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Abstract

Single-image super resolution is a process of obtaining a high-resolution image from a set of low-

resolution observations by signal processing. While super resolution has been demonstrated to 

improve image quality in scaled down images in the image domain, its effects on the Fourier-

based image acquisition technique, such as MRI, remains unknown.We performed high-resolution 

ex vivo late gadolinium enhancement (LGE) magnetic resonance imaging (0.4 × 0.4 × 0.4 mm3) in 

postinfarction swine hearts (n = 24). The swine hearts were divided into the training set (n = 14) 

and the test set (n = 10), and in all hearts, low-resolution images were simulated from the high-

resolution images. In the training set, super-resolution dictionaries with pairs of small matching 

patches of the high- and low-resolution images were created. In the test set, super resolution 

recovered high-resolution images from low-resolution images using the dictionaries. The same 

algorithm was also applied to patient LGE (n = 4) to assess its effects. Compared with interpolated 

images, super resolution significantly improved basic image quality indices (P < 0.001). Super 

resolution using Fourier-based zero padding achieved the best image quality. However, the 

magnitude of improvement was small in images with zero padding. Super resolution substantially 

improved the spatial resolution of the patient LGE images by sharpening the edges of the heart 

and the scar. In conclusion, single-image super resolution significantly improves image errors. 

However, the magnitude of improvement was relatively small in images with Fourier-based zero 

padding. These findings provide evidence to support its potential use in myocardial scar imaging.
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I. INTRODUCTION

Late gadolinium enhancement (LGE) MRI can visualize the regions of fibrosis or scar in the 

heart, mainly from previous myocardial infarction (MI) [1]. Recent evidence suggests that 

the complex geometry of the scar determines the propensity to ventricular arrhythmia [2], 

and predicts death [3]. Our previous work using high-resolution ex vivo MRI demonstrated a 

critical link between the complex scar geometry and electrical circuits of ventricular 

arrhythmia [4]. However, the spatial resolution of clinical cardiac MRI is not sufficiently 

high to allow reconstruction of the complex scar geometry. Improved resolution of clinical 

cardiac MRI would allow qualitative assessment of the scar and more appropriate utilization 

of clinical image data to predict lethal arrhythmia, guide therapy and prevent death.

To improve the spatial resolution of an imaging system, one straightforward approach is to 

directly acquire a high-resolution image. This solution, however, may not be feasible due to 

higher noise levels associated with high-resolution image acquisition, longer acquisition 

time and higher hardware cost such as in high and ultra-high field system. Another approach 

is to accept the image degradations, and use signal processing to post-process the captured 

images, to trade off computational cost with the hardware cost. These techniques are 

referred to as super-resolution reconstruction. Specifically, super resolution is the process of 

obtaining a high-resolution image from a set of low-resolution observations, thereby 

increasing the high-frequency components and removing the degradations caused by the 

process of inherently blurred image acquisition. There are a number of methods to perform 

super resolution while preserving edges and small details [5].

In this work, we applied an algorithm for single-image super resolution [6] to myocardial 

scar imaging to quantitatively assess its effects. The algorithm uses sparse representation 

and operates by training a pair of low- and high-resolution dictionaries, using either training 

images or exploiting a lower-resolution version of the same image to be handled. While this 

algorithm of super resolution has been demonstrated to improve image quality in scaled 

down images in the image domain [6], its effects on the Fourier-based image acquisition 

technique such as MRI remains unknown. To investigate the effects of single-image super 

resolution on Fourier-based and image-based methods of scale-up, three separate data 

analyses were conducted using the same sets of images.

II. METHODS

A. ANIMAL STUDY PROTOCOL

The animal protocol was approved by the Animal Care and Use Committee of the Johns 

Hopkins University School of Medicine. In domestic swine (25 to 35 kg, n=24), the mid–left 

anterior descending coronary artery was occluded for 150 minutes using a balloon 

angioplasty catheter (2.7 Fr) via a carotid artery to create MI under general anesthesia [4]. 

Ten to twelve weeks after MI, high-resolution ex vivo MRI [4] was conducted to visualize 

myocardial scar geometry. Fifteen minutes after intravenous administration of heparin 5,000 

IU and Gd-DTPA (Magnevist, gadolinium diethylene triamine pentaacetic acid, Berlex) at 

0.20 mmol/kg, the animals were euthanized, and the hearts were removed and filled with 
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vinyl polysiloxane. Each heart was scanned in a 1.5-Tesla scanner (Avanto, Siemens 

Medical Solutions) with a 3D gradient recalled echo (GRE) sequence to visualize the 

myocardial scar (bandwidth, ±130 Hz/pixel; flip angle, 20°; echo time/repetition time, 

4.02/9.7 ms; field of view, 100 × 100 mm2; image matrix, 256 × 256; spatial resolution, 0.4 

× 0.4 × 0.4 mm3).

B. DATA ANALYSIS

The high-resolution image data sets (0.4 × 0.4 mm2 in-plane) from swine ex vivo imaging 

were divided into the training set (n=14) and the test set (n=10). In both sets, the image data 

from each heart consisted of 100 short-axis (SAX) images and 50 long-axis (LAX) images 

(= total 150 images per heart) to only include the ventricles. MATLAB R2013a (Mathworks, 

Inc., Natick, MA) was used for data analysis. The single-image super-resolution algorithm 

(available at http://www.cs.technion.ac.il/~elad/software/) was modified to fit the objectives 

of the study and the specific computational environment (3.4 GHz Intel Core i7×4, 32GB 

RAM and 3TB hard drive).

C. TRAINING SET

The details of the original algorithm are described in Zeyde et al. [6]. Briefiy, in the training 

sets (n=14 hearts, total 1,400 SAX images and 700 LAX images), the high-resolution image 

 (a 256 × 256 matrix) was blurred and scaled-down by a factor of s (Fig. 1).

(1)

where H represents an operator to create the low-resolution image  (a 64 × 64 matrix) 

from the high-resolution image  (a 256 × 256 matrix), and v an additive white 

Gaussian noise. In this study s=4 was chosen because the in-plane resolution of clinical 

myocardial scar imaging (~ 1.6 × 1.6 mm2) is approximately 4 times lower than that of the 

high-resolution image data sets (0.4 × 0.4 mm2). The low-resolution image  (a 64 × 64 

matrix) was then scaled-up by a factor of 4 to the original size (a 256 × 256 matrix) by an 

interpolation operator Q.

(2)

The methods of scale-up and scale-down are described in the following section (“E. Three 

comparative analyses”). Both the high-resolution  and interpolated images  were 

pre-processed with high-pass filters, and were divided into small overlapping patches  and 

, and the pairs of matching patches were extracted to form the training dictionary 

. Each of these patch-pairs underwent a pre-processing stage that removes the 

low-frequency components from  and extracts features from . Dimensionality reduction 

using principal component analysis (PCA) was also applied on the features of , making 

the dictionary training step much faster. A low-resolution dictionary Al was trained for the 

low-resolution patches using the K-SVD algorithm [7], such that they could be represented 
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sparsely. A corresponding high-resolution dictionary Ah was constructed for the high-

resolution patches, such that it matched the low-resolution dictionary Al.

D. TEST SET

In the test image sets (n=10 hearts, total 1,000 SAX images and 500 LAX images), as in the 

training set, low-resolution images (a 64 × 64 matrix) were also constructed from the high-

resolution images (a 256 × 256 matrix) by scale-down by a factor of 4, and the low-

resolution images (a 64 × 64 matrix) were scaled up to the destination size (a 256 × 256 

matrix) by interpolation. Pre-processed low-resolution patches  were extracted from each 

location, and then sparse-coded using the trained low-resolution dictionary Al. The 

representations {qk} found in the low-resolution dictionary Al were then used to recover the 

high-resolution patches  by multiplying them with the high-resolution dictionary 

. The recovered high-resolution patches {  were merged by averaging in 

the overlap area to create the resulting image (a 256 × 256 matrix).

E. THREE COMPARATIVE ANALYSES

In this study, to compare the effects of super resolution on different methods of scale-up, 

three separate data analyses were conducted using the same sets of LGE images (Fig. 2). 

Separate sets of dictionaries were created for each analysis. A. Zero-padding. Because MRI 

is a Fourier-based image acquisition technique and the image data are acquired in k-space, 

the most logical method to simulate a low-resolution image from a high-resolution image is 

to remove coefficients in k-space. A fast Fourier transform (FFT) was applied to the high-

resolution image to compute the high-resolution k-space (a 256 × 256 matrix). The low-

resolution k-space was simulated by extracting the central, low-frequency components (a 64 

× 64 matrix) of the high-resolution k-space. The magnitude of the low-resolution k-space 

was corrected by a factor of 16 (=4 × 4) and smoothed by a Fermi window to simulate a 

low-resolution acquisition. The low-resolution image (a 64 × 64 matrix) was obtained as an 

FFT of the low-resolution k-space. The interpolated image (a 256 × 256 matrix) was 

obtained by padding zeros around the low-resolution k-space to restore the original size (a 

256 × 256 matrix), and by applying inverse FFT to the zero-padded k-space. This is 

mathematically equivalent to convolution with a sinc function. The process of zero-padding 

in k-space is the typical interpolation routine used in MRI systems. B. Bicubic 1. This 

analysis was conducted to compare the effects of super resolution between zero-padding and 

bicubic interpolation, a commonly used interpolation method outside the MRI field. The 

low-resolution image (a 64 × 64 matrix) was simulated as in the zero-padding group. The 

interpolated image (a 256 × 256 matrix) was created by applying bicubic interpolation to the 

low-resolution image. C. Bicubic 2. This analysis was conducted to serve as a positive 

control of the super resolution technique. Spatial averaging as a method of scale-down and 

bicubic interpolation as a method of scale-up are commonly used to evaluate the effects of 

super-resolution techniques [6]. The low-resolution image (a 64 × 64 matrix) was created by 

spatially averaging the high-resolution image (a 256 × 256 matrix). The interpolated image 

(a 256 × 256 matrix) was created by applying bicubic interpolation to the low-resolution 

image.
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F. ERROR ANALYSIS

To measure the differences between the original high-resolution image and the interpolated 

image or the super resolution image, we used 4 separate indices: mean absolute error 

(MAE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR) and universal 

image quality index (UIQI) [8], [9].

MAE between a reference image r(x, y) and a test image t(x, y) of the size nx × ny is defined 

as

(3)

RMSE is defined as

(4)

PSNR (in dB) is defined as

(5)

UIQI is defined as

(6)

where

(7)

(8)

(9)

(10)
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(11)

G. PATIENT PROTOCOL

We applied the super resolution algorithm to clinical MRI of the patients with ischemic 

heart disease (n=4). The study was approved by the Institutional Review Board of the Johns 

Hopkins Medical Institutions. The patients underwent cardiac MRI with LGE on a 1.5-Tesla 

scanner (Avanto, Siemens Medical Solutions) with the standard 6-element cardiac phased-

array receiver coil and the spine coil. Ten to twelve contiguous short-axis slices were 

prescribed to cover the entire left ventricle. LGE images were acquired 15 to 30 minutes 

after an intravenous injection of Gd-DTPA at 0.20 mmol/kg with a standard non-phase-

sensitive inversion recovery sequence. Representative imaging parameters were as follows: 

repetition time 1 heartbeat (~700–1000 ms), echo time 3.32 ms, in-plane spatial resolution 

1.25–1.9 mm, 10-mm slice thickness, 0–2-mm gap, inversion time 175 to 280 ms (adjusted 

to null the signal of normal myocardium), flip angle 25° and a GRE readout. Each image 

acquisition was ECG gated, and the image was acquired during a single, typically end-

expiration, breath hold.

H. SUPER RESOLUTION IN PATIENT IMAGES

The original, standard clinical MRI (low-resolution) images were scaled up to the 

destination size by a factor of 4 using the zero padding and the bicubic 1 methods described 

above. Bicubic 2 was not used because there was no original high-resolution patient image 

available from which to create a spatially averaged image. Using the respective dictionaries 

created using the swine training sets, high-resolution images were reconstructed as described 

above.

I. STATISTICAL ANALYSIS

Values are means ± standard deviation (SD). A Student’s t-test was used to compare super-

resolution and interpolated images for each error index. A Student’s t-test was also used to 

compare zero-padding and two other interpolation methods (bicubic 1 and bicubic 2). A P 

value <0.05 is considered statistically significant. Statistical analysis was performed using 

MATLAB (Statistical Toolbox, MathWorks, Inc, Natick, MA).

III. RESULT

A. COMPUTATION TIME

Training of each set of dictionary took approximately 1.5 hours. The process of super 

resolution took less than 2 seconds per image.

B. QUALITATIVE PIXELWISE ERROR ANALYSIS

In Fig. 3, each column shows pixelwise absolute error in signal intensity (SI) between the 

high-resolution image and the interpolated image or the super resolution image. The bottom 

row represents the absolute difference in SI between the interpolated image and the super 
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resolution image. The columns indicate the results from three comparative analyses, 

including zero padding, bicubic 1, and bicubic 2. In zero padding (left column), the absolute 

error of the interpolated image was relatively low (top row). The region of high error was 

concentrated at the edges of the heart and was evenly spread out throughout the heart. The 

absolute error of the super-resolution image was equally low (middle row) and there was 

only small difference between the interpolated and the super-resolution images (bottom 

row). In contrast, in bicubic 1 (middle column), the absolute error of the interpolated image 

was substantially higher at the edges, particularly in the scar region (septum), reflecting the 

blurring effect of image-based interpolation (top row). The absolute error of the super-

resolution image was visually lower overall (middle row), particularly in the scar region 

(septum), making the difference between the interpolated and super-resolution images 

relatively high (bottom row). In addition, the absolute error of the super resolution image 

(middle row) was somewhat higher compared to that of the super-resolution image in zero 

padding. In bicubic 2 (right column), the absolute error of the interpolated image (top row) 

appears slightly higher than that of zero padding. The regions of high errors were spotty and 

not contiguous. This is likely the effect of image-based spatial averaging to create a low-

resolution image from the high-resolution image. The absolute error of the super-resolution 

image (middle row) was visually similar to that of the interpolated image and there was 

small difference between the interpolated and the super-resolution images (bottom row), 

except in the scar region.

C. QUANTITATIVE ERROR ANALYSIS

Figs. 4 and 5 show the results of quantitative error analysis using the indices described 

above. The sample size was n=1,000 for SAX images, and n=500 for LAX images. Super 

resolution significantly improved MAE compared with the interpolated image in both SAX 

and LAX images, regardless of the interpolation method (P<0.001, top row, Fig. 4). 

Importantly, zero padding achieved the lowest MAE in both the interpolated and super-

resolution images (P<0.001, top row, Fig. 4). Similarly, super resolution significantly 

improved RMSE in SAX images regardless of the interpolation method (P<0.001, bottom 

row, Fig. 4). However, super resolution did not significantly improve RMSE in LAX images 

in zero padding and bicubic 2. Zero padding achieved the lowest RMSE in both the 

interpolated and super-resolution images (P<0.001, bottom row, Fig. 4). Super resolution 

significantly improved peak SNR in SAX images regardless of the interpolation method 

(P<0.001, top row, Fig. 5). However, super resolution did not significantly improve peak 

SNR in LAX images in zero padding. Zero padding achieved the highest peak SNR in both 

the interpolated and super-resolution images (P<0.001, top row, Fig. 5). Finally, super 

resolution significantly improved UIQI in LAX images regardless of the interpolation 

method (P<0.001, bottom row, Fig. 5). However, super resolution did not significantly 

improve UIQI in SAX images in bicubic 2. Zero padding achieved the highest UIQI in both 

the interpolated and super-resolution images (P<0.001, bottom row, Fig. 5).

Among the indices that super resolution significantly improved, the magnitude of 

improvement was the greatest in bicubic 1 (20%–50%), and equally smaller in zero padding 

(3%–10%) and bicubic 2 (1%–10%) (Table 1).
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D. PATIENT IMAGES

The same super resolution algorithm was applied to patient MRI (n=4) to assess 

improvement in image quality. Representative images are shown in Figs. 6 (SAX) and 7 

(LAX). Zero padding and bicubic 1 were used for scale-up by a factor of 4. In both zero 

padding and bicubic 1, interpolation improved the spatial resolution by a factor of 4 but 

smoothed edges. Super resolution created subtle but qualitatively distinct improvement in 

image quality. Super resolution images showed sharper geometric features (e.g. edges 

between the heart and the scar, border between the myocardium and the blood pool). In 

addition, the effect of super resolution was quantitatively analyzed by calculating the 

absolute difference in SI between the interpolated image and the super resolution image. As 

indicated by consistently larger absolute difference in SI, the magnitude of improvement in 

image quality by super resolution was quantitatively higher with bicubic 1 compared with 

zero padding. However, the image quality of super resolution was visually better in zero 

padding compared with bicubic 1. These results are consistent with Figs. 3–5.

IV. DISCUSSION

The aim of the present study was to investigate the effects of single-image super resolution 

on Fourier-based and image-based methods of scale-up.

Our results demonstrated that the current algorithm of single-image super resolution 

significantly improved the errors of the images both qualitatively and quantitatively. 

Importantly, super resolution consistently provided additional error improvement regardless 

of interpolation methods, which indicates that the current algorithm was successful in 

recovering edges and details that tend to be blurred by interpolation. This finding supports 

the validity of the current approach of super resolution, and provides evidence to support its 

potential use in myocardial scar imaging. The importance of this study relates to the overall 

conservative nature of medical image processing, where less is generally considered better 

than more image processing. In this case, however, qualitatively and quantitatively, the 

super resolution approach appears better than the standard approach, and may have a direct 

clinical application. For example, super resolution may be suitable for automated post-

processing as it provides edge sharpening and denoising demonstrated in patient images 

(Figs. 6 and 7).

Our results also indicate that super resolution using Fourier-based zero padding achieved the 

best image quality. However, the magnitude of improvement by super resolution compared 

with interpolation was small in images with zero padding. The magnitude of improvement 

was the greatest in bicubic 1 (20%–50%), and equally smaller in zero padding (3%–10%) 

and bicubic 2 (1%–10%) (Table I). This was largely due to the fact that zero padding and 

bicubic 2 were a significantly better interpolation method than bicubic 1 (Figs. 4 and 5). 

This finding suggests that the current algorithm of super resolution may be less effective in a 

Fourier-based scale-up method than an image-based bicubic interpolation. In addition, this 

finding indicates that the current algorithm requires further technical improvements to 

enhance its output quality.
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Super resolution can be a useful tool to improve the clinical management of the patients with 

scar-related arrhythmia. Previous studies have shown that myocardial scar imaging with 

LGE can predict fatal arrhythmia and death [2], [3], [10]. In addition, we have demonstrated 

that LGE can identify the potential target of ablation therapy to treat fatal arrhythmia [11], 

[12]. Improvement in image quality by super resolution is expected to improve the 

diagnostic accuracy of these important clinical indices to provide better care to the patients.

There are several limitations of the current study. First, we did not evaluate the effect of 

super resolution on images of different slice thickness. Slice thickness of the original image 

is a realistic and critical factor in visualizing accurate scar structures in clinical MRI. Even 

with a high in-plane resolution, increasing slice thickness substantially blurs the scar 

geometry due to the partial volume effect [1], [13]. The error improvement with super 

resolution would be greater with thicker slices due to the more substantial partial volume 

effect, because the smoother the original image is, the easier it is for the algorithm to recover 

the original image with smaller errors. Second, we did not explore resolution improvement 

greater than a factor of 4. In reality, however, given a typical in-plane spatial resolution of 

1.2–1.9 mm in clinical LGE, resolution improvement by a factor of 4 provides an in-plane 

spatial resolution of 0.3–0.5 mm, which would resolve finer details at the edges of the scar, 

as shown in Figs. 6 and 7. Third, because of the lack of ex vivo, high-resolution images of 

human heart, we applied super resolution to patient images using the dictionaries created by 

high-resolution images of the swine heart. Although the heart anatomy is similar between 

human and swine, it is possible that some of the detailed features may be misrepresented. A 

viable solution to this potential issue is to create dictionaries from ex vivo, high-resolution 

myocardial scar imaging from patients post mortem who are known to have had heart 

disease. Finally, the current super-resolution algorithm is limited to two-dimensional (2-D) 

images. However, the vast majority of medical imaging, including MRI that was used in this 

work, provides three-dimensional (3-D) volumetric data to represent 3-D structures of the 

human anatomy. To provide more accurate and quantitative data, a similar algorithm should 

be developed to apply super-resolution to 3-D volumetric images.

V. CONCLUSION

Single-image super resolution significantly improves the errors of the images both 

qualitatively and quantitatively. However, the magnitude of improvement by super 

resolution compared with interpolation was relatively small in images with Fourier-based 

scale-up method. These findings provide evidence to support its potential use in myocardial 

scar imaging, but suggest that the current algorithm of super resolution may be less effective 

in a Fourier-based scale-up method than an image-based bicubic interpolation.
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FIGURE 1. 
Algorithm of single-image super-resolution using sparse representation. The details of the 

algorithm are described in Zeyde et al. [6]. A. Training set (n=14 hearts, total 2,100 images). 

In the original high-resolution late gadolinium enhancement (LGE) image (a 256 × 256 

matrix), the region of high signal intensity (SI) (= bright pixels) indicates myocardial 

infarction (MI). The high-resolution image was scaled down by a factor of 4 to generate a 

low-resolution image (a 64 × 64 matrix). The low-resolution image was then scaled up by a 

factor of 4 to the original size (a 256 × 256 matrix) by interpolation. The methods of scale-

up and scale-down are shown in Fig. 2. Both the high-resolution and interpolated images 

were divided into small overlapping patches, and the pairs of matching patches were 

extracted to form the training dictionary. Each of these patch-pairs underwent a pre-

processing stage that removes the low-frequency components from high-resolution patches 

and extracts features from low-resolution patches. Dimensionality reduction using principal 

component analysis (PCA) was also applied on the features of the low-resolution patches, 

making the dictionary training step much faster. A low-resolution dictionary Al was trained 

for the low-resolution patches using the K-SVD algorithm [7], such that they could be 

represented sparsely. A corresponding high-resolution dictionary Ah was constructed for the 

high-resolution patches, such that it matched the low-resolution dictionary Al. B. Test set 

(n=10 hearts, total 1,500 images). As in the training set, low-resolution images (a 64 × 64 

Ashikaga et al. Page 14

IEEE J Transl Eng Health Med. Author manuscript; available in PMC 2015 February 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



matrix) were also constructed from the high-resolution images (a 256 × 256 matrix) by 

scale-down by a factor of 4, and the low-resolution images (a 64 × 64 matrix) were scaled 

up to the destination size (a 256 × 256 matrix) by interpolation. Pre-processed low-

resolution patches were extracted from each location, and then sparse-coded using the 

trained low-resolution dictionary Al. The representations found in the low-resolution 

dictionary Al were then used to recover the high-resolution patches by multiplying them 

with the high-resolution dictionary Ah. The recovered high-resolution patches were merged 

by averaging in the overlap area to create the resulting image (a 256 × 256 matrix).
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FIGURE 2. 
Three comparative analyses. A. Zero-padding. A fast Fourier transform (FFT) was applied to 

the high-resolution image to compute the high-resolution k-space (a 256 × 256 matrix). The 

low-resolution k-space was created by extracting the central, low-frequency components (a 

64 × 64 matrix) of the high-resolution k-space. The magnitude of the low-resolution k-space 

was corrected by a factor of 16 (= 4 × 4) and smoothed by a Fermi window to simulate a 

low-resolution acquisition. The low-resolution image (a 64 × 64 matrix) was obtained as an 

FFT of the low-resolution k-space. The interpolated image (a 256 × 256 matrix) was 

obtained by padding zeros around the low-resolution k-space to restore the original size (a 

256 × 256 matrix), and by applying inverse FFT to the zero-padded k-space. This is 

mathematically equivalent to convolution with a sinc function. B. Bicubic 1 The low-

resolution image (a 64 × 64 matrix) was created as in the zero-padding group. The 

interpolated image (a 256 × 256 matrix) was created by applying bicubic interpolation to the 

low-resolution image. C. Bicubic 2. The low-resolution image (a 64 × 64 matrix) was 

created by spatially averaging the high-resolution image (a 256 × 256 matrix). The 
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interpolated image (a 256 × 256 matrix) was created by applying bicubic interpolation to the 

low-resolution image.
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FIGURE 3. 
Pixelwise absolute error vs. high-resolution image. Each column shows pixelwise absolute 

error in SI between the high-resolution image and the interpolated image (“Interpolation”) or 

the super resolution image (“Super Resolution”). The bottom row represents the absolute 

difference in SI between the interpolated image and the super resolution image. The 

columns indicate the results from three comparative analyses, including A. Zero-padding, B. 

Bicubic 1, and C. Bicubic 2.
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FIGURE 4. 
Error measurements vs. high-resolution image. Values are mean ± SD. Black and white bars 

represent interpolated and super resolution images, respectively. The sample size was 

n=1,000 for short-axis (SAX) images, and n=500 for long-axis (LAX) images. *: P<0.001 

vs. Interpolation; #: P<0.001 vs. zero Padding.

Ashikaga et al. Page 19

IEEE J Transl Eng Health Med. Author manuscript; available in PMC 2015 February 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIGURE 5. 
Error measurements vs. high-resolution image (continued). Values are mean ± SD. Black 

and white bars represent interpolated and super resolution images, respectively. The sample 

size is n=1,000 for short-axis (SAX) images, and n=500 for long-axis (LAX) images. *: 

P<0.001 vs. Interpolation; #: P<0.001 vs. zero Padding.
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FIGURE 6. 
Super resolution applied to patient images: short-axis images. Original, low-resolution 

images of patients A and B with clinical standard spatial resolution were interpolated (zero 

padding or Bicubic 1) to scale up by a factor of 4. Super resolution was applied to the 

interpolated image. The bottom row represents the absolute difference in SI between the 

interpolated image and the super resolution image, as in Fig. 3. Note sharper geometric 

features in super resolution images (e.g. edges, endocardial border with blood pool).
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FIGURE 7. 
Super resolution applied to patient images: long-axis images. See the legend of Fig 6.
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