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Pediatric low-grade gliomas (PLGG) represent the most frequent primary brain tumors in 

children. Despite their low growth rates, a subset may progress or cause substantial 

morbidity when located in critical brain regions where aggressive surgical resections are not 

possible. Conventional treatments for young children with unresectable PLGG have avoided 

radiation therapy due to the significant effects of radiation on the developing brain [1]. 

Chemotherapy using either carboplatin/vincristine or a lomustine-based regimen is the 

treatment of choice in the first-line setting [2]. The majority of patients will achieve stable 

disease or a reduction in tumor size with these low-intensity chemotherapy regimens. A 

subset of these patients will not have tumor regrowth, probably due to a process of oncogene 

and chemotherapy-induced senescence [3]. However, approximately 50% of patients will 

have tumors that start to grow again or are refractory to primary therapy [2], underscoring 

the need to develop new therapeutic options for patients with PLGG.

The development of high-throughput molecular analysis and next-generation sequencing 

platforms have led to an unparalleled dissection and discovery of key somatic genetic 

alterations underlying tumorigenesis. These studies have proven valuable for the study of 

cancer and have highlighted novel possibilities for rational therapeutic targeting of PLGG 

(reviewed in [4]). One critical pathway that has been highlighted in PLGG specifically using 

high-resolution techniques is the MAPK pathway. In fact, one recent study demonstrated 

activating mutations in components of this pathway in essentially 100% of pilocytic 

astrocytomas [5], the most frequent PLGG subtype. The predominant molecular alteration 

leading to MAPK pathway activation is duplication of the BRAF gene segment encoding for 

the kinase domain, usually resulting in a BRAF–KIAA1549 fusion [6–8]. Therapeutic 

targeting of this pathway has met with some success in cancer. However, responses in well-
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studied tumor types (e.g., melanoma) are transient and resistance usually develops. 

Furthermore, it is critical to think about the specific molecular abnormality present when 

planning treatments, since a paradoxical increase in cell growth and MAPK activation may 

be triggered when cells containing wild-type BRAF or BRAF fusions are treated with 

inhibitors of other BRAF mutant proteins (e.g., BRAF V600E) [9].

The PI3K–mTOR pathway is a key signaling pathway that has generated significant 

excitement in oncology because inhibitors of the pathway (i.e., rapamycin and its analogs) 

are currently available for therapeutic purposes. Novel strategies for targeting mTOR are 

now in preclinical and clinical studies [10]. At the cellular level, mTOR can exist as part of 

two multiprotein complexes that are distinct in function and response to rapamycin: 

mTORC1 and mTORC2. Activation of mTORC1 (rapamycin sensitive) stimulates protein 

translation and cell growth. mTORC2 (rapamycin resistant) may participate in cell 

metabolism and cytoskeletal organization, although the extent of its role has not been 

completely characterized.

mTOR activation has been explored as a feature of brain tumors in general and pediatric 

gliomas specifically [11]. Key experimental observations have increasingly highlighted a 

role for this pathway in PLGG. For example, prior work by David Gutmann’s laboratory in 

Washington University, St Louis (USA) has demonstrated that the mTOR pathway is active 

in neurofibromin-deficient cells and NF1-associated gliomas, and that it mediates growth in 

astrocytes [12]. More recent work from the same laboratory also showed that mTOR 

mediates proliferation in murine stem cells containing BRAF fusions [13].

Although mTOR activity appears to be important for PLGG biology, there may be different 

mechanisms for activation, as well as variable activation in tumor subsets and individual 

tumors. Our prior work has highlighted an increase in immunohistochemical markers of 

PI3K–mTOR activation, as well as PTEN gene deletions, in the rare subset of pilocytic 

astrocytomas that develop anaplasia and an aggressive phenotype [14]. More recently, we 

studied the frequency of mTOR pathway activation in pilocytic astrocytoma and various 

PLGG subgroups using phospho-S6 immunohistochemistry [15]. Interestingly, moderate-to-

strong immunoreactivity for this marker was present in approximately 60% of PLGG. 

Further testing for markers of mTORC1 and mTORC2 complexes, and activation, 

demonstrated that mTORC2 was predominantly activated in tumors of the optic pathways, 

as well as those NF1 associated. These findings suggest that although mTOR pathway 

activation is frequent in PLGG, its context and extent varies by biologic subtype. PLGG is a 

relatively heterogeneous category, including pilocytic astrocytoma, diffuse astrocytoma, 

pleomorphic xanthoastrocytomas and subependymal giant cell astrocytoma, among others, 

as pathologic subtypes. In our recent study, we also tested the sensitivity of mTOR 

inhibition in two PLGG-derived cell lines and found different sensitivities for each line to 

mTORC1 inhibition. The less sensitive line (i.e., Res259) showed a pronounced increase in 

pAKT (s473) levels, consistent with compensatory mTORC2 activation, a known 

phenomenon that limits therapeutic efficacy with single mTORC1 inhibitors. This suggests 

that combination therapies and dual mTORC1–mTORC2 inhibition may be required in 

individual cases.
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Many of these studies suggest mTOR pathway inhibition as an attractive therapeutic strategy 

for PLGG and is timely given the exciting success of mTOR inhibition in patients with 

subependymal giant cell astrocytoma [16], a PLGG subtype almost defined at the molecular 

level by mTOR pathway activation. Recent clinical trials with small numbers of patients 

support the feasibility of mTOR pathway targeting for PLGG in general in the clinic. In a 

Phase I/II study using the mTOR inhibitor rapamycin and the tyrosine kinase inhibitor 

erlotinib focusing on recurrent PLGG, two NF-1 patients stabilized or had responses to the 

drug [17]. In preliminary results of a more recent trial that has just been completed of 23 

PLGG patients treated at progression with the mTOR inhibitor everolimus [18], a subset had 

partial responses or stable disease [19]. A study of everolimus in NF1-associated PLGG is 

ongoing [20]. A follow-up Phase II trial of everolimus in refractory PLGG is actively 

recruiting patients [21]. This study requires tumor tissue for correlative testing and 

hypothesizes that tumor activation of mTORC1, as evidenced by increased 

phosphoribosomal protein S6, will be associated with drug response. These studies are 

encouraging and suggest that mTOR inhibition may become an important component of 

PLGG treatment.

However, much remains to be learned about the optimal approaches to mTOR inhibition in 

the laboratory. What underlies the variability of mTOR activation in PLGG subsets? What 

combination of therapies should be attempted? What are the best biomarkers to identify 

susceptible and resistant tumors, and make sure that the patient receives biologically driven 

therapy? Is mTOR activation seen in non-BRAF-driven PLGG? Further work will require 

testing dual mTORC1/mTORC2 inhibitors or targeting of multiple pathways simultaneously 

to identify the optimal therapeutic approaches for PLGG. Now that we know more about the 

underlying biology of PLGG, better in vitro and in vivo models need to be developed and 

clever ways to bypass the practical problems associated with oncogene-induced senescence 

must be entertained in developing these models [3,22]. The development of genetically 

accurate models of aggressive PLGG will be essential for screening and deployment of 

novel therapies.
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