarian 

cancer [61], melanoma [64], lymphocytic leukemia [65], breast cancer [66-69] and acute 

myeloid leukemia (AML) [70,71].

Personalized risk evaluation

One of the goals of personalized genome interpretation is the evaluation of disease risk 

factors based on an individual's variant and allelic distribution composition. Such 

information may be compared to similar individuals with known disease associations to 

assess whether an individual shows increased or decreased risk compared to the control 

group. A combination of know SNPs and personalized variants has been found to be 

effective [72–75] and has been used in clinical studies; more recently, a seminal study by 

Ashley et al. [76] evaluated disease risk for a patient with family history of vascular disease.

Personalized evaluation of potential drug responses can be based on the effects of variants 

[77,78], including drug selection, sensitivity and dosage estimation, e.g., cardiovascular 

drugs [79], schizophrenia related medications [80]. For example, PharmGKB (http://

www.pharmgkb.org) provides a curated database of possible genomics information [81,82], 

exploring the impact of genomic variation on drug responses as these relate to expressed 

genes and associated pathways and disorders. The future applications are to include a 

precise drug dosage for an individual, avoiding trial and error methods and providing more 

effective treatment.

The evaluation of personalized risk based on genomes is now appearing in direct-to-

consumer services. Companies like 23andMe, deCODEme, (and previously Navigenics), 

offer to assess individual genotypes and offer disease based interpretation services based on 

Mendelian disorder evaluation and including pharmacogenomics responses. These are 

mostly based on SNPs evaluation and the tests though limited in scope do offer 

interpretation attractive to multiple consumers.

Personal Genomes Project

Presently thousands of genomes have been completely sequenced. One of the first large 

scale projects has been the 1000 Genomes Project [47], that has made its data publically 

available, and has encouraged the development of streamlined bioinformatics tools to 
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analyze the variation in the individual genomes (Figure 1). This project aims to combine 

data from 2500 individuals from multiple populations, at a 4 × coverage.

Another grand scale effort driven by George Church's group at Harvard University is the 

Personal Genome Project (PGP) [83–85]. The project has been recruiting individuals who 

can share their medical and other information together with genomic information online 

(http://www.personalgenomes.org). The volunteers share full DNA sequences, RNA and 

protein profile information in addition to extensive phenotype information including medical 

records and environmental considerations, with all the data made publically available, and 

plans to expand to 100000 individuals [86]. One of the rather unique features of the PGP 

project is that it differs in consent of participants as compared to traditional studies. The 

ownership of the data is to be open and publically available without restrictions, not only for 

the initial perspective of the study, but open to follow-up or additional investigations. The 

scope is participatory, with the volunteers for the project interacting directly with the 

researchers. To address informed consent, participants pass a basic genetic literacy exam 

and must understand the project's scope. Additionally, they provide complete medical 

history, immunization and medications history, which becomes part of the publically 

available subject information. The access to the individual's data in the project can be either 

private to the participant and researchers only or completely public, depending on the 

participant's choice. The availability of extensive patient and omic information will be 

invaluable to researchers in developing robust analysis models for characterizing genomes 

and disease and the PGP project, and its publically open structure model, will be at the 

forefront of such efforts.

Beyond the Genome: Other Omics

Transcriptomics

Though the genetic code in DNA is the almost identical (besides cellular variation), different 

cells have different gene expressions, corresponding to the kind of cell, developmental stage 

and physiological state. The collection of the transcripts in a cell (e.g., mRNA, non-coding 

RNA and small RNAs), the transcriptome, is essential in our understanding of cell function, 

and response to disease. Considerations must include start and end sites of genes, and 

coding, alternative splicing and post-transcriptional modifications.

Initially inroads were made using high-density oligo microarrays, and in-house custom made 

microarrays [87], with high-density arrays having resolutions up to 100 bp [88–91]. While 

relatively inexpensive, these methods suffered from relying on prior knowledge of the 

genome, and faced technical issues such as background and saturation effects [92]. 

Hybridization interactions between probe sets in short oligo microarrays lead to spurious 

correlations [92,93].

The development of RNA sequencing (RNA-Seq) brought higher coverage, better precision 

and quantitation, and higher resolution and sensitivity, bringing RNA-Seq technology and 

transcriptomics on par with genomic sequencing [94–98]. RNA-Seq considers reads that 

correspond to millions of transcriptomic fragments that are mapped to the reference genome, 

to provide information on transcripts that may not be in the existing genomic annotation, 
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allowing the search for novel transcripts, and even identification of SNPs and other variants, 

while showing remarkable reproducibility (Figure 2). Transcriptome profiling has included 

looking at cancers [99–101], including breast cancer [102], gastrointestinal tumors [103] and 

prostate cancer [104].

Mass spectrometry, proteomics and metabolomics

Gene expression was expected to correlate with protein levels in a cell and it was thought 

that methods such as RNA-Seq would be enough to ascertain the proteomic expression 

corresponding to gene expression. Proteins are expected to be closer to phenotype, as they 

participate in every aspect of cellular biology, but their expression levels are difficult to 

quantitate, partly because of translational control in cells, possible degradation and sampling 

issues [105–107]. The development of electrospray ionization brought mass spectrometry 

(MS) to the field of proteomics and the possible identification of thousands of molecules 

based on mass [108–112]. This has enabled not only the cataloguing of proteins, but also 

querying post-translational modifications [113,114]. As the techniques matured, liquid 

chromatography tandem mass spectrometry (LC-MS/MS) has become standard, and novel 

instruments (e.g., Velos family [115] by Thermo Scientific; quadrupole time-of-flight mass 

spectrometers (QTOFs) by Agilent) allow unprecedented precision to enable the 

development of methods to identify thousands of proteins (∼4000–6000 over 2 days), and 

quantitate protein levels [73,116] (Figure 3). One set of methods uses stable isotopic 

labeling by amino acids in cell culture (SILAC) to label cell in light and heavy isotopes of 

amino acids providing double spectral peaks in MS for identification and quantitation [117–

120] — this method is now supplemented by ‘spike-in’/‘super’ SILAC which has been used 

to measure biopsy tumor proteomes [121]. Another possibility is to use isobaric tags for 

relative and absolute quantitation (iTRAQ) [122,123] or tandem mass tag (TMT) labeling 

[73,124,125], and other methods, including spiking in peptides for absolute quantitation. 

Finally, it is possible to employ label-free methods for quantitation, which do not rely on 

tags, including integrating signal methods and MS spectral counting [126–131].

In comparison to whole transcriptome profiling, the numbers of proteins identified in 

proteome profiling tend to be less in comparison, particularly since low peptide levels 

cannot be amplified (cf. polymerase chain reaction methods for sequencing methods). 

Additionally, the current bottom-up (shotgun) proteomics methodology uses digestion with 

endopeptidases such as trypsin to obtain peptides of small enough mass to be identified by 

MS/MS, resulting in many fragments that cannot be identified in MS, which may possibly 

be alleviated by top down approaches that do not employ a digestion step [132–136]. 

However, proteomics provides insights that are missing from transcriptomic analysis, 

especially given the low correlations between protein and transcriptome differential gene 

expressions [73,137–142].

Multiple proteomes have been quantitatively profiled, including characterization of ovarian 

cancer [143], an integrated approach that combines transcriptome and proteome information 

in a human cancer cell line by Nagaraj et al. [144], integrative gastric cancer 

characterization and effects of post-translational modifications [145], and looking for 

biomarkers in other cancers [146,147].
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In addition to developments in proteomics, MS has encouraged the study of small 

molecules. The behavior of small molecules in cells though difficult to track provides 

insight into many common disorders. The set of all cellular small molecules is collectively 

called the metabolome. Metabolic processes are vital in biological pathways and a systems 

analysis of molecular cell complexity might lead to biomarker discovery, and possibly 

disease risk assessment, diagnosis and treatment [148]. Similar to proteomics, metabolomics 

can employ mass spectrometry to identify compounds [149] (Figure 4) and cataloguing is 

under way, with thousands of metabolites identified by structure, mass and occasionally 

associated biological processes [150–161]. The identification of compounds can be based on 

MS/MS application and use of known compound spectra, or via use of standards against 

which mass spectra are compared. The profiling of metabolic components on an 

individualized basis can provide insights into pharmacogenomics and personalized 

medications, in addition to potential biomarkers, for example cholesterol levels and coronary 

artery [162,163]. The metabolomics of cancer has been extensively studied [164–166] and 

Type 2 Diabetes has been investigated [167], and in vivo interactions with proteins are being 

evaluated [168].

Other omics

Genomes, transcriptomes and metabolomes have received widespread attention and 

currently offer the most quantitative data, provided by robust and comprehensive omics 

technologies, both in terms of experimental, as well as computational methodology. 

However multiple other omics are available, and these numbers are increasing, with a few 

notable technologies mentioned below:

Autoantibodyomes—In addition to profiling of proteins directly, the reactivity of 

proteins to autoantibodies may be profiled on a large scale. Spotted protein arrays [169–173] 

have been implemented to study for example effects in cancer [174], immune response [175] 

and recently diabetes [176]. Another approach is the Nucleic Acid Programmable Protein 

Array (NAPPA) constructed by spotting plasmid DNA to effectively express and code the 

proteins on the array and used for immunoprofiling [177,178]. Furthermore functional 

peptide arrays have also been constructed [179,180]. Complementary technologies such as 

bead-based immunoassays are also being actively developed, such as the Luminex xMAP 

assay [181].

Microbiomes—Omics profiling could also include mapping of the personal microbiome, 

the complete set of microbes in an individual (e.g., found mainly on the skin or in the gut, 

conjunctiva, saliva and mucosa) using possibly a combined omics approach to look at 

genetic makeup and metabolic components [182–187]. The human microbiota (http://

www.human-microbiome.org) have been associated to obesity [188] and diabetes [189,190] 

and have also been suspected to play an active role in the development of immunity [191]. 

The dynamic monitoring of microbiome-related changes can help identify the specific 

microbiota involved in disease responses, elucidate microbiome-host interactions and how 

the individual variability in components impacts developmental and metabolic processes.
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Methylomes—In addition to genomics, epigenomic information, such probing the 

methylome, i.e., identifying all genomic sites of cytosine methylation [192,193], might 

provide information about differentiation and regulation of gene expression. Methylation 

analysis and data interpretation can be challenging [194,195] but methods are improving as 

more data becomes available. Methylome analysis has now been carried out in blood 

components [196], stem cells [197] and ovarian cancer [61], and it might prove invaluable in 

assessing epigenomic effects on individual development and health.

Personalized Medicine

The developments of the many different omics technologies outlined above have given us 

tremendous insight into the human genome and associations to diseases, especially with the 

rise of the personal genome. The NHGRI recognizing the importance of these developments 

and the directions necessary to enhance health care, outlined in 2011 a vision for the future 

of personalized medicine [198] encompassing five domains of development that included 

understanding the structure of genomes, their biology, improving our understanding of the 

biology of disease, advancing medicine and improving the effectiveness of healthcare. The 

aims had been set to a shift towards personalized medicine within two decades, but the 

availability of the technology and constant decreasing costs have made pilot investigations 

of personalized medicine a current possibility [73]. Genetic variation has proven adequate 

for understanding group differences in disorders, but a truly personalized implementation 

needs to consider an individual. Clinicians are already considering molecular markers in 

their evaluation of patients, and particularly cancer [199–203]. The typical clinical diagnosis 

involves the observation of symptoms traditionally confirmed utilizing a small set of 

molecular markers. In diseases that share a common set of symptoms, some rare, such 

diagnosis is often complicated and prolonged, especially for heterogeneous disorders that 

need additional information to enable classification and subsequent specific treatments. 

Genetic and environmental factors create additional variability in disease severity, 

progression and treatment responses. Thus, traditional assays together with the 

aforementioned current omics technologies, that allow monitoring of thousands of molecular 

components, will facilitate and accelerate differential diagnostics and sub-classification 

through utilizing a more complete set of disease markers. A personalized approach will 

result in better targeting of diseases, introduce higher precision through measurement of 

larger sets of molecular components and ideally implemented at an early age to assess 

disease risk and have a preventative rather than retrospective treatment focus.

A personal approach is by its nature an n = 1 study, which helps eliminate variation between 

individuals that are treated as a group, but still requires some verification and establishment 

of a baseline for comparison. As such, the profiling of healthy physiological states in a 

longitudinal approach may provide such a basis, if multiple time points with similar 

physiological state makeup are sampled. Multiple omics can supply multiple supporting 

datasets at each time point, with each complementary technology providing additional 

supporting information for a baseline establishment. This introduces the concept of complete 

omics monitoring of individuals over time, making personalized medicine a more dynamic 

proposition. The dynamic changes of molecular components may be associated to the 

individual's changing physiological states, and mapped onto pathways to identify the onset 
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and progression of disease, including possible preventive measures. In our suggested 

implementation, termed integrative Personal Omics Profiling (iPOP) which we followed in 

the study discussed below [73] we integrate the omics components discussed above in a 

longitudinal approach with three essential steps (Figure 5):

I) Risk estimation—As discussed above the personal and common genomic variants 

determined in an individual genome can be associated to disease [76], with 

pharmacogenomic evaluation to determine possible drug response. An early age whole 

genome sequencing, possibly at birth, can provide a list of possible increased risk disorders 

and lead to taking preventive measures. This may be done in combination with a complete 

medical and family history, as for example implemented in the PGP project, and in 

conjunction with classical clinical risk factor profiling.

II) Dynamic profiling of multiple omics—Starting with a healthy or ‘steady state’ 

baseline, by monitoring changes in the molecular components over multiple time points, 

drastic or gradual changes in physiological states might be assessed and the dynamic onset 

of disease profiled, and possibly prevented. Such profiling may be done on blood 

components, which are easily obtainable currently in the clinic. The individual blood 

components are excellent reflectors of generalized physiological state of an individual, as 

the blood circulates and receives inputs from multiple tissues throughout the body. The 

components may be processed to track multiple omics, such as transcriptome, proteome, 

metabolome and autoantibody-ome, etc., which as mentioned offer complementary 

information, especially given the modest correlation observed between transcriptomic and 

proteomic components [137–142]. A recent study of profiles of tumors changing over time 

also employed an integrative approach on genomic and transcriptomic components [204]. 

Implementing this monitoring on healthy individuals will allow the monitoring of disease 

onset and physiological changes from various healthy, disease and recovery states, and 

following thousands of molecular component levels and responses at corresponding 

physiological states.

III) Data integration and biological impact assessment—The multiple omics data 

can be analyzed individually to characterize their temporal response profile. This may be 

done using standard statistical time-series analysis, extensively used in all quantitative 

disciplines, such as physics, economics and finance, as discussed by Bar-Joseph et al. [205]. 

The dynamic signature of the signals for each molecular component can be studied for 

autocorrelation, periodicity or spikey behavior, corresponding to causal changes or abnormal 

physiological state conditions resulting from the onset of disease, infections, or 

environmental effects. The different classes of temporal response can be checked for 

biological pathway and gene ontology enrichment [151,157–161,206–210], and 

corresponding disease associations in comparison to a database of other longitudinal profiles 

(coupled to complete electronic records of omic and medical histories). Such a database is a 

necessary and powerful resource towards the realization of personalized medicine based on 

omics data profiling.
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Example implementation of personalized medicine: iPOP

To show the feasibility and practical applicability of iPOP we profiled a healthy individual, 

54, over a period of initially 14 (now 33) months [73]. This initial time series covered 

healthy states, and two viral states, including a human rhinovirus (HRV) infection at the 

initiation of the study and a respiratory syncytial virus (RSV) infection 289 days later. The 

iPOP used blood samples to extract omic components from peripheral blood mononuclear 

cells (PBMCs) and serum, which were analyzed to obtain a complete DNA, RNA, protein, 

metabolite and autoantibody profile. Initially a complete medical exam was performed with 

standard clinical tests before time-point profiling began. In a first step, WGS with two 

platforms was carried out (Complete Genomics and Illumina, at 150- and 120-fold coverage 

respectively) and WES with three platforms (Nimblegen, Illumina and Agilent) and helped 

identify a large number of variants (> 3 × 106 SNPs; > 2 × 105 indels; > 2000 SVs). Using 

multiple platforms allowed us to determine high-confidence and novel variants (using 

HugeSeq [211]). Evaluation of genetic disease risks based on variants was carried out, both 

by looking for known disease associations using dbSNP and the Online Mendelian 

Inheritance in Man (OMIM, http://omim.org/) database and using the RiskO-Gram 

algorithm [76] which integrates information from multiple alleles to assess risk against a 

similarly matched data cohort. This revealed significantly increased risk for various 

disorders, including open angle glaucoma, dyslipidemia, coronary artery disease, basal cell 

carcinoma, type 2 diabetes (T2D), age related macular degeneration and psoriasis. This 

encouraged the subject to follow up on these disorders, and also start monitoring glucose 

and glycated hemoglobin (HbA1c) levels, which surprisingly increased beyond normal 

levels following the RSV infection, and the subject was diagnosed by his physician for T2D 

369 days into the study. Related to T2D, pharmacogenomic considerations revealed a 

possibly favorable (glucose lowering) response to diabetic drugs rosiglitazone and 

metformin, should treatment become necessary. Furthermore, the autoantibodyome profiling 

of the subject (Invitrogen ProtoArrays profiling of 9483 protein reactivities to 

Immunoglobulin G (IgG)) revealed increased reactivity in multiple proteins, including 

DOK6 (related to insulin receptors), and GOSR1, BTK and ASPA, previously reported to 

show high reactivity by Winer et al. in insulin resistant patients [176]. The subject initiated 

and still maintains a strict dietary and exercise regiment supplemented with low doses of 

acetylsalicylic acid, which helped him control his glucose and HbA1c levels, which after a 

considerable time period (∼months) have now returned to normal levels.

In addition a range of omics were profiled over time for up to 20 different timepoints over 

the span of the study including high coverage transcriptome (RNA-Seq of PBMCs, 2.67 

billion reads mapped to 19714 isoforms corresponding to 12659 genes), proteome (MS of 

PBMCs, identifying a total of 6280 proteins; 3731 consistently across most timepoints), 

metabolome (MS of serum, profiling 6862 and 4228 metabolites during periods of HRV and 

RSV infections respectively, with ∼20% identified based on mass and retention times 

alone). The dynamic transcriptome, proteome and metabolome profiles were analyzed in a 

novel integrated framework based on spectral analysis of the time series. This allowed the 

identification of temporal patterns in the combined data, corresponding to biological 

processes that varied with physiological state changes, including the onset of T2D seen in 

multiple omics components, and common signatures of HRV and RSV infections. While 
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several gene associations to pathways were known, multiple genes showed similar patterns 

that had not been reported before and merit further investigation.

Other Considerations and Future Directions

The iPOP study discussed above revealed the complexities and characteristics of personal 

genomes, transcriptomes, proteomes and metabolomes and showed the feasibility of 

personalized longitudinal profiling that can provide actionable health information. Multiple 

omics data integration still presents a formidable challenge and merits further development. 

Each omics technology produces different kinds of data, including multiple formats (e.g., 

data files range from simple text, and extensible markup, e.g., .xml, to vendor closed-source 

formats). Additionally, each omics set requires its own quality control analysis, further 

confounded by different error and noise levels associated to the different technologies. As 

each of the data sets also presents different signal and noise distributions, this makes 

uniform normalization approaches across omics challenging, especially if considering 

multimodal dynamic data. Furthermore, the amounts of information per omics set can vary, 

e.g., ∼5000 proteins, ∼20000 transcript isoforms, ∼6000–10000 metabolites, ∼9000 

autoantibody-protein reactivities and so forth. Hence, gene-centric approaches, that integrate 

data corresponding to, associated or interacting with the same genes, will not always work, 

as the different components may not match. The integration of information per component is 

made more difficult with multiple existing gene and protein annotations, often resulting in a 

many-to-many map in the gene-protein integration, and correspondingly lacking metabolite-

protein/gene annotations and associations. Finally, if considering dynamic datasets, this also 

results in multiple instances where time points might be missing data for some of the 

molecular components (especially evident in mass spectrometry and shotgun proteomics, 

where proteins are identified through different peptides). These complications of omics data 

integration necessitate that each individual omics data set is analyzed independently up to 

normalization, and then integrated with the other information. New integrative methodology 

has to account for such different normalizations, missing data, and also integration that is 

not gene-based, but rather incorporates time-series analyses, as for example was carried out 

in the iPOP study [73]. Classification of changes by temporal response, and possibly 

interaction data leads to an interpretation of components based on shared similar dynamics 

and avoids some of the issues of insufficient annotations and missing information. Such an 

interpretation lends itself to a clinical setting where dynamic changes are associated to 

varying personalized physiological states, and may be adopted by the medical community.

To facilitate the wide adoption of the methods into personalized medicine, the integrated 

data analysis will require optimization of current computational tools to rapidly and 

efficiently handle as well as visualize the multiple omics data. As a first step, the amount of 

computation time for different analyses must be reduced from days (in the case of mapping 

sequence data and quantitative proteomics in current omics analyses presented above) to 

hours or less to have immediate relevance to active medical examinations. Secondly, better 

visualizations of omics data, though difficult, are also necessary, as multidimensional 

information is difficult to collate, present, and interpret (many efforts are addressing this, 

e.g., Circos plots that allow multiple sequence information to be displayed together are now 

widely adopted [212]). Incorporating such information with clinical data and phenotypes 
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presents a new challenge, requiring browsers that combine temporal information with multi-

dimensional omics sets. We believe network analysis [213–217] presents an excellent 

visualization and integration possibility, allowing the combinations of multiple levels of 

networks, dynamically changing, that will include cellular information, component and 

corresponding disease temporal progressions, as well as medical assay data in a modularized 

approach. The computational analyses and visualization of omics data integration also reveal 

the known need to manage large amounts of data [218,219], both in terms of processing 

power, as well as storage capacity and maintaining easy accessibility, especially for the 

practicing clinician — with the recent advent of cloud computing providing one possible 

solution. Finally, the combination of omics data with medical records presents another 

challenge, with privacy and ethical issues that must be considered. Such improvements and 

standardization of approaches will help make the analysis available in a clinical setting and 

an increasingly larger set of patients, while encouraging the early adaptation of the 

integrated approaches by the scientific community towards personalized medicine 

applications.

As technology improves we expect to see advancements in each omics implementation 

discussed above. In terms of sequencing, continual improvements in depth and read length 

will allow unambiguous precise sequence mapping and additionally the querying of lower 

gene expression, coupled to higher accuracy in variant calling. With sequencing times 

becoming faster (e.g., whole genome sequencing in ∼5–30 hours depending on platform at 

deep, ∼100 × coverage), and hardware more compact, eventually such technology will be 

available in the clinic, enabling the incorporation of all genomic, transcriptomic, 

microbiomic and autoantibodyomic profiling as parts of regular medical examinations. 

Correspondingly, mass spectrometry improvements (including table-top hardware now 

available) will improve mass accuracy, and higher sensitivity, allowing increases in the 

number of proteins identified and better quantitation, which can already be implemented in a 

clinical setting. The MS improvements in combination with better metabolite cataloguing 

will also improve the identification of small molecules. The protocol and methodology 

advancements will allow using a smaller volume of patient sample needed for iPOP 

(decreasing from ∼80 mL to drops of blood) making it feasible to probe the omics on more 

regular basis for each patient, even providing home kits to send in self-collected samples 

(akin to what is already implemented to some degree by companies, e.g., 23andMe, that 

collect saliva samples for phenotyping).

The technological and methodological advancements will allow for effective iPOP 

implementations with multiple patients, but it will still take some time to evaluate what 

constitutes actionable information and which components will be most informative. Once 

these relevant components are identified monitoring technologies can be further developed 

to help possible clinical implementations. This will certainly be alleviated by multiple iPOP 

studies providing the necessary aggregated information. However, clinical and 

psychological concerns need to be addressed and the possible impact to patient health being 

of paramount importance, in a medical process in which the patient is actively participating 

[220]. Such active participation requires the training of the public and health professionals to 

an understanding of genomic information, and how this omics knowledge impacts their 

health, and their families. Genetic counseling is a necessity, and the number of trained 
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genetic counselors is steadily increasing. Informed consent will be necessary, but this 

requires an understanding of basic genomic terms that are not apparent to non-experts. To 

facilitate this, probably school curriculum adjustments will be needed to enable early 

education of the public.

The emergence of quantitative Personal Omics, including genomes transcriptomes, 

proteomes, metabolomes and other omics allows us to now combine them to yield 

personalized actionable health care information. Such research is at the forefront of medical 

science, and may help the characterization of disorders and the implementation of precise 

personal medicine aimed towards prevention rather than treatment. Careful forward 

planning, coupled to the continuing interest and participation of the public, government 

agencies and researchers, assures that the development of personalized omics will proceed 

beyond possible hurtles into a novel approach for the 21st century health care 

implementations.
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Figure 1. Genomic variants
(A) Variation in the human genome. The personal genomic code can differ from the 

published reference genome. Basic examples of variation are shown on a single or few base 

variants (e.g., point mutations, insertions and deletions), or a larger scale for structural 

variants (>1000 bp, e.g., large insertions, deletions, inversions, tandem repeats, 

translocations). (B) Sample variant analysis workflow. In a genomic variant analysis, for 

example, after sample preparation and sequencing the raw files can be passed through 

quality control (e.g., using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) 

and removing PCR artifacts using tools as Picard (http://picard.sourceforge.net)). Reads are 

mapped to the genome and variants are assessed, e.g., mapping with several algorithms, 

including ELAND II (Illumina), SOAP [221], MAQ and Burrows-Wheeler Aligner (BWA) 

[222] and Novoalign by © Novocraft Technologies (http://www.novocraft.com). Read re-

alignment can be performed, e.g., using Genome Analysis Toolkit (GATK) [223], or 

HugeSeq [211], to call variants, including implementations with Sequence Alignment Map 

format Tools (SAMtools) [224], annotation using Annovar [225], SIFT [226] and Polyphen 

[227] for determining variant effects on proteomic translation [228]. Furthermore, using a 

variety of methods the structural variants can be determined. For example the paired-end 
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mapping method considers how paired-end reads mapped to the reference to assign deletions 

and insertions, from reads whose mapped span is longer or shorter than the average span; 

inversions, from position and relative orientations of the ends of reads [39,40]. The read 

depth method allows the possibility to identify the proportional genomic copy number 

variation. In the approach of Abyzov et al. [229] the read depth considered as an image is 

analyzed using image processing techniques, viz. mean-shift-theory [230]. Programs such as 

Pindel [231] and BreakSeq [232] consider split-read analysis to determine breakpoints of 

insertions and deletions. DELLY [233] by Rausch et al. takes into account paired-end and 

split-read methods for determining structural variants. Many packages for analysis are 

available through the Bioconductor [234] project as implemented in the freely available R 

statistical analysis platform (http://www.R-project.org).
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Figure 2. RNA-Seq analysis
In RNA-Seq analysis, short reads can be assembled and then mapped to the reference 

genome (with tools such as Illumina's ELAND, MAQ and BWA [222], Bowtie [235–237], 

SOAP [221], and others). A recent protocol by Trapnell et al. [238] describes in detail the 

use of dedicated RNA-Seq programs from the Tuxedo suite, such as TopHat [239], 

Cufflinks [240,241] and an R implementation called CummeRBund as a Bioconductor 

package (an alternative is to run these directly or using GenePattern [242,243], which also 

includes possible reconstruction by Scripture [244]). Other programs such as DESeq, 

another package in Bioconductor, can also help test for differential expression [245]. The 

numerous analyses availabilities are now publically discussed online, in a forum (http://

SEQanswers.com/) that discusses many other examples and all aspects of the mapping 

process [246].
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Figure 3. Proteome analysis
In quantitative proteomics using mass spectrometry typical approaches employ trypsin 

digestion coupled with tagging methods — non label-free methods include use of isotopic 

labeling (SILAC) or isobaric tagging (iTRAQ, TMT). One typical bottom-up-approach 

setup uses a combination of high affinity liquid chromatography coupled with two rounds of 

mass spectrometry (LC-MS/MS) to fractionate peptides for identification and obtain their 

mass spectra. Raw files may be analyzed using vendor software or converted to open 

formats (such as .mzXML, .mzData or the current standard .mzML [247–249], e.g., using 

MSConvert [250]). The mass spectra can be mapped to known protein using a protein 

library, or less frequently de novo assembled, using an array of programs (e.g., X!Tandem 

[251], SEQUEST [252], Mascot [253], Open Mass Spectrometry Search Algorithm 

(OMSSA) [254], Proteome Discoverer by Thermo Scientific, or MassHunter Workstation by 

Agilent). Quality control includes estimation of false discovery rates (FDR), often using a 

reverse database search [105,255,256]. Quantitation can be carried out to estimate relative 

levels of proteins in different samples (employing standardization and normalization of 

average sample ratios to a unit mean). Finally annotation is made using databases such as 

UniProt or NCBI. Some of the analysis can be performed using suites and programs, such as 

PEAKS [257], the Trans-Proteomic Pipeline (TPP) [258–261], multiple tools from 

ProteoWizard [250], OpenMS [262–264] or vendor complete solutions Proteome Discoverer 

and MassHunter Workstation mentioned above. Multiple other programs for mass 

spectrometry are available (e.g., see http://www.msutils.org).
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Figure 4. Metabolome analysis
In metabolomics analysis chromatography columns are used for purification and preparation 

of samples coupled to mass spectrometry (gas chromatography (GC) or liquid 

chromatography (LC)-MS); standards for specific compounds may also be used in parallel 

for positive identification. Raw files may be analyzed using vendor software or converted to 

open formats (such as .mzXML, .mzData or the current standard .mzML [247–249], e.g., 

using MSConvert). The spectral data may be aligned for retention time and mass intensity 

calibration, e.g., using XCMS [265–267], SIEVE by Thermo Scientific, Matlab toolboxes by 

MathWorks, MassHunterProfiler by Agilent, MzMine [268,269]. After quality control and 

statistical analysis, masses of interest can be annotated using databases, e.g., Metlin 

[155,156], KEGG [151], MetaCyc [153,270,271], Reactome [157–161].
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Figure 5. iPOP for personalized medicine
The framework described in the text employs multi-omics analyses (see above and Figures 

1–4) that may be implemented for individuals. In step I) Risk estimation for disease is 

carried out using a whole genome sequencing to perform variant analysis coupled to medical 

history, environmental considerations and pharmacogenomics evaluations. In step II) 

Dynamic profiling of multiple omics using an array of technologies follows multiple omics 

longitudinally in a subject as they progress through their different physiological states, 

including healthy, disease, and recovery states. Thus thousands of molecular components are 

collected over time for III) Data integration and biological impact assessment, using 

temporal patterns to obtain matched omics information, correlate and classify responses, 

compare against pathway databases and visualize components, e.g., current pathway tools 

include DAVID [206,272], KEGG [151], Reactome [157–161], Ingenuity Pathway Analysis 

(IPA); networks can be visualized using Cytoscape [207], various R packages through 

Bioconductor [234], Matlab by MathWorks and several others. The future iPOP 
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implementations may be gathered into a curated database of iPOP-disease associations that 

may help in categorizing an omics dynamic response to a catalogued physiological state and 

disease onset, with potential diagnostic capabilities.
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