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Abstract

The aim of this work was to quantitatively model cross-sectional relationships between structural 

connectome disruptions caused by cerebral infarction and measures of clinical performance. 

Imaging biomarkers of 41 ischemic stroke patients (72.0±12.0 years, 20 female) were related to 

their baseline performance in 18 cognitive, physical and daily life activity assessments. Individual 

estimates of structural connectivity disruption in gray matter regions were computed using the 

Change in Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated 

using routinely collected clinical MRIs. Partial Least Squares Regression (PLSR) was used to 

predict various acute impairment and activity measures from ChaCo scores and patient 

demographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons 

correction were implemented to minimize over-fitting and Type I errors. Multiple linear regression 

models based on lesion volume and lateralization information were constructed for comparison. 

All models based on connectivity disruption had lower Akaike Information Criterion and almost 

all had better goodness-of-fit values (R2:0.26-0.92) than models based on lesion characteristics 

(R2:0.06-0.50). Confidence intervals of PLSR coefficients identified brain regions important in 

predicting each clinical assessment. Appropriate mapping of eloquent functions, i.e. language and 

motor, and replication of results across pathologies provided validation of this method. Models of 

complex functions provided new insights into brain-behavior relationships. In addition to the 

potential applications in prognostication and rehabilitation development, this quantitative 

approach provides insight into the structural networks underlying complex functions like activities 

of daily living and cognition. Quantitative analysis of big data will be invaluable in understanding 

complex brain-behavior relationships.
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1. Introduction

The relationship between human cognition, language, motor control and behavior and 

anatomical and physiological brain networks largely remains a mystery. Traditionally, 

clinical-pathological lesion mapping studies have provided a way for researchers to explore 

brain regions subserving specific functions[Broca, 1861; Wernicke, 1874] and, at times, 

more complex behaviors[Milner, 1982; Posner et al., 1988]. Neuroimaging techniques, i.e. 

diffusion and functional MRI, enable an unprecedented investigation of human brain 

anatomy and function. Recent works have used these in vivo techniques in lesion-mapping 

studies to enhance our understanding of eloquent cortical areas, such as those responsible for 

language and motor functions [Butler et al., 2014; Hope et al., 2013; Phan et al., 2010], 

general intelligence[Barbey et al., 2012; Gläscher et al., 2010] and neglect[Mort et al., 

2003]. However, the anatomical substrates underlying performance in more general tasks, 

like basic activities of daily living and more complex behaviors that arise from distributed 

brain networks, are not as fully understood. Machine learning techniques applied to 

neuroscientific “big data” sets will be central to understanding these complex brain-behavior 

relationships.

One such machine learning technique is the method of partial least squares regression 

(PLSR)[Wold, 1982]. PLSR has been applied in the field of neuroimaging in previous 

studies of brain-behavior relationships, mostly in the analysis of functional MRI[Hay et al., 

2002; Itier et al., 2004] (see Krishnan, et. al., 2011 for a review). For example, one 

study[Phan et al., 2010] investigated the impact of infarct size and location on motor and 

language function at a voxel-wise level using a logistic version of PLSR. This work and that 

of others [Kuceyeski et al., 2011; Menezes et al., 2007] have reinforced the well-established 

notion that the location of tissue damage is a key factor determining the attendant functional 

deficit, i.e. sign or symptom.

Advanced neuroimaging techniques and quantitative methods, e.g. voxel-based 

morphometry [Ashburner and Friston, 2000] and voxel-based lesion-symptom 

mapping[Bates et al., 2003], can be used to map voxel-wise parameters to behavior. 

However, it is not only a lesion's location in gray matter (GM) that is important since 

damage can also disrupt WM tracts that connect GM regions. This disruption of the brain's 

structural connections, in turn, affects function[Johansen-Berg et al., 2010; Puig et al., 2013] 

and possibly recovery[Crofts et al., 2011; van Hees et al., 2014]. Therefore, we hypothesized 

that models based on measures of the brain's structural connectome disruption due to a 

lesion's size and location will result in more accurate predictions of clinical assessments than 

a model based on lesion characteristics.

To test this hypothesis, we used the recently developed Network Modification (NeMo) Tool 

[Kuceyeski et al., 2013] in conjunction with PLSR to link patterns of disruption in the 
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brain's structural connectome to measures of various cognitive, motor, language and daily 

living activities in a cohort of patients with ischemic stroke, similar to [Kuceyeski et al., in 

press]. The NeMo Tool quantifies the amount of connectivity disruption that a given cortical 

or subcortical region has incurred due to a given WM lesion by using normal subjects’ 

structural connectivity information. This tool is attractive because it uses MRI sequences 

routinely obtained in the clinical setting after acute stroke and it does not suffer from the 

limitations of tractography techniques applied in patient data with tissue 

abnormalities[Pagani et al., 2007; Wheeler-Kingshott and Cercignani, 2009]. It also offers 

an easy way for radiologists to compute complex and physiologically relevant quantitative 

MRI-based biomarkers of structural network disruption in a variety of diseases. In 

conjunction with reducing the dimensionality of the data via PLSR, other statistical methods 

like cross-validation, bootstrapping and strict multiple comparisons correction of confidence 

intervals for model parameter across the entire study are implemented to minimize the risk 

of over-fitting and Type I errors often associated with models involving a large number of 

predictor variables.

2. Subjects and Methods

2.1 Data

Ninety-two subjects with acute stroke were admitted to the inpatient rehabilitation unit 

(IRU) at New York-Presbyterian (NYP) Hospital/Weill Cornell Medical Center between 

July 2012 and November 2013 and provided consent for participation in this IRB-approved 

study. Subjects were included if they had 1) ischemic stroke 2) MRI scans acquired at NYP 

within 14 days of stroke and 3) apparent hyper-intensities on diffusion-weighted images 

(DWI). Forty-one subjects (age: 72.0±12.0 years, 20 female) satisfied these inclusion 

criteria, see Supplemental Table I for cohort characteristics. Average time from stroke onset 

to imaging was 2.3±3.4 days and average time from stroke onset to clinical assessments 

(IRU admission) was 8.1±9.9 days. T1 and DWI were collected on 1.5 Tesla (34 subjects) or 

3.0 Tesla (7 subjects) GE Signa EXCITE scanners (GE Healthcare, Waukesha, WI, USA). 

The DWIs (on both 1.5 T and 3.0 T) were acquired axially via an echo-planar imaging 

sequence, with b = 1000 s/mm2 and b = 0 s/mm2 from 30 5-mm thick slices and 128×128 

matrix size, 1 mm in-plane resolution, 240 mm FOV, repetition time/echo time/inversion 

time = 8000 or 10000/100/0 ms. T1 scans were acquired axially (repetition time/echo time/

inversion time = 500/10/0 ms for 1.5 T and 1700/21/725 for 3.0 T) with a 256×256 matrix 

over 30 5.0-mm thick slices with 0.5 mm in-plane resolution and 240 mm FOV. One subject 

did not have a T1 available; the T2 scan was used instead for post-processing. The T2 was 

an axial sequence (repetition time/echo time/inversion time = 4000/85/0 ms) with a 256×256 

matrix over 30 5.0-mm contiguous partitions.

The National Institutes of Health Stroke Scale (NIHSS)[Brott et al., 1989] was administered 

acutely upon initial presentation to the hospital, and a battery of cognitive, functional and 

motor assessments were performed after transfer to the IRU. These tests, which assessed 

general stroke severity as well as motor, language, cognitive and overall neurological ability, 

included the Upper and Lower Extremity Motricity Indices (MI)[Collin and Wade, 1990], 

Functional Independence Measures (FIM)[Keith et al., 1987], Montreal Cognitive 
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Assessment (MOCA)[Nasreddine et al., 2005], and Symbol Digits Modality Test (SDMT)

[Smith, 2007] (see Table I). Since aphasia is an impairment related to injury in specific 

regions, we also included the Mississippi Aphasia Screening Test (MAST)[Nakase-

Thompson et al., 2005] as a partial validation for our methodology.

2.2 The NeMo Tool

The NeMo Tool infers changes to the structural connectivity network that may result from a 

given WM lesion by superimposing the patient's lesion mask on a database of 73 normal 

control tractograms in a common space (Montreal Neurological Institute, or MNI space). 

WM alteration masks in this cohort were created and processed as in our previous study 

[Kuceyeski et al., in press]. Specifically, masks indicating acute stroke injury as identified 

by apparent DWI hyperintensities were hand drawn; this method was shown to have a Dice's 

inter-rater similarity index of 0.70±0.12 (IQR: 0.64-0.83)[Kuceyeski et al., 2014]. The 

stroke subjects’ T1 scans were normalized to MNI space using linear followed by non-linear 

normalization in SPM8[Friston et al., 2006], and these transformations were then applied to 

the DWI mask with nearest neighbor interpolation. The NeMo Tool then estimated the 

amount of connectivity abnormalities each region incurred via the Change in Connectivity 

(ChaCo) score, i.e. the percent of streamlines connecting to a given GM region that pass 

through an area of infarct. Higher ChaCo scores correspond to a higher percent of estimated 

connectivity disruption experienced by a given region.

2.3 Partial Least Squares Regression and Bootstrapping

PLSR[Wold et al., 1984] was used to predict each of the various clinical assessments from 

the input variables, namely, subject age, gender, number of days between stroke and clinical 

assessment and ChaCo scores for 93 brain regions. We used a popular 116-region cortical 

and subcortical region atlas[Tzourio-Mazoyer et al., 2002] and averaged ChaCo values in 

the left cerebellum, right cerebellum and vermis for a total of 93 cortical and subcortical 

regions. PLSR is advantageous in situations where there exist many more input variables 

than available data points, as the data gets reduced to a parsimonious set of statistically 

relevant components. PLSR reduces the dimensionality of the input variables by combining 

them into new variables (components) that have maximum correlation with the outcome 

variable, followed by regression on the new variables. Each newly created component is 

independent of the others, making PLSR useful when input variables may be co-linear. Each 

input variable's component coefficient can be interpreted as relative weight that determines 

the contribution of that input variable to the given component. It must be noted that the sign 

of the component coefficient is not important except for relative comparison since they are 

invariant to reflection (sign flipping). The final number of components for the final model 

were chosen via jackknife cross-validation to minimize data over-fitting, and stability of the 

model was assessed using bootstrapping[Krishnan et al., 2011]. Confidence intervals for the 

regression coefficients were calculated using the bias corrected and accelerated percentile 

method[Efron, 1987]. If it did not include zero after correcting for multiple comparisons 

using the Bonferroni method[Dunn, 1961], it was considered a significant predictor for that 

assessment (see Supplemental Material for details).

Kuceyeski et al. Page 4

Hum Brain Mapp. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Comparison to models based on lesion volume and volume plus lateralization

We compared the PLSR model results to those of two different models: one based on only 

volume of the patient's infarct and the other based on volume as well as lateralization of the 

infarct. To do this, we created multiple linear regression models for each clinical assessment 

that were based on important subject characteristics (age, gender, and number of days 

between the stroke and assessment) in addition to 1) lesion volume (after log transformation 

for better scaling) and 2) log lesion volume and lateralization (left, right, bilateral). In the 

latter model, we added two binomial variables to represent the three categories of 

lateralization. Since there were only 4 or 6 input variables for the lesion volume models, we 

chose to use standard multiple linear regression in favor of the PLSR approach. Non-

categorical input and output variables were centered and standardized before performing the 

regressions. R2 values measuring goodness-offit and Akaike Information Criterion (AIC)

[Burnham and Anderson, 2002] measuring goodness-of-fit while considering complexity 

were compared between the two models. The AIC provides a way to relatively compare 

models that have different input variables; smaller values of AIC indicate the preferred 

model. All models and statistical tests were performed using relevant programs within 

Matlab.

3. Results

Among 41 study subjects, mean lesion size, as calculated after normalization to MNI space, 

was 22.4±41.3 cm3. Eighteen subjects had lesions affecting mostly right hemispheric 

connections (>70% of total ChaCo score came from right regions), 20 had mostly left 

(>70% of total ChaCo score came from left regions) and 3 had bilateral connectivity 

implications. ChaCo scores varied widely across the population due to the diverse location 

of the infarcts (see Figure 1A) and were more prominent in the hemisphere with the lesion. 

“Glassbrain” displays in Figure 1B are used to visualize mean ChaCo scores. Spheres are 

plotted at the center of the region they represent and colored based on classification (blue = 

frontal, magenta = parietal, red = temporal, cyan = subcortical and yellow = cerebellar). 

Sphere size is proportional to that region's mean ChaCo score (larger = more connectivity 

disruption). In general, areas with highest ChaCo included the subcortical areas of the 

caudate, putamen, globus pallidus, amygdala, thalamus and insula in addition to the right 

pre/post central gyri, left cerebellum and right frontal areas. Parietal and temporal regions 

were also affected but to a lesser degree. Mean ChaCo scores, represented as percents, along 

with standard deviations are given in Supplemental Table II.

Figure 2 and Table I summarize the goodness-of-fit (R2) measures for the linear regression 

models based on lesion volume (black circles), lesion volume and lateralization (green 

circles), the fixed-effects PLSR models based on ChaCo scores (cyan triangles) and the 

bootstrapped random effects PLSR models based on ChaCo scores for each clinical 

assessment (blue boxplots). The boxplots visualize the median (red line), interquartile range 

(blue box), range of the most extreme points not considered outliers (black whiskers) and 

outliers (red points). Fixed-effects PLSR models had higher R2 values (generally 2-3 times 

higher) and smaller AIC, indicating more accurate prediction of assessments than models 

based on lesion volume and lesion volume plus lateralization information. One exception 
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was in the prediction of motor function, where models including lesion volume and 

lateralization information performed similarly to the PLSR models. However, PLSR models 

still had lower AIC values due to the fewer number of predictor variables. Observed versus 

predicted values (one point per subject) for each fixed-effects PLSR model are given in 

Supplemental Figure I.

“Glassbrain” displays in Figures 3 and 4 visualize the PLSR regression coefficients for 

regional ChaCo scores. Here, sphere size is proportional to the relative impact of that 

region's ChaCo score on the clinical assessment. Blue spheres indicate regions whose 

ChaCo scores significantly increase the value of the predicted outcome (positive 

coefficients), while red spheres indicate regions that significantly decrease the value of the 

predicted outcome (negative coefficients). Black spheres indicate regions of non-significant 

influence. The PLSR model components for regional ChaCo are given in Supplemental 

Figures II and III, where red indicates negative and blue positive component coefficients. 

Regression coefficients and component summaries are given in Table I. Note: the NIHSS 

was negated before regression in order to have the same pattern as the other clinical 

assessments where higher numbers indicate better performance and smaller numbers 

indicate worse performance.

4. Discussion

This work has successfully converted neuroimaging observations of structural connectome 

changes accompanying stroke into a quantitative biomarker of acute post-stroke impairment 

based on routine MRI scans. This approach demonstrated robustness in that it produced 

similar lesion-dysfunction mapping results for the same functional assessment (the SDMT) 

across the two disparate pathologies of stroke (here) and multiple sclerosis [Kuceyeski et al., 

in press]. Additionally, confidence in the veracity of this method's results was bolstered by 

the fact that it was able to localize eloquent functions to the appropriate areas. Furthermore, 

this study provides insight into brain structural connectome-behavior relationships in 

functions that are less easily mapped, i.e. like activities of daily living and cognitive 

processes that likely depend on distributed brain networks. The presented method, after 

thorough validation, has the potential to reduce the risk of incorrect prognoses that can 

accompany subjective radiological assessment. Further modeling of recovery under various 

treatments could result in a quantitative approach for optimization of individualized 

rehabilitation plans.

4.1 Comparison to existing methods for extracting brain-behavior relationships

There exist many tools with which to quantify brain-behavior relationships such as voxel-

based morphometry [Ashburner and Friston, 2000], Tract-Based Spatial Statistics [Smith et 

al., 2006], MR volumetrics [Dale et al., 2002; Friston et al., 2006; Ivanov et al., 2005; 

Woolrich et al., 2009] and lesion-symptom mapping[Bates et al., 2003]. Brain atlases that 

divide WM and GM into anatomically coherent regions have been created[Hua et al., 2008; 

Oishi et al., 2009; Wakana et al., 2004] and used in lesion-symptom mapping [Hope et al., 

2013]. One drawback of lesion-mapping approaches is that it considers only the damaged 

area and does not explicitly take into account the distal affects of lesions in the context of 
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the structural connectome. To our knowledge, the ChaCo score is unique in that it links 

localized WM lesions’ with the corresponding affected GM regions, without having to 

perform tractography in abnormal subjects. There have been some studies that show 

relationships between structural connectivity and recovery by performing diffusion 

imaging[Puig et al., 2013] and tractography [Crofts et al., 2011; Johansen-Berg et al., 

2010]in individual patients. It is not known if tractography methods in these populations can 

overcome noise from pathology to provide physiologically meaningful connectivity 

information, see discussion in Crofts et al., [2011]. While these studies do provide important 

insights into the mechanisms of recovery in regions not obviously affected by the stroke 

lesion, it is not as accurate in areas proximal to the lesion. More importantly, it is difficult to 

perform high-quality diffusion MRI needed for these types of analysis in the acute clinical 

setting. We argue that the ChaCo score can be a good substitute for, and at times more 

accurate than, performing diffusion imaging and tractography in patient populations.

Many other studies have used lesion-mapping approaches to link structure to function [Hope 

et al., 2013; Mort et al., 2003]. However, the functions are usually restricted to specific 

domains like language, motor and some areas of cognition [Barbey et al., 2012; Butler et al., 

2014; Gläscher et al., 2010; Hope et al., 2013; Phan et al., 2010], in lieu of more complex 

and general behaviors like activities of daily living that may be integral when developing 

patient prognoses. Here, we present a machine learning approach that can assess brain-

behavior relationships across many different and quite variable domains, from specific to 

general, with strict controls for multiple comparisons correction. This method also considers 

the continuous nature of functional measures as opposed to dividing function into 

“impaired” and “not impaired” groups, as many studies have previously performed 

[Counsell et al., 2002; Pedersen et al., 1995].

4.2 Comparison to previously identified brain-behavior relationships

Uniformly, NeMo/PLSR models based on ChaCo scores had higher goodness-of-fit and 

lower AIC than models based on lesion volume. As anticipated, adding lateralization 

information to lesion volume models increased the goodness-of-fit for predictions of motor 

function to values similar to the NeMo/PLSR models. However, AIC values were still 

smaller in the NeMo/PLSR models due to the larger number of input variables. Many 

regions in eloquent cortices were identified as significant predictors of the known 

corresponding behavior and served to validate the NeMo/PLSR approach. For example, 

lesions in right motor areas predicted worse performance on left motricity indices and vice 

versa. Moreover, lesions affecting connectivity of Broca's areas, left frontal operculum and 

areas related to facial, tongue and lip movement were predictors of aphasia[Alexander et al., 

1990]. However, the current analysis may be particularly enlightening when determining the 

contribution of non-eloquent cortices to complex behaviors requiring more distributed brain 

input, such as attention, memory and daily life activities.

Areas with language and motor functions, central to the NIHSS, were significant predictors 

of individuals’ scores, with a slight emphasis on left regions. Higher age was associated with 

smaller NIHSS; in fact, there existed a positive and significant Pearson correlation between 

negated NIHSS and age (r = 0.32, p<0.05). This observation may be a result of the subject 
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selection criteria, as older subjects with higher NIHSS may not have met the criteria or 

survived to be admitted to the rehabilitation unit. We observed that lower NIHSS values 

were not as well predicted with our model (Supplemental Figure I). This is most likely due 

to the non-linear nature of the score for less severe strokes[Fonarow et al., 2012], which may 

be better predicted using logistic PLSR[Phan et al., 2010].

In general, coefficients that predicted a subject's FIM scores were less localized than other 

tests. This may be due to the complex nature of the tasks of the FIM, e.g. locomotion, eating, 

grooming, dressing, cognitive comprehension, expression, social interaction and problem 

solving, that likely require distributed input from various brain networks. In the prediction of 

FIM motor, ChaCo in orbital-frontal areas that deal with executive functions, emotion and 

decision-making[Fuster, 2008] had the largest coefficients. The right hippocampus, also 

important to FIM motor, was shown to be important in linking an action to its 

consequences[Elsner et al., 2002]. Other studies have identified the hippocampus as an 

important factor in navigation[Maguire, 1998] and locomotive control, particularly in the 

acute phase[Vanderwolf, 2001]. PLSR model predictions of FIM have a ceiling effect 

(Supplemental Figure I), indicating possible model insensitivity for these values. This may 

be remedied by adding to the model other important demographic information, e.g. previous 

independence level. The SDMT, requiring close visual attention and memory recall, was 

predicted by ChaCo in right occipital areas that deal with visual processing and attention. In 

a similar study of multiple sclerosis subjects, we also found using ChaCo scores that higher 

burden of T2-FLAIR hyperintesities in WM connecting to occipital and bordering parietal 

regions was significantly related to worse SDMT performance[Kuceyeski et al., in press]. 

This robust observation across pathology states, image parameters, and data collection sites 

not only strengthens our belief in the physiological finding, but also serves to validate the 

current methodology.

Significant predictors of the MOCA visual-spatial/executive subscore included parietal 

regions that are critical to spatial awareness, hand-eye coordination, vision and somato-

sensory processing[Bear et al., 2006]. This subtest involves drawing a clock and copying a 

cube, both of which require these functions in addition to executive planning. Previous 

work[Corbetta and Shulman, 2002] identified an inferior frontal-temporal-parietal network 

in the right hemisphere that was specialized in the detection of behaviorally relevant stimuli; 

this exact network contributed to prediction of attention scores. Regions that were 

significant predictors of language and abstraction subscores were medial, i.e. anterior and 

middle cingulate and medial frontal areas. Cingulate structures have been shown to play a 

role in emotion formation, learning and memory[Stanislav et al., 2013], which may explain 

their importance here. Bilateral pre-frontal regions and the globus pallidus that were 

significant in the delayed recall task have been shown to be activated in recall and 

recognition tasks[Cabeza et al., 2003]. Language, abstraction and delayed recall tasks, all 

having a central verbal component, had similar patterns of regression coefficients that did 

not involve left hemispheric language-related regions. Most likely these complex tasks 

require proper functioning of multiple distributed networks, i.e. attention, vision and 

memory, which makes mapping them more difficult. A larger and more varied population is 

needed to fully understand the relationship between structure and these complex functions. 
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Total MOCA was predicted with the lowest goodness-of-fit, possibly due to it being a 

combination of all subscores, each in turn being related to a localized, distinct network. 

Indeed, total MOCA regression coefficients appear distributed over the entire brain (Figure 

4), but only those in the right attention network survived significance testing.

There were some seemingly unanticipated results showing higher ChaCo was associated 

with better performance on certain clinical assessments. However, these instances most 

likely arise either from noise in the data and model (see Limitations), or are not surprising 

upon further inspection. For example, higher ChaCo in left motor areas was correlated with 

better scores on the left MI and vice versa. This phenomena can be explained thus: if a 

person had a lesion in the left motor area (higher ChaCo in left motor regions) then they 

most likely did not have a lesion in the right motor area and thus did not have impairment of 

left motor function (better scores on left MI).

4.3 Limitations and future work

Models built with too few data points are subject to over-fitting to that particular data set. 

Here, over-fitting was minimized by cross-validation and bootstrapping techniques for 

model building and performance assessment. Even so, models were limited by the 

characteristics of the available population. For example, if there was an important WM 

connection for a particular function that was not affected in any of the stroke subjects, then it 

was not detected by the model. Future work will be needed as more data becomes available. 

This analysis also did not investigate long-term recovery, which may be more important 

clinically. Detailed measures of recovery are currently being collected in these same subjects 

6 and 12 months post-stroke. Future work will focus on long-term prediction of recovery 

from MRI-based imaging biomarkers to inform prognosis and possibly rehabilitation plan 

development.

There are potential sources of error in the current processing pipeline that arises from the 

lesion masking process and varying image acquisition parameters over the population. There 

are strengths and weaknesses for automated thresholding methods versus the hand-drawn 

lesion approach used here, which was shown to have adequate Dice's inter-rater coefficient. 

With either method, some manual editing is needed to deal with phenomena like T2 shine 

through, partial volume effects and other possible artifacts. Since these are difficult to 

manage by purely automated analyses, there is some justification for the hand-drawn 

approach that is informed by image intensity but uses more of the available information. 

Therefore, we chose to manually outline the areas of hyperintensity on the DWI. Pre-

existing tissue abnormalities, including periventricular DWI hyperintensities from T2 shine-

through, were excluded when creating the lesion masks. While chronic pathologies may 

influence a subject's scores of clinical dysfunction, this relationship most likely depends on 

the age of the lesion. Since aging a chronic lesion is impossible and we wanted to focus on 

the influence of the acute lesion only, we decided to leave these variables out of the model. 

Future studies could aim to somehow quantify and characterize pre-existing abnormalities in 

addition to the acute infarct. In addition, T1- versus T2-based normalization effects were 

shown to be minimal in a study of similar patients [Kuceyeski et al., 2014]. Furthermore, a 

recent study illustrating bias introduced by the structure of the vascular tree and the 
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erroneous assumption of independence of individual voxels may present an issue for lesion-

mapping studies in stroke [Mah et al., 2014]. However, those particular issues are somewhat 

mitigated here since we investigate at network disruption on a regional basis, which is likely 

less influenced by such biased assumptions.

Some measures, in particular NIHSS, clinical assessments with categorical outcomes or 

those that tend to have a ceiling effect like motoricity index, may be better predicted with a 

non-linear approach like logistic PLSR. Because we wanted to exploit the continuous nature 

of the functional assessments, we did not implement such an approach here. In the future, 

however, we will investigate the application of these methods when predicting measures for 

which the standard PLSR model is determined inadequate.

The rise of big data and machine learning approaches in neuroscience through the 

cooperation of multiple collection sites will be central to understanding these complex brain-

behavior relationships. Similar to the 1000 connectomes project [Biswal et al., 2010] and the 

Human Connectome Project [Van Essen et al., 2012] that collect neuroimaging and 

behavioral data in healthy subjects, we advocate the creation of a “1000 Lesions Project”. 

This project would represent a large-scale effort to create big data sets that contain both 

neuroimaging and wide-ranging behavioral data for subjects with brain lesions. Subjects 

with ischemic stroke represent a sensible choice - such subjects are not rare, most likely 

have compromised regions that can be easily delineated, and already undergo imaging as a 

part of standard medical care. However, the generalizability of the mostly older stroke 

population and issues with bias in stroke lesion-mapping [Mah et al., 2014] may necessitate 

the use of other populations in the dataset. Multiple Sclerosis or Cerebral Autosomal-

Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) 

subjects could be included in the database to investigate consistencies across pathologies. 

Whatever the population, the aims of this proposed database would be two-fold. Behavioral 

data collected acutely can help us better understand brain-behavior relationships while 

longitudinally collected data of both dysfunction and intervention may help us to improve 

prognostic tools and possibly develop individualize treatment plans.

4.4 Conclusions

Here, we use a machine learning approach on a moderately sized data set of both 

neuroimaging and wide-ranging behavioral data to identify possible brain structural 

connectome-behavior relationships. We have shown that the NeMo Tool's quantitative 

assessment of structural connectome disruption due to infarct allows prediction of an 

individual's acute impairment and ability in several domains. Models of eloquent functions, 

i.e. language and motor, provided validation of the method, while models of more complex 

behavioral measures provided new insights into brain-behavior relationships. Robustness of 

this method was demonstrated in the replication of connectome-behavior relationships for a 

particular function across pathologies. The fact that this method can be applied on clinically 

acquired neuroimaging data gives it an advantage over other methods. In addition to the 

possible application of improving the accuracy of post-stroke prognoses, the current analysis 

offers the opportunity to gain insight into the neural substrates underlying complex 
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behaviors such as those associated with activities of daily living and specific areas of 

cognition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of lesion location and structural connectome disruption
(Panel A) A voxelwise heat map of the lesions across the population. (Panel B) Mean 

Change in Connectivity (ChaCo) score for each region over the population of 41 subjects. 

Each sphere is located at the center of the corresponding gray matter region and its size is 

proportional to that region's mean ChaCo score (bigger = more network disruption). Colors 

indicate regional assignment to larger grouping (blue = frontal, magenta = parietal, red = 

temporal, cyan = subcortical and yellow = cerebellar).
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Figure 2. The model fit summary for each clinical assessment
National Institutes of Health Stroke Scale (NIHSS), LE MI (lower extremity motricity 

index), UE MI (upper extremity motricity index), Mississippi Aphasia Screening Test 

(MAST), Functional Independence Measure (FIM), Symbol Digits Modality Test (SDMT) 

and Montreal Cognitive Assessment (MoCA). The R2 for the linear regression models based 

on lesion volume are represented by black circles, the R2 for the linear regression models 

based on lesion volume and lateralization are represented by green circles and the R2 for the 

fixed-effects PLSR models based on ChaCo scores are given by cyan triangles. The 

distribution of R2 values for the random-effects bootstrapped PLSR models based on ChaCo 

are given by boxplots that visualize the median (red line), interquartile range (blue box), 

range of the most extreme points not considered outliers (black whiskers) and outliers (red 

points).
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Figure 3. Glassbrain displays visualize the coefficients for the regional ChaCo scores in the 
PLSR models predicting each outcome variable
National Institutes of Health Stroke Scale (NIHSS), LE MI (lower extremity motricity 

index), UE MI (upper extremity motricity index), Mississippi Aphasia Screening Test 

(MAST), Functional Independence Measure (FIM) and Symbol Digits Modality Test 

(SDMT). Each sphere is located at the center of the gray matter region it represents. Sphere 

size is proportional to the relative impact of that region's ChaCo score on the outcome 

measure. Blue spheres indicate regions whose ChaCo scores significantly increase the value 

of the predicted outcome (positive coefficients), while red spheres indicate regions that 

significantly decrease the value of the predicted outcome (negative coefficients). Black 

spheres indicate regions of non-significant influence.
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Figure 4. Glassbrain displays visualize the coefficients for the regional ChaCo scores in the 
PLSR models predicting each subtest outcome in the Montreal Cognitive Assessment
Each sphere is located at the center of the gray matter region it represents. Sphere size is 

proportional to the relative impact of that region's ChaCo score on the outcome measure. 

Blue spheres indicate regions whose ChaCo scores significantly increase the value of the 

predicted outcome (positive coefficients), while red spheres indicate regions that 

significantly decrease the value of the predicted outcome (negative coefficients). Black 

spheres indicate regions of non-significant influence.
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