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Abstract
The qualitative dimension of gene expression data and its heterogeneous nature in cancerous
specimens can be accounted for by phylogenetic modeling that incorporates the directionality of
altered gene expressions, complex patterns of expressions among a group of specimens, and data-
based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double
algorithmic technique that includes polarity assessment that brings out the qualitative value of the
data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of
cancer gene expression. We demonstrate that polarity assessment of expression values into derived
and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously
expressed asynchronous genes; and allows data pooling as well as comparability of intra- and
interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional
classification of specimens into clades that reveal shared derived gene expressions (the
synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of
specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class
recognition; illustrates gene linkage and multiple developmental pathways; provides higher
concordance between gene lists; and projects the direction of change among specimens. Further
implication of this phylogenetic approach is that it may transform microarray into diagnostic,
prognostic, and predictive tool.

Introduction
Gene microarray has been employed in studying comparative gene expression in cancer,
genetic disorders, infections, drug response and interactions, as well as other biological
processes (Quackenbush, 2006), and its data used to generate cancer taxonomy (Bittner et al.,
2000; Golub, et al., 1999; Lossos and Morgensztern, 2006), diagnosis, prognosis (Beer, et al.,
2002), subtyping/class discovery (Alizadeh, et al., 2000; Beer et al., 2002), and biomarker
detection (Lossos and Morgensztern, 2006). However, after more than a decade since its
introduction and subsequent wide usage, microarray gene expression is still facing a number
of problems that are limiting its usefulness and potential (Harrison et al., 2007; Millenaar et
al., 2006; Wang, et al., 2005). There are the problems of reproducibility of measurements
between runs, instruments, or laboratories; the inability to perform intra- and interplatform
comparability, pooling, and insufficient concordance of gene lists. Furthermore, there is the
lack of an optimal bioinformatic tool to model the heterogeneity of gene expression of
cancerous specimens, and due to the multiphasic nature of cancer, statistically significant gene
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expressions are not necessarily biologically meaningful during all phases of cancer. Current
analytical paradigms such as phenetic clustering and maximum likelihood (including
Bayesian) have not resolved these issues (Abu-Asab et al., 2008), and there is a total lack of
an analytical paradigm that can transform microarray data into a multi-dimensional
bioinformatic tool useful for a clinical setting.

Cancer incipience, progression, and maintenance are all evolutionary processes at the cellular
and tissue levels; they mirror similar evolutionary processes at the population levels in that
they all involve genetic modifications within an individual, selective pressure, and clonal
propagation. Tumors derived from the same primary tumor become diverse and contain
heterogeneous patterns of gene expression after a brief time of divergence. Data heterogeneity
points out the existence of several phenomena: high genomic diversity in diseased specimens,
high mutation rate, and possibly multiple pathways of disease development. To efficiently and
accurately model these phenomena, biologically compatible methods of analysis should be
used.

In an attempt to resolve some of the above listed problems through biologically compatible
methodology and broaden the bioinformatic potential of the microarray technology, we
introduce a parsimony phylogenetic approach for microarray data analysis that is based on
outgroup comparison (a.k.a. polarity assessment) and maximum parsimony. This approach is
a double-algorithmic procedure where the data values are first polarized into derived or
ancestral depending on whether they fall within the range of the outgroup, which is usually
composed of normal healthy specimens, then the polarized data is processed with a maximum
parsimony algorithm. Maximum parsimony produces a phylo-genetic classification of the
specimens that recognizes monophyletic classes (clades) that are delimited by shared derived
gene expressions (the synapomorphies); it achieves that by finding the phylogenetic tree with
the minimum steps to construct.

Biologically meaningful modeling and interpretation of the data, and better correlation with
clinical characteristics, diagnosis, and outcomes are highly desired criteria in an analytical tool
(Allison et al., 2006; Beer, et al., 2002; Bittner, et al., 2000; Golub, et al., 1999). Clustering
specimens into unidimensional classification of discernable entities on the basis of overall
quantitative gene expression similarities has some serious drawbacks (Allison et al., 2006;
Lyons-Weiler et al., 2004), and appears to be incongruent with the nature of disease
development (Abu-Asab, et al., 2006; 2008). In this report, we are demonstrating that the use
of parsimony phylogenetic analysis of microarray data resolves the issues of gene-ranking
discrepancies, improves interplatform concordance, makes possible intra- and interplatform
comparability, eliminates biases in the gene linkage criteria, and casts gene expression profiles
into a biologically relevant and predictive model of class discovery.

A superior classification is one that summarizes maximum knowledge about its specimens,
reflects their true ontogenic relationships to one another, and offers predictivity (Farris,
1979; Golub, et al., 1999). The latter would especially be significant when the classification is
applied in a clinical setting for diagnosis, prognosis, or posttreatment evaluation. We are
utilizing parsimony phylogenetics because of its inherent ability to produce a robust
classification of relationships—class discovery; and its forecasting power to reveal the
characters of a specimen when its place in the classification is established—class prediction
(Albert, 2005b). Parsimony models the heterogeneity of cancerous microarray data without
any a priori assumptions (Goloboff and Pol, 2005; Siddall, 1998; Stefankovic and Vigoda,
2007). Additionally, a phylogenetic approach elucidates the direction of change among
specimens that leads to their molecular and cellular diversity: the presence of one or more
developmental pathway (Abu-Asab et al., 2008), and novel expressions that are involved in
the progression and maintenance of the disease.
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A strict parsimony phylogenetic analysis uses only shared derived values, synapomorphies, to
delimit a natural group of specimens within a clade (Wiley and Siegel-Causey, 1991). Shared
derived values of a gene among several specimens constitute a synapomorphy; therefore, only
a synapomorphy is indicative of their relatedness. Because synapomorphies define clades at
various grouping levels, a parsimonious phylogenetic classification reflects hierarchical shared
developmental pathways among a group of specimens and may reveal the presence of
subclasses with each having its own uniquely derived gene expression synapomorphies. In
biological and clinical senses, class discovery and prediction should be based on shared derived
gene expressions (i.e., synapomorphies). For example, a cancer class (a clade in phylogenetic
terminology) is delimited by one or more synapomorphies, and a cancerous specimen will be
placed in a class only if it shares the same synapomorphies with the members of the clade.

In this study, we are describing a double-algorithmic analytical method of microarray gene-
expression data based on polarity assessment algorithm, UNIPAL (Abu-Asab, et al., 2006)
where the polarized values can be used by a parsimony algorithm, MIX (Felsenstein, 1989) to
produce a phylogenetic classification of specimens. This approach brings in a systematic
solution to class discovery through phylogenetic classification whereby every class is delimited
by shared derived gene expressions—i.e., synapomorphies-delimited clades. Because such a
classification reflects the shared aberrations of gene expressions of the specimens, we expect
it to have a biological and clinical relevance, and to advance targeted treatments of disease.

Materials and Methods
Gene expression datasets

In order to demonstrate the applicability of parsimony phylogenetics to microarray gene
expression data, and test the results of interplatform concordance and comparability, we
downloaded three publicly available datasets of gene expression comparative studies, GDS484
(Hoffman et al., 2004), GDS533 (Quade et al., 2004), and GDS1210 (Hippo et al., 2002), from
NCBI’s Gene Expression Omnibus (http://www. ncbi.nlm.nih.gov/geo/). The GDS484 was
conducted on GPL96 (Affymetrix GeneChip Human Genome U133 Array Set HG-U133A),
and the other two studies on GPL80 (Affymetrix GeneChip Human Full Length Array
HuGeneFL). The GDS484 was comprised of normal myometrium (n = 5) and uterine
leiomyomas (n = 5) obtained from fibroid afflicted patients. The GDS533 study encompassed
normal myometrium (n = 4), benign uterine leiomyoma (n = 7), as well as malignant uterine
(n = 9) and extrauterine (n = 4) leiomyosarcoma specimens. The GDS1210 study included
expression profiling of 22 primary advanced gastric cancer tissues and 8 normal specimens.

Polarity assessment and parsimony analysis
Polarity assessment through outgroup comparison does not use comparison of means and folds
but rather it converts the continuous values into discontinuous ones through the assessment of
each gene’s values against that of the normals’ range and produces a matrix of polarized values
(0s and 1s). Our polarity assessment program, UNIPAL, compares independently each gene’s
value of experimental specimens against its corresponding range within the outgroup, and
scores each as either derived (1) or ancestral (0), so the matrix of gene expression values is
transformed into a matrix of polarized scores (0s and 1s).

We used all the expression data points of all specimens in the analysis without any a priori
selection of only a specific cluster of data. For polarity assessment (apomorphic [or derived]
versus plesiomorphic [or ancestral]), data was polarized with our customized algorithm
(UNIPAL) that recognized derived values of each gene when compared with the outgroups
(Abu-Asab et al., 2006). Outgroups here were composed of normal healthy specimens only.
Ideally, the outgroup should be large enough to encompass the maximum variation within

Abu-Asab et al. Page 3

OMICS. Author manuscript; available in PMC 2008 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.%20ncbi.nlm.nih.gov/geo/


normal healthy population. UNIPAL is freely available for noncommercial use from the
authors.

The phylogenetic analysis was carried out with MIX, the maximum parsimony program of
PHYLIP ver. 3.57c (Felsenstein, 1989), to produce separate parsimony phylogenetic analyses
for each dataset, and the inclusive matrix of the two sets (GDS533 and GDS1210), which
included all their specimens. MIX was run in randomized and nonrandomized inputs, and no
significant differences were observed between the two options.

Phylogenetic trees were drawn using TreeView (Page, 1996).

Interplatform concordance and comparability
To test interplatform concordance when analyzed parsimoniously, we compared the
synapomorphies of the two uterine leiomyoma datasets, GDS484 and GDS533, and recorded
the percentage of concordance.

To test interplatform comparability (i.e., whether datasets can be pooled together for a
parsimony analysis), we combined the polarized matrices of the two identical platform datasets,
GDS533 and GDS1210, processed the combined matrix by MIX, and compared the result to
their separate cladograms.

Results
The implications of a parsimonious analysis of the gene expression data are realized at several
aspects: the recognition and utilization of partially asynchronous genes and dichotomously
expressed asynchronous genes; the implications of outgroup selection and its effect on
significant gene listing, better interplatform concordance and comparability, as well as the
practical usefulness of the multidimensional cladograms.

Dichotomously expressed asynchronous (DEA) genes
Our analysis identified a specific punctuated pattern of gene expression that seemed to occur
only in a set of specimens where a gene’s expression values were around the normals’
distribution (over and underexpressed), but did not overlap with it (Table 1–Table 7). This
pattern has been only recognized once in the literature but was not named (Lyons-Weiler et
al., 2004); we termed this phenomenon dichotomous asynchronicity to reflect its two-tailed
distribution and deviation from the normal expression range.

Although t-statistic and fold-change may dismiss these asynchronous genes from the list of
differentially expressed genes, or misrepresent their significance (Lyons-Weiler et al., 2004),
an outgroup polarity assessment will assess each value as derived and let the parsimony
algorithm reveal its significance in relation to the rest of the genes. A parsimony phylogenetic
algorithm uses the polarized values of all genes to produce the most parsimonious
classification, the one with the lowest number of reversals and parallelisms (i.e., minimizes
multiple origins of expression states in hypothesizing the relationships among the specimens)
(Albert, 2005a; Felsenstein, 2004).

Through polarity assessment a large number of DEA genes were recognized. All these genes
had their expression values above and below that of the normal specimens’ range, that is,
derived in relation to outgroups thus pointing out the heterogeneity that exists among
specimens. DEA genes were found in all the three datasets studied here (Table 1–Table 7), and
were included within all the analyses.
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Most parsimonious cladograms
Parsimony analysis produced one most parsimonious cladogram (having the least number of
steps in constructing a classification of specimens) for the uterine GDS533 dataset (Fig. 1).
The topology of the tree showed one large inclusive clade that encompassed all of the
leiomyomas and leiomyosarcomas delimited by 32 synapomorphies (Table 1), a terminal clade
with nine sarcoma specimens, middle sarcoma clade with four specimens, five small basal
leiomyoma clades in tandem arrangement, followed by four basal normal clades.

The cladogram in Figure 1 showed that the leiomyoma specimens did not form a natural group
by themselves—they did not form their own clade separating them from the leiomyosarcomas,
and there were no synapomorphies circumscribing them as a clade when the ingroup was
composed of leiomyoma and leiomyosarcoma and the outgroup composed of the normals.
However, the leiomyomas shared 146 synapomorphies distinguishing them from the normals
(Table 2).

The 13 leiomyosarcoma specimens separated into a large terminal clade that was delimited by
20 synapomorphies in comparison with an outgroup composed of leiomyoma and normal
specimens (Table 3), and 29 synapomorphies derived in relation to leiomyomas only as an
outgroup (Table 4). Extrauterine sarcoma specimens did not assemble together, but rather were
scattered within the sarcoma clades (denoted by * on the cladogram in Fig. 1). When the
leiomyomas were removed from the comparison, there were 156 synapomorphies delimiting
the sarcomas (Table 5).

The various combinations of comparisons (several outgroup and ingroup compositions)
illustrate the effect of outgroup and ingroup selections on the results (Table 1–Table 5). These
comparisons also show the similarities and differences between two diseases that arise within
the same tissue, as well as the relationship between the leiomyoma and leiomyosarcoma; and
the possibility of the latter arising within leiomyoma.

For the gastric dataset, GDS1210, parsimony analysis produced one most parsimonious
cladogram (Fig. 2). The cladogram topology showed two terminal clades with six and five
specimens, respectively, and a tandem arrangement of six small clades with the largest having
three specimens. The inclusive gastric cancer clade was circumscribed by 34 synapomorphies
(Table 6). In a list by list comparison, our 34 identified synapomorphies for the gastric cancer
overlapped only with one common gene (CST4) from the gene list of the authors of the study
(Hippo et al., 2002).

Interplatform concordance
Testing of interplatform concordance was carried out by comparing the two lists of
synapomorphies obtained from two leiomyoma studies, GDS484 and GDS533 (comparison
results are summarized in Table 7 and Table 8). Out of the ~22,000 genes in the GDS484
dataset, our analysis produced a total of 1485 synapomorphic genes circumscribing the
leiomyoma specimens. Although the leiomyomas of the GDS533 were delimited by 146
synapomorphies out of ~7,000 gene probes, a comparison between the two sets of leiomyomas’
synapomorphies produced 45 shared ones between the two (Table 7 and Table 8 ), a 31%
concordance in synapomorphies despite the sizable difference in the number of probes between
the two datasets, which is still better than the 12% concordance between the statistically
produced gene lists of the two published studies (Hoffman et al., 2004;Quade et al., 2004).

Furthermore, 48% concordance resulted when comparing the 32 synapomorphies of the
leiomyomas and leiomyosarcomas clade (GDS533; Table 1) with the 1485 synapomorphies
of the leiomyomas of GDS484 (Table 7); the clades’ synapomorphies overlapped as follows:
1/1 OE, 7/8 UE (except FOSB), and 8/23 DE, an 89% concordance within the OE and UE and
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35% within the DE. Additionally, there was 45% concordance between the 32 synapomorphies
of the leiomyomas and leiomyosarcomas clade and the gene list of Quad et al. (2004) (Table
8).

However, a lower concordance was obtained when comparing the phylogenetic
synapomorphies against statistically generated gene lists. The synapomorphies of leiomyomas
(GDS533; Table 2) showed 18% concordance (4/25 OE, 8/42 UE) with the 78 significant genes
of Hoffman et al. (2004; GDS484, gene list produced by fold change), and 16.5% (5/25 OE,
6/42 UE) with the 146 genes of Quad et al. (2004; GDS533, gene list produced by an F statistic).
This was higher than the concordance between the two gene lists of the published uterine
studies, 12% (3/25 OE, 5/42 UE). The two studies had no mention of DE genes.

Data pooling and interplatform comparability
Data pooling and interplatform comparability was carried out on the combined polarized
matrices of the gastric (GDS1210) and uterine (GDS533) datasets. Their inclusive parsimony
analysis produced one most parsimonious cladogram (Fig. 3). Its topology showed a total
separation of the gastric cancer from the uterine leiomyoma and sarcoma specimens into two
large clades. However, the two types of cancers shared 16 synapomorphies that delimited a
clade composed of all the gastric and uterine specimens (Table 9).

The resulting inclusive cladogram (Fig. 3) showed an almost total agreement with the single
type cladograms (Fig. 1 and Fig 2), indicating a successful pooling of datasets. However, there
was a slight variation in the topology of minor branches between the cladogram of Figure 2
and the inclusive one of Figure 3. These slight differences are most likely due to the increased
number of normal specimens that were used in outgroup of the inclusive cladogram. Outgroup
size used here was by no means ideal; the larger the membership of the outgroup the more
stable the topology of the generated cladogram (Graybeal, 1998).

Discussion
Microarray data analysis aims to identify differentially expressed genes, and subsequently
characterize genetic patterns, classify specimens accordingly, and point out potential
biomarkers. However, most of the problems that are currently associated with microarray
analysis arise from using only the quantitative aspect of the data (the absolute continuous data
values of gene expression) to carry out parametric statistical analysis. Such a statistical analysis
forecasts gene linkage on the basis of quantitative correlation and not expression pattern, and
lacks the power to recognize and utilize specific gene expression patterns such as dichotomous-
expression and partial asynchronicities (Abu-Asab et al., 2008; Allison et al., 2006). This
results in discrepancies that affect which genes are considered differentially expressed by the
two main ranking criteria for generating gene lists, the t-test and fold change (Guo 2006). Our
phylogenetic analysis supports a qualitative approach where the directionality of expression is
the first step to designate the expression value as significant, followed by parsimony search to
plot a classification of specimens with the smallest number of steps that explains the data’s
distribution pattern.

This parsimonious analysis produced higher interplatform concordance than the gene lists
generated with t-test and fold change (Table 7 and Table 8), and allowed the pooling and
comparability of two independent experiments. Such results confer reliability to a qualitative
parsimonious approach to analyzing gene expression data. Table 10 summarizes the major
characteristics of a parsimony phylogenetic approach.

In addition to its evident scientific applications, a phylogenetic analysis as outlined here has
clinical implications as well. Indeed, the results of the three microarray gene expression
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datasets show the clinical potential for such parsimonious analysis; they produced a total
distinction of the sarcoma from the fibroid tissues (the leiomyomas), and these two classes
from gastric cancer. It also identified a number of synapomorphies for gastric and uterine
cancers, thus defining each as a separate disease entity with its unique shared derived
expressions (see also Meza-Zepeda et al. 2006, for further support of this point). Furthermore,
the combined analysis revealed the shared alterations of gene expression that are shared
between the uterine and gastric cancers (Table 9). This conclusion is supported by the presence
of these synapomorphic gene expressions as significant ones in other types of cancers as well:
bladder, breast, colorectal, ovarian, pancreatic, prostate, and renal (Guzińska-Ustymowicz et
al., 2008; Dong et al., 2007; Huang et al., 2006; Pilarsky et al., 2004).

Advantages of polarity assessment
There are several reasons for our preference of a combination of polarity assessment via
outgroup comparison and parsimony over other methods for the analysis of gene expression
microarray data, an approach that is also supported by other authors (Allison et al., 2006;
Kolaczkowski and Thornton, 2004). Parsimony phylogenetic analysis requires polarity
assessment for each data value to determine its novelty—whether it represents a change from
the normal state (Abu-Asab et al., 2008). We advocate that qualitative, and not only
quantitative, similarity is a better measure of common ontogenetic steps among specimens,
and that a correlation of genes based on similar quantitative expression is not necessarily
indicative of ontogenic relationships among genes.

Polarity assessment does not set an arbitrary stringency on gene selection, especially where
the distribution pattern is gene specific within a set of specimens (e.g., DE and partially
asynchronous genes), while other methods are not optimal for its assessment (Huang and Qu,
2006; Lyons-Weiler et al., 2004). Fold change and F and t-statistics may dismiss from the gene
list those genes with dichotomous expressions, although they are indicative of a unique
expression type and may account for some phenomena such as transitional clades located
between diseased and normal clades, and multiple developmental pathways in some disease
types (Abu et al., 2006; Lyons-Weiler et al., 2004). The gene lists of Table 1C–Table 7C show
a large number of DE asynchronous genes that were mostly not considered significant by other
methods (Hippo et al., 2002; Hoffman et al., 2004; Quade et al., 2004), or their dichotomous
mode was not noticed by the authors.

Because polarity assessment transforms the quantitative data into a qualitative matrix, it
reduces the data noise. The absolute quantitative nature of the microarray data restricts their
use and interpretation due to their range of inconsistencies between runs, platforms, and
laboratories. By polarizing each data set with its own set of outgroup specimens, the
inconsistencies of the experiment are eliminated since the polarization process is a comparison
between equals—data values generated at the same time. The benefit here translates into the
ability to pool a large number of experiments, carry out intra- and interplatform comparabilities,
and a better gene list concordance between experiments. However, as discussed below, polarity
assessment is sensitive to the choice and size of the outgroup specimens.

Selection and size of the outgroup
When conducting a polarity assessment, outgroup’s selection and its effective size are very
significant factors in correctly identifying synapomorphies, and therefore, optimally delimiting
the classes of diseased specimens. The composition of the outgroup specimens affects the
outcome of the analysis as demonstrated by the different combinations of outgroups that we
used to conduct polarity assessment for the leiomyosarcomas and leiomyomas (Table 1–Table
5). We selected these various arrangements of outgroups to demonstrate that their compositions
produced slightly different but still biologically meaningful results. It is important to note that
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the outgroup should be composed of only healthy specimens when the goal is to find out the
genes involved in disease inception, progression, and maintenance. As Table 1–Table 5 show,
variations of out/ingroup composition lead to variations in identifying synapomorphies. Also,
Figure 3 shows that the different types of cancers will separate into their respective clades when
the outgroup is composed of normal specimens; a process that can be utilized for diagnosis.

In our combined analysis (Fig. 3), the increase in outgroup size did not affect the major topology
of the cladogram, but rather the internal branching of some clades (normal and gastric cancer)
when compared with their single analysis (Fig. 1–Fig 2). Because increasing the number of
genes in the study does not have the same effect as enlarging outgroup size (Graybeal, 1998),
it is our conclusion that a successful analysis requires a good number of normal specimens to
be used as the outgroup. For microarray experiments to be meaningful and provide high
predictivity, the smallest number of normal specimens that encompasses the maximum
variation per population should be established and used in the analysis.

Inferring gene linkage through parsimony phylogenetic analysis
Whereas gene linkage of a clustering dendrogram is based on quantitative correlations between
differentially expressed genes, in a parsimony cladogram it is based on the distribution of
derived and ancestral gene expression states of all genes of all the specimens; that is, it is a
map of expression states—both ancestral and derived. It reflects the classification that has the
lowest number of steps as well as parallels and reversals to explain the distribution of expression
states among specimens.

Gene linkage here is based on the location of genes on the cladogram. The synapomorphies
below a node on the cladogram are the linked genes that are shared among the specimens above
that node. Because a parsimonious cladogram is hierarchical, every one of its nodes has its
synapomorphy( ies). This characteristic of a cladogram presents it as a map of linked genetic
alterations that produce the diversity/relatedness of its specimens and may also permit the
tracing of shared ontogenic pathways that are responsible for disease initiation and progression.

Improved interplatform concordance and comparability
Improved interplatform concordance is a criterion that will confer robustness and significance
on microarray as a valid experimental and clinical platform. Our tests of concordance by
comparing the lists of synapomorphies generated by polarity assessment of two experiments
produced better results than those of fold change and F-statistic, and better than between the
latter two (Table 8). When comparing the synapomorphies of a clade composed of leiomyomas
and leiomyosarcomas (GDS533) with the synapomorphies of leiomyomas (GDS484), we
obtained a high concordance of 89% within over- and underexpressed and 35% within
dichotomously expressed genes. The concordance between the two studies could have been
higher if the number of probes of the GDS533 was closer to GDS484–7,000 versus 22,000
(Hoffman et al., 2004;Quade et al., 2004). Furthermore, even a comparison of the
synapomorphies of two leiomyoma groups [GDS484 (1485 synapomorphies) and GDS533
(146 synapomorphies; Table 2)] produced 31% concordance between the two groups of
leiomyoma (45/146; Table 7). Nevertheless, this was a higher percentage than was produced
by statistical methods (12%).

Interplatform comparability has been difficult to carry out on microarray data because of data
inconsistencies between runs, experiments, and laboratories; however, with polarity
assessment, which converts the quantitative values of gene expression of every experiment
into a qualitative matrix, it is possible to combine several matrices and carry out intra-and
interplatform comparisons in a parsimonious phylogenetic sense. A phylogenetic interplatform
comparability of microarray data can be carried out if each dataset can be polarized separately
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with its own outgroup to produce its polarized matrix. Furthermore, when their probes are
identical, two or more polarized sets can be pooled together and analyzed as Figure 3 shows.
We have successfully pooled and analyzed two separately polarized datasets (GDS533 and
1210) of gastric cancer as well as uterine leiomyoma and leiomyosarcoma, where the two
datasets were prepared separately but on an identical gene chip platform, GPL80.

Implications on disease definition, profiling, diagnosis, and prognosis
Although it is assumed that each disease has its own unique developmental pathway(s) (Adsay
et al., 2002; Chung, 2000; Hayashi et al., 2004), thus far, the omics data has not been used to
prove this premise. Our analysis of two independently generated datasets that represent uterine
(GDS533) and gastric (GDS1210) cancers confirms that each of these two types of cancer is
a natural class of specimens (a clade) that is circumscribed by its own set of synapomorphies.
If this can be extended to other types of cancer, then each cancer can be considered a natural
clade with its unique gene expression identifiers—the synapomorphies.

There are several implications to this conclusion; the most obvious is its effect on the definition
of biomarkers. If the specimens of a type of cancer form a clade, then any suggested biomarker
has to be selected from the clades’ synapomorphies; otherwise, it will not be a universal
diagnostic test for all the specimens of this cancer. Some of the currently applied
immunohistomarkers are not universal synapomorphies. For example, the memberships of all
four clades of the gastric cancers (Fig. 2) did not correlate well with the specimens’
immunoreactivity to antibodies against p53, E-cadherin, and β-catenin, and a published two-
way clustering did not correlate any better (Hippo et al., 2002). The discordance between omics
biomarkers and most of the currently used immunohistological markers is a problem that can
be better addressed in a phylogenetic sense. The discordance between microarray and
immunohistochemical (IHC) biomarkers is due to the differing natures of these two types of
markers. Although gene-expression biomarkers are based on the averaging of the expression
values of the number of the cells used in the study (i.e., the cell homogenate), the IHC is based
on the pathologist reading of the percentage of positive cells in the stained section. The IHC
result is given as a percentage figure that could start at 10%, and is used to associate the
neoplasm with the normal tissue of origin. For an accurate and meaningful interpretation of
the gene expression analyses, a comparison between the two types of biomarkers should be
avoided, and the phylogenetic concept that is suggested here should be adopted.

A second implication is that a phylogenetic classification can be a clinical tool to carry out
early detection, diagnosis, grading, prognosis, and posttreatment evaluation; these tasks can
be realized through a parsimony analysis where the place of a specimen within the cladogram
(i.e., the classification) will indicate its pathologic status. Alternatively, the health status of a
specimen can be probed by using the synapomorphies as the biomarkers of the disease, that is,
through class prediction by assigning the specimen to a clade. Because the cladogram also
indicates the direction of change in gene expression among the specimens, it places those
specimens with the advanced number of derived gene expression patterns at the terminal end
of the cladogram, and places the specimens with the least number of gene expression changes
at the lower end of the cladogram, and it may be developed for use in grading, prognosis,
targeted treatment, and posttreatment assessment.

Additionally, the phylogenetic classification is a dynamic and seamless tool that will
incorporate a novel specimen by placing it in the proximity of its sister groups, depending on
the number of synapomorphies it shares with other members of a clade, without any radical
alteration to the topology of the cladogram.
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Resolving standing questions through parsimony phylogenetics: an example
Our analysis of uterine fibroids and sarcomas illustrates how a parsimony phylogenetic analysis
may confront some of the unresolved issues in bioinformatics and medicine. For example, one
of the persistent questions in pathology is the relationship between leiomyoma and
leiomyosarcoma (Quade et al., 2004). It has been reported that approximately 1% of
leiomyosarcoma may have arisen in preexisting leiomyoma (Lee et al., 2005). By analyzing
data of normal uterus, leiomyoma, and leiomyosarcoma, we demonstrated that the latter two
share a number of synapomorphies and form together an inclusive clade (Table 1 and Fig. 1
and Fig 3), and that leiomyosarcoma has an additional number of synapomorphies
distinguishing them from leiomyoma (Table 3). Although the leiomyoma specimens, when
analyzed alone, without the leiomyosarcoma, appear to have a large number of synapomorphies
(Table 2), these synapomorphies are not unique to leiomyoma. Leiomyoma as a group does
not form a clade within a comprehensive ingroup that includes the leiomyosarcoma; there is
not even one gene expression that is unique to the group itself in this context. Because it shares
with the leiomyosarcoma its synapomorphies, leiomyoma may be considered an incipient form
of leiomyosarcoma.

Conclusion
The application of phylogenetic analysis through polarity assessment and parsimony to several
gene expression microarray datasets provides the basis for a new paradigm to analyzing and
interpreting microarray data (Table 10). It offers an alternative to F and t-statistics and fold
change methods of generating differentially expressed gene listing and statistical gene linkage,
brings out a higher interplatform concordance, resolves interplatform comparability problems,
defines biomarkers as synapomorphies, circumscribes disease types as clades defined by
synapomorphies, and possibly transforms microarray into diagnostic, prognostic, and
posttreatment evaluation tool.
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FIG. 1.
A cladogram of a parsimony phylogenetic analysis of microarray gene-expression data
representing normal myometrium (n = 4), leiomyoma (n = 7), leiomyosarcoma (n = 9), and
extrauterine leiomyosarcoma (n = 4) specimens. The leiomyomas and leiomyosarcomas form
a clade defined by 32 synapomorphies (Table 1). The leiomyosarcoma specimens form a
terminal clade that is circumscribed by 20 synapomorphies (Table 3). Asterisk (*) denotes
extrauterine leiomyosarcomas.
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FIG. 2.
A cladogram of a parsimony phylogenetic analysis of gastric cancer and noncancerous
specimens. It shows a clade delineated by 34 synapomorphies (Table 6) encompassing all
cancer specimens.

Abu-Asab et al. Page 14

OMICS. Author manuscript; available in PMC 2008 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 3.
A cladogram representing a comparability analysis of the gastric (GDS1210) and uterine
(GDS533) datasets. The polarized matrices of the two datasets were pooled together and
processed by the parsimony phylogenetic algorithm, MIX. Each of the cancers (gastric and
leiomyosarcoma) forms its own clade, and the inclusive clade encompassing the two cancers
and leiomyomas is delimited by a set of synapomorphies (Table 9).
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TABLE 1
SYNAPOMORPHIES DEFINING A CLADE OF LEIOMYOMA AND
LEIOMYOSARCOMA SPECIMENS IN COMPARISON TO NORMAL
SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
  D00596 TYMS thymidylate synthetase OE[1, 2]
B. Underexpressed synapomorphic genes:
  L19871 ATF3 activating transcription factor 3 UE[1, 2]
  U62015 CYR61 cysteine-rich, angiogenic inducer, 61 UE[1, 2]
  X68277 DUSP1 dual specificity phosphatase 1 UE[1, 2]
  V01512 FOS v-fos FBJ murine osteosarcoma viral oncogene homolog UE[1], NS [2]
  L49169 FOSB FBJ murine osteosarcoma viral oncogene homolog B NS[1], UE[2]
  J04111 JUN v-jun sarcoma virus 17 oncogene homolog (avian) UE[1, 2]
  Y00503 KRT19 keratin 19 UE[1], NS [2]
  U24488 TNXB tenascin XB UE[1], UE,OE[2]
C. Dichotomously-expressed synapomorphic genes:
  M31994 ALDH1A1 aldehyde dehydrogenase 1 family, member A1 UE[1], NS[2]
  X05409 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) NS[1, 2]
  D25304 ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 NS[1, 2]
  K03430 C1QB complement component 1, q subcomponent, B chain NS[1], OE[2]
  U60521 CASP9 caspase 9, apoptosis-related cysteine peptidase NS[1, 2]
  M73720 CPA3 carboxypeptidase A3 (mast cell) NS[1, 2]
  HG2663-HT2759_at Cpg-Enriched DNA, Clone S19 (HG3995-HT4265) NS[1, 2]
  M14676 FYN oncogene related to SRC, FGR, YES NS[1, 2]
  M34677 F8A1 coagulation factor VIII-associated (intronic transcript) 1 OE,UE[2]
  U60061 FEZ2 fasciculation and elongation protein zeta 2 (zygin II) NS[1, 2]
  U86529 GSTZ1 glutathione transferase zeta 1 (maleylacetoacetate isomerase) NS[1, 2]
  HG358-HT358_at Homeotic Protein 7, Notch Group (HG358-HT358) NS[2]
  AB002365 KIAA0367 BCH motif-containing molecule at the carboxyl terminal region

1
NS[1], OE,UE[2]

  U37283 MFAP5 microfibrillar associated protein 5 NS[1, 2]
  HG406-HT406_at MFI2 antigen p97 (melanoma associated) identified by monoclonal antibodies

133.2 and 96.5
NS[1, 2]

  M55593 MMP2 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa
type IV collagenase)

NS[1], OE,UE[2]

  M76732 MSX1 msh homeobox homolog 1 NS[1, 2]
  L48513 PON2 paraoxonase 2 NS[1, 2]
  U77594 RARRES2 retinoic acid receptor responder (tazarotene induced) 2 NS[1, 2]
  M11433 RBP1 retinol binding protein 1 NS[1, 2]
  L03411 RDBP RD RNA binding protein NS[1], OE[2]
  Z29083 TPBG trophoblast glycoprotein NS[1, 2]
  S73591 TXNIP thioredoxin interacting protein NS[1, 2]

Synapomorphies include: OE gene, 8 UE genes, and 23 DE genes. Last column reports the status of the synapomorphies as described by [1] Hoffman et
al. (2004) and [2] Quade et al. (2004) in their significant genes’ lists. DE = dichotomously-expressed; NS = not significant; OE = overexpressed; UN =
underexpressed.
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TABLE 2
SYNAPOMORPHIES OF LEIOMYOMA SPECIMENS IN COMPARISON TO
NORMAL SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
  D16469 ATP6AP1 ATPase, H+ transporting, lysosomal accessory protein 1 NS[1, 2]
  U07139 CACNB3 calcium channel, voltage-dependent, beta 3 subunit NS[1], OE[2]
  M11718 COL5A2 collagen, type V, alpha 2 NS[1, 2]
  U18300 DDB2 damage-specific DNA binding protein 2, 48 kDa NS[1, 2]
  D38550 E2F3 E2F transcription factor 3 NS[1, 2]
  M34677 F8A1 coagulation factor VIII-associated (intronic transcript) 1 NS[1, 2]
  D89289 FUT8 fucosyltransferase 8 (alpha (1,6) fucosyltransferase) NS[1, 2]
  D86962 GRB10 growth factor receptor-bound protein 10 NS[1, 2]
  M32053 H19, imprinted maternally expressed untranslated mRNA NS[1, 2]
  U07664 HLXB9 homeobox HB9 OE[1, 2]
  D87452 IHPK1 inositol hexaphosphate kinase 1 NS[1, 2]
  U51336 ITPK1 inositol 1,3,4-triphosphate 5/6 kinase NS[1, 2]
  ABA002365 KIAA0367 NS[1], OE[2]
  D78611 MEST mesoderm specific transcript homolog (mouse) OE[1], NS[2]
  U19718 MFAP2 microfibrillar-associated protein 2 NS[1, 2]
  M55593 MMP2 matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72kDa

type IV collagenase)
OE[1, 2]

  U79247 PCDH11X protocadherin 11 X-linked NS[1, 2]
  L24559 POLA2 polymerase (DNA directed), alpha 2 (70 kDa subunit) NS[1, 2]
  M65066 PRKAR1B protein kinase, cAMP-dependent, regulatory, type I, beta NS[1, 2]
  D14694 PTDSS1 phosphatidylserine synthase 1 NS[1, 2]
  U24186 RPA4 replication protein A4, 34 kDa NS[1, 2]
  U85658 TFAP2C transcription factor AP-2 gamma (activating enhancer binding

protein 2 gamma)
NS[1, 2]

  D82345 TMSL8 thymosin-like 8 NS[1, 2]
  D85376 TRHR thyrotropin-releasing hormone receptor NS[1, 2]
  D00596 TYMS* thymidylate synthetase OE[1, 2]
B. Underexpressed synapomorphic genes:
  X0330 ADH1B alcohol dehydrogenase IB (class I), beta polypeptide NS[1, 2]
  M31994 ALDH1A1* aldehyde dehydrogenaes 1 family, member A1 UE[1], NS[2]
  X05409 ALDH2* aldehyde dehydrogenase 2 family (mitochondrial) NS[1, 2]
  L19871 ATF3* activating transcription factor 3 UE[1, 2]
  U60521 CASP9 caspase 9, apoptosis-related cysteine peptidase NS[1, 2]
  D49372 CCL11 chemokine (C—C motif) ligand 11 NS[1, 2]
  X05323 CD200 molecule NS[1, 2]
  M83667 CEBPD CCAAT/enhancer binding protein (C/EBP), delta NS[1, 2]
  U90716 CXADR coxsackie virus and adenovirus receptor NS[1, 2]
  M21186 CYBA cytochrome b-245, alpha polypeptide NS[1, 2]
  U62015 CYR61* cysteine-rich, angiogenic inducer, 61 UE[1, 2]
  Z22865 DPT dermatopontin NS[1, 2]
  X56807 DSC2 desmocollin 2 NS[1, 2]
  X68277 DUSP1* dual specificity phosphatase 1 UE[1, 2]
  V01512 FOS* v-fos FBJ murine osteosarcoma viral oncogene homolog UE[1], NS[2]
  L49169 FOSB FBJ murine osteosarcoma viral oncogene homolog B NS[1], UE[2]
  L11238 GP5 glycoprotein V (platelet) NS[1, 2]
  M36284 GYPC glycophorin C (Gerbich blood group) NS[1, 2]
  M60750 HIST1H2BG histone cluster 1, H2bg NS[1, 2]
  X79200 Homo spaiens mRNA for SYT-SSX protein NS[1, 2]
  X92814 HRASLS3 HRAS-like suppressor 3 NS[1, 2]
  M62831 IER2 immediate early response 2 NS[1, 2]
  J04111 JUN* v-jun sarcoma virus 17 oncogene homolog (avian) UE[1, 2]
  Y00503 KRT19* keratin 19 NS[1, 2]
  X89430 MECP2 methyl CpG binding protein 2 (Rett syndrome) NS[1, 2]
  U46499 MGST1 microsomal glutathione S-transferase 1 NS[1, 2]
  M93221 MRC1 mannose receptor, C type 1 NS[1, 2]
  M76732 MSX1* msh homeobox homolog 1 (Drosophila) NS[1, 2]
  S71824 NCAM1 neural cell adhesion molecule 1 OE[1], NS[2]
  X70218 PPP4C protein phosphatase 4 NS[1, 2]
  U02680 PTK9 protein tyrosine kinase 9 NS[1, 2]
  U79291 PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan

syndrome 1)
NS[1, 2]

  U77594 RARRES2* retinoic acid receptor responder (tazarotene induced) 2 NS[1, 2]
  M11433, X07438 RBP1* retinol binding protein 1, cellular NS[1, 2]
  L20859 SLC20A1 solute carrier family 20 (phosphate transporter), member 1 NS[1, 2]
  M97935 STAT1 signal transducer and activator of transcription 1, 91kDa NS[1, 2]
  J04152 TACSTD2 tumor-associated calcium signal transducer 2 NS[1, 2]
  X14787 THBS1 thrombospondin 1 NS[1, 2]
  U24488 TNXB* tenascin XB UE[1, 2]
  Z29083 TPBG* trophoblast glycoprotein NS[1, 2]
  X51521 VIL2 villin 2 (ezrin) UE[1], NS[2]
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  D87716 WDR43 WD repeat domain 43 NS[1, 2]
C. Dichotomously-expressed synapomorphic genes:
  ABCB1; ADRM1; AIM1; ALDH1A3; AMDD; ARHGEF6; ARL4D; ATP5B; Atp8a2; C1QB; CA9; CALM2; CTSB; CCRL2; CD52; CD99; CPA3;
DPYD; DSG2; Emx2; FEZ2; FLNA; FOXO1A; FYN; GAPDH; GNB3; GSTZ1; H1F0; H2-ALPHA; HBG2; Ubx, Notch1; Hox5.4; HTR2C; ICA1;
IGF2; INSR; ITGA6; ITGA9; KCNK1; KIAA0152; MAP1D; MATK; MBP; MDM4; MFAP5; MFI2 antigen p97; MLH1; MPZ; NDUFS1; NELL2;
NNAT; NOS3; NR4A1; OASL; ODC1; OLFM1; PKN2; PON2; PRMT2; PSMC3; PTR2; RANBP2; RBMX; RDBP; RHOG; SAFB2; SCRIB; SELFP;
SERPINF1; SMS; SPOCK2; ST3GAL1; THRA; TNXB; TTLL4; TXNIP; UPK2; XA; ZNF43

These comprise: 25 OE genes, 42 UE genes, and 79 DE genes.

Asterisk (*) indicates a synapomorphy for leiomyosarcoma as well. Last column reports the status of the synapomorphies as described by [1] Hoffman
et al. (2004) and [2] Quade et al. (2004) in their significant genes lists.
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TABLE 3
A CLADE OF ALL LEIOMYOSARCOMA SPECIMENS DEFINED BY 20
SYNAPOMORPHIES IN COMPARISON TO NORMAL AND LEIOMYOMA
SPECIMENS

A. Overexpressed synapomorphic genes:
  X54942 CKS2 CDC28 proteininase regulatory subunit 2 NS
  U68566 HAX1 HCLS1 associated protein X-1 NS
  L03411 RDBP RD RNA binding protein OE
  X59543 RRM1 ribonucleotide reductase M1 polypeptide NS
B. Underexpressed synapomorphic genes:
  D13639 CCND2, cyclin D2 UE
  D21337 COL4A6 collagen, type IV, alpha 6 UE
  HG2810-HT2921_at Csh2 chorionic somatomammotropin hormone 2 [Rattus norvegicus] NS
  L36033 CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) NS
  HG2663-HT2759_at EMX2 empty spiracles homolog 2 (Drosophila). Homeotic Protein Emx2 NS
  HG2663-HT2759_at Homeotic Protein Emx2 NS
  HG2810-HT2921_at HOXA10 homeobox A10 Expressed in the adult human endometrium UE
  AB002382 LOC284394 hypothetical gene supported by NM_001331 NS
  U69263 MATN2 matrilin 2 UE
  U85707 Meis1, myeloid ecotropic viral integration site 1 homolog (mouse) UE
  Z29678 MITF microphthalmia-associated transcription factor UE
  L35240 PDLIM7 PDZ and LIM domain 7 (enigma) NS
  D87735 RL14 ribosomal protein L14 NS
  L14076 SFRS4 splicing factor, arginine/serine-rich 4 UE
  J05243 SPTAN1 spectrin, alpha, nonerythrocytic 1 (alpha-fodrin) NS
C. Dichotomously-expressed synapomorphic genes:
  M33197 GAPDH glyceraldehyde-3-phosphate dehydrogenase NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list.
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TABLE 4
A CLADE OF ALL LEIOMYOSARCOMA SPECIMENS DEFINED BY 29
SYNAPOMORPHIES IN COMPARISON TO LEIOMYOMA SPECIMENS
ONLY (GDS533)

A. Overexpressed synapomorphic genes:
  X54941 CKS1B CD28 protein kinase regulatory subunit 1B OE
  X54942 CKS2 CD28 protein kinase regulatory subunit 2 NS
  J03060 GBAP glucosidase, beta; acid, pseudogene NS
  U78027 GLA galactosidase, alpha (associated w/Fabry’s) RPL36A ribosomal protein L36a NS
  Y00433 GPX1 glutathione peroxidase 1 NS
  U68566 HAX1 HCLS1 associated protein X-1 NS
  X59543 RRM1 ribonucleotide reductase M1 polypeptide NS
  U12465 RPL35 ribosomal protein L35 OE
  U67674 SLC10A2 solute carrier family 10 (sodium/bile acid cotransporter family), member 2 NS
B. Underexpressed synapomorphic genes:
  U87223 CNTNAP1 contactin associated protein 1 UE
D30655 EIF4A2 eukaryotic translation initiation factor 4A, isoform 2 UE
  L20814 GRIA2 glutamate receptor, ionotropic, AMPA 2 UE
  M10051 INSR insulin receptor NS
  D79999 LOC221181 hypothetical gene supported by NM_006437 NS
  D14812 MORF4L2 mortality factor 4 like 2 UE
  L36151 PIK4CA phosphatidylinositol 4-kinase, catalytic, alpha NS
  D42108 PLCL1 phospholipase C-like 1 NS
  L13434 RpL41 Ribosomal protein L41 NS
  HG921-HT3995_at Serine/Threonine Kinase, Receptor 2-2, Alt. Splice 3 NS
  D31891 SETDB1 SET domain, bifurcated 1 UE
  AB002318 Talin2 NS
  U53209 TRA2A transformer-2 alpha NS
  D87292 TST thiosulfate sulfurtransferase (rhodanese) NS
  M15990 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 NS
C. Dichotomously expressed synapomorphic genes:
  U56417 AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 (lysophosphatidic acid

acyltransferase, alpha)
NS

  M63167 AKT1 v-akt murine thymoma viral oncogene homolog 1 NS
  L27560 IGFBP5 insulin-like growth factor binding protein 5 NS
  U40223 P2RY4 pyrimidinergic receptor P2Y, G-protein coupled, 4 NS
  D76444 RNF103 ring finger protein 103 NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list
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TABLE 5
A CLADE COMPOSED OF ALL LEIOMYOSARCOMA SPECIMENS IS
DEFINED IN RELATION TO NORMAL SPECIMENS (GDS533)

A. Overexpressed synapomorphic genes:
  S78187 CDC25B cell division cycle 25B NS
  U40343 CDKN2D cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) NS
  X54942 CKS2 CDC28 protein kinase regulatory subunit 2 NS
  X79353 CDI1 GDP dissociation inhibitor 1 NS
  X14850 H2AFX H2A histone family, member X NS
  U51127 IRF5 interferon regulatory factor 5 NS
  U04209 MFAP1 microfibrillar-associated protein 1 NS
  U43177 MpV17 mitochondrial inner membrane protein NS
  U19796 MRPL28 mitochondrial ribosomal protein L28 OE
  U37690 POLR2L polymerase (RNA) II (DNA directed) polypeptide L, 7.6 kDa NS
  M22960 PPGB protective protein for beta-galactosidase (galactosialidosis) NS
  U09210 SLC18A3 solute carrier family 18 (vesicular acetylcholine), member 3 NS
  M86752 STIP1 stress-induced-phosphoprotein 1 (Hsp70/Hsp90-organizing protein) OE
  M26880 UBC ubiquitin C OE
  U43177 UCN urocortin NS
B. Underexpressed synapomorphic genes:
  M12963 ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide UE
  HG3638-HT3849_s_at Amyloid Beta (A4) Precursor Protein, Alt. Splice 2, A4(751) NS
  L28997 ARL1 ADP-ribosylation factor-like 1 NS
  Z49269 CCL14 chemokine (C—C motif) ligand 14 UE
  M92934 CTGF connective tissue growth factor UE
  M74099 CUTL1 cut-like 1, CCAAT displacement protein (Drosophila) NS
  M96859 DPP6 dipeptidyl-peptidase 6 UE
  U94855 EIF3S5 eukaryotic translation initiation factor 3, subunit 5 epsilon, 47kDa NS
  L25878 EPHX1 epoxide hydrolase 1, microsomal (xenobiotic) NS
  U60061-U69140 FEZ2 fasciculation and elongation protein zeta 2 (zygin II) NS
  X67491 GLUDP5 glutamate dehydrogenase pseudogene 5 NS
  HG4334-HT4604_s_at Glycogenin NS
  X53296 IL1RN interleukin 1 receptor antagonist NS
  X55740 NT53 5′-nucleotidase, ecto (CD73) UE
  X78136 PCBP2 poly(rC) binding protein 2 UE
  Z50194 PHLDA1 pleckstrin homology-like domain, family A, member 1 NS
  J02902 PPP2R1A protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), alpha isoform NS
  J03805 PPP2CB protein phosphatase 2, catalytic subunit, beta isoform NS
  U25988 PSG11 pregnancy specific beta-1-glycoprotein 11 NS
  M98539 PTGDS prostaglandin D2 synthase 21kDa (brain) UE
  X54131 PTPRB protein tyrosine phosphatase, receptor type, B NS
  M12174 RHOB ras homolog gene family, member B NS
  HG1879-HT3521_at RHOQ ras homolog gene family, member Q NS
  X98534 VASP vasodilator-stimulated phosphoprotein NS
  X51630 WT1 Wilms tumor 1 UE
  HG3426-HT3610_s_at Zinc Finger Protein Hzf-16, Kruppel-Like, Alt. Splice 1 NS
  M92843 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) UE
C. Dichotomously expressed synapomorphic genes:
  U80226 ABAT 4-aminobutyrate aminotransferase NS
  M14758 ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 NS
  M95178 ACTN1 actinin, alpha 1 NS
  U76421 ADARB12 adenosine deaminase, RNA-specific, B1 (RED1 homolog rat) NS
  U46689 ALDH3A2 aldehyde dehydrogenase 3 family, member A2 NS
  L34820 ALDH5A1 aldehyde dehydrogenase 5 family, member A1 (succinate-semialdehyde

dehydrogenase)
NS

  M84332 ARF1 ADP-ribosylation factor 1 NS
  D14710 ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac

muscle
NS

  X84213 BAK1 BCL2-antagonist/killer 1 NS
  U23070 BAMBI BMP and activin membrane-bound inhibitor homolog (Xenopus laevis) NS
  M33518 BAT2 HLA-B associated transcript 2 NS
  X61123 BTG1 B-cell translocation gene 1, anti-proliferative NS
  S60415 CACNB2 calcium channel, voltage-dependent, beta 2 subunit NS
  M19878 CALB1 calbindin 1, 28 kDa NS
  L76380 CALCRL calcitonin receptor-like NS
  M21121 CCL5 chemokine (C—C motif) ligand 5 NS
  D14664 CD302 CD302 molecule NS
  X72964 CETN2 centrin, EF-hand protein, 2 NS
  U66468 CGREF1 cell growth regulator with EF-hand domain 1 NS
  M63379 CLU clusterin NS
  X52022 COL6A3 collagen, type VI, alpha 3 UE
  L25286 COL15A1 collagen, type XV, alpha 1 NS
  S45630 CRYAB crystallin, alpha B NS
  X95325 CSDA cold shock domain protein A NS
  U03100 CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa NS
X52142 CTPS CTP synthase NS
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  D38549 CYFIP1 cytoplasmic FMR1 interacting protein 1 NS
  X64229 DEK DEK oncogene (DNA binding) NS
  M63391 DES desmin UE
  Z34918 EIF4G3 eukaryotic translation initiation factor 4 gamma, 3 NS
  U97018 EML1 echinoderm microtubule associated protein like 1 NS
  U12255 FCGRT Fc fragment of IgG, receptor, transporter, alpha NS
  U36922 FOXO1A forkhead box O1A (rhabdomyosarcoma) NS
  U91903 FRZB frizzled-related protein NS
  M33197 GAPDH glyceraldehyde-3-phosphate dehydrogenase NS
  U09587 GARS glycyl-tRNA synthetase NS
  U66075 GATA6 GATA binding protein 6 NS
  D13988 GDI2 GDP dissociation inhibitor 2 NS
  U31176 GFER growth factor, augmenter of liver regeneration (ERV1 homolog, S. cerevisiae) NS
  U28811 GLG1 golgi apparatus protein 1 NS
  U66578 GPR23 G protein-coupled receptor 23 NS
  L40027 GSK3A glycogen synthase kinase 3 alpha NS
  U77948 GTF2I general transcription factor II, i UE
  Z29481 HAAO 3-hydroxyanthranilate 3,4-dioxygenase NS
  D16480 HADHA hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-

Coenzyme A hydratase (trifunctional protein), alpha subunit
NS

  U50079 HDAC1 histone deacetylase 1 NS
  U50078 HERC1 hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1

(CHC1)-like domain (RLD) 1
NS

  M95623 HMBS hydroxymethylbilane synthase NS
  X79536 HNRPA1 heterogeneous nuclear ribonucleoprotein A1 NS
  L15189 HSPA9B heat shock 70 kDa protein 9B (mortalin-2) NS
  U05875 IFNGR2 interferon gamma receptor 2 (interferon gamma transducer 1) NS
  X57025 IGF1 insulin-like growth factor 1 (somatomedin C) UE
  HG3543- IGF2 insulin-like growth factor 2 (somatomedin A) NS
  U40282 ILK integrin-linked kinase NS
  X74295 ITGA7 integrin, alpha 7 NS
  X57206 ITPKB inositol 1,4,5-trisphosphate 3-kinase B NS
  AB002365 KIAA0367 UE
  J00124 KRT14 keratin 14 (epidermolysis bullosa simplex, Dowling-Meara, Koebner) NS
  X05153 LALBA lactalbumin, alpha- NS
  X02152 LDHA lactate dehydrogenase A NS
  HG3527-HT3721_f_at LHB luteinizing hormone beta polypeptide NS
  X86018 LRRC41 leucine rich repeat containing 41 NS
  L38486 MFAP4 microfibrillar-associated protein 4 NS
  D87742 MIA3 melanoma inhibitory activity family, member 3 NS
  M69066 MSN moesin NS
  AB003177 mRNA for proteasome subunit p27 NS
  U47742 MYST3 MYST histone acetyltransferase (monocytic leukemia) 3 NS
  M30269 NID1 nidogen 1 NS
  U80669 NKX3-1 NK3 transcription factor related, locus 1 (Drosophila) NS
  M10901 NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) NS
  M16801 NR3C2 nuclear receptor subfamily 3, group C, member 2 NS
  U52969 PCP4 Purkinje cell protein 4 UE
  J03278 PDGFRB platelet-derived growth factor receptor, beta polypeptide NS
  D37965 PDGFRL platelet-derived growth factor receptor-like NS
  Z49835 PDIA3 protein disulfide isomerase family A, member 3 NS
  U78524 PIAS1 protein inhibitor of activated STAT, 1 NS
  U60644 PLD3 phospholipase D family, member 3 NS
  D11428 PMP22 peripheral myelin protein 22 NS
  U79294 PPAP2B phosphatidic acid phosphatase type 2B NS
  S71018 PPIC peptidylprolyl isomerase C (cyclophilin C) NS
  X07767 PRKACA protein kinase, cAMP-dependent, catalytic, alpha NS
  X83416 PRNP prion protein (p27–30) NS
  M555671 PROZ protein Z, vitamin K-dependent plasma glycoprotein NS
  U72066 RBBP8 retinoblstoma binding protein 8 NS
  L25081 RHOC ras homolog gene family, member C NS
  U40369 SAT1 spermidine/spermine N1-acetyltransferase 1 NS
  M97287 SATB1 special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-

associating DNAs)
NS

  U83463 SDCBP syndecan binding protein (syntenin) NS
  U28369 SEMA3B sema domain, immunoglobulin domain (Ig), short basic domain, secreted,

(semaphorin) 3B
NS

  HG3925-ht4195_at SFTPA2 surfactant, pulmonary-associated protein A2 NS
  L31801 SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 1) NS
  M91463 SLC2A4 solute carrier family 2 (facilitated glucose transporter), member 4 NS
  U66617 SMARCD1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin,

subfamily d, member 1
NS

  U50383 SMYD5 SMYD family member 5 NS
  D43636 SNRK SNF related kinase NS
  D87465 SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 NS
  M61199 SSFA2 sperm specific antigen 2 NS
  U15131 ST5 suppression of tumorigenicity 5 NS
  U95006 STRA13 stimulated by retinoic acid 13 homolog (mouse) NS
  M74719 TCF4 transcription factor 4 NS
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  X14253 TDGF1 teratocarcinoma-derived growth factor 1 NS
  U52830 TERT telomerase reverse transcriptase NS
  U12471 THBS1 thrombospondin 1 NS
  U16296 TIAM1 T-cell lymphoma invasion and metastasis 1 NS
  L01042 TMF1 TATA element modulatory factor 1 NS
  U03397 TNFRSF9 tumor necrosis factor receptor subfamily, member 9 NS
  X05276 TMP4 tropomyosin 4 UE
  HG4683-HT5108_s_at TRAF2 TNF receptor-associated factor 2 NS
  U64444 UFD1L ubiquitin fusion degradation 1 like (yeast) NS
  U39318 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast) NS
  X59739 ZFX zinc-finger protein, X-linked NS

Last column reports the status of the synapomorphies as described by Quade et al. (2004) in their significant genes list
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TABLE 6
A LIST OF 34 SYNAPOMORPHIES DEFINING A CLADE COMPOSED OF
ALL GASTRIC CANCER SPECIMENS (GDS1210)

A. Overexpressed synapomorphic genes:
  X81817 BAP31 mRNA No
  D50914 BOP1 block of proliferation 1 No
  X54667 CST4: cystatin S MGC71923 Yes
  L17131 HMGA1 high mobility group AT-hook 1 No
  D63874 HMGB1 high-mobility group box 1 No
  D26600 PSMB4 proteasome (prosome, macropain) subunit, beta type, 4 No
  U36759 PTCRA pre-T-cell antigen receptor alpha PT-ALPHA, PTA No
  X89750 TGIF TGFB-induced factor (TALE family homeobox) No
B. Underexpressed synapomorphic genes:
  X76342 ADH7 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide ADH-4 No
  M63962 ATP4A ATPase, H+/K+ exchanging, alpha polypeptide ATP6A No
  M75110 ATP4B ATPase, H+/K+ exchanging, beta polypeptide ATP6B No
  J05401 CKMT2 creatine kinase, mitochondrial 2 (sarcomeric) No
  L38025 DNTFR ciliary neurotrophic factor receptor No
  M61855 CYP2C9: cytochrome P450, family 2, subfamily C, polypeptide 9 CPC9 No
  D63479 DGKD: diacylglycerol kinase, delta 130kDa DGKdelta, KIAA0145, dgkd-2 No
  X99101 ESR2 estrogen receptor 2 (ER beta) No
  U21931 FBP1 fructose-1, 6-bisphosphatase 1 No
  HG3432-HT3618_at Fibroblast Growth Factor Receptor K-Sam, Alt. Splice 1 No
  M31328 GNB3 guanine nucleotide binding protein (G protein), beta polypeptide 3 No
  D42047 GPD1L glycerol-3-phosphate dehydrogenase 1-like No
  M62628 Human alpha-1 Ig germline C-region membrane-coding region, 3′end No
  D29675 Human inducible nitric oxide synthase gene, promoter and exon 1 No
  M63154 Human intrinsic factor mRNA No
  Z29074 KRT9 keratin 9 (epidermolytic palmoplantar keratoderma) EPPK, K9 No
  X05997 LIPF lipase, gastric No
  U50136 LTC4S leukotriene C4 synthase MGC33147 No
  X76223 MAL: mal, T-cell differentiation protein No
  U19948 PDIA2 protein disulfide isomerase family A, member 2 No
  L07592 PPARD peroxisome proliferative activated receptor, delta No
  U57094 RAB27A, member RAS oncogene family No
  AC002077 SLC38A3 solute carrier family 38, member 3 No
  Z29574 TNFRSF17 tumor necrosis factor recepter superfamily, member 17 No
C. Dichotomously expressed synapomorphic genes:
  D00408 CYP3A7 cytochrome P450, family 3, subfamily A, polypeptide 7 CP37, P450-HFLA No
  U29092 SELENBP1 selenium binding protein 1 No

Synapomorphies include: 8 OE genes, 24 UE genes, and 2 DE genes in comparison with the normal specimens. Last column reports the status of the
synapomorphies as described by Hippo et al. (2002). Yes = listed; No = not listed.
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TABLE 7
INTERPLATFORM CONCORDANCE

GDS533 GDS484

A. Overexpressed synapomorphic genes:
  a. Identical Synapomorphies
  DDB2 DDB2
  FUT8 FUT8
  MEST MEST
  TMSL8 TMSL8
  TYMS TYMS
  b. Homologous synapomorphies
  CACNB3 CACNA1C
  COL5A2 COL4A5
  KIAA0367 KIAA0101
  PRKAR1B PRKACB
B. Underexpressed synapomorphic genes:
  a. Identical synapomorphies
  ALDH1A1 ALDH1A1
  ALDH2 ALDH2
  ATF3 ATF3
  CEBPD CEBPD
  CXADR CXADR
  CYR61 CYR61
  DUSP1 DUSP1
  FOS FOS
  HRASLS3 HRASLS3
  IER2 IER2
  JUN JUN
  KRT19 KRT19
  RARRES2 RARRES2
  TACSTD2 TACSTD2
  TNXB TNXB
  VIL2 VIL2
  b. Homologous synapomorphies
  CASP9 CASP4
  CYBA CYB5R1
  FOSB FOS
  JUNB JUN
  PPP4C PPP1R10
  SLC20A1 SLC18A2
  THBS1 THBD
  WDR43 WDR37
C. Dichotomously expressed synapomorphic genes:
  a. Identical synapomorphies
  CTSB CTSB
  b. Homologous synapomorphies
  ARL4D ARL4C
  FOXO1A FOXJ3
  GNB3 GNB1L
  ITGA6 ITGA2B
  ITGA9 ITGA2B
  KCNK1 KCNJ5
  MFAP5 MFAP4
  PSMC3 PSMC2
  SELP SELL
  TXNIP TXNDC13
  ZNF43 ZNF259P

A list of overlapping identical (22) and homologous (23) synapomorphic genes in leiomyoma specimens of GDS484 and GDS533. These include: 9 OE,
24 UE, and 12 DE.
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TABLE 8
SUMMARY OF CONCORDANCE RESULTS BETWEEN GDS484 AND GDS533

GDS533 (Fibroids and Leiomyosarcomas)

Quad et al.
Gene List

Abu-Asab et al.
Synapomorphies for

Fibroids (146)

Abu-Asab et al.
Synapomorphies for

Fibroids and
Leiomyosarcoma (32)

GDS484 (Fibroids) Hoffman et al. Gene List 12% 18% 19.3%
Abu-Asab et al.
Synapomorphies for
Fibroids (1485)

20% 31% 48%

GDS533 Quad et al. Gene List N/A 16.5% 45%

The comparisons were carried out in various combinations: statistical versus statistical, phylogenetic versus statistical, and phylogenetic versus
phylogenetic. N/A: not applicable (number of synapomorphies).
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TABLE 9
INTERPLATFORM COMPARABILITY

ID Gene

U52522 ARFIP2 ADP-ribosylation factor interacting protein 2 (arfaptin 2)
U51478 ATP1B3 ATPase, NaK transporting, beta 3 polypeptide
X66839 CA9 carbonic anhydrase IX
M60974 GADD45A growth arrest and DNA-damage-inducible, alpha
X01677-M33197 GAPDH glyceraldehyde-3-phosphate dehydrogenase [two readings]
X14850 H2AFX H2A histone family, member X
U52830 Homo sapiens Cri-du-chat region mRNA, clone CSC8
U25138 KCNMB1 potassium large conductance calcium-activated channel, subfamily M, beta member 1
D21063 MCM2 minichromosome maintenance deficient 2
L38486 MFAP4 microfibrillar-associated protein 4
D87463 PHYHIP phytanoyl-CoA 2-hydroxylase interacting protein
X02419 PLAU plasminogen activator, urokinase
L48513 PON2 paraoxonase 2
U29091 SELENBP1 selenium binding protein 1
Z19083 TPBG trophoblast glycoprotein
M25077 TROVE2 TROVE domain family, member 2

A list of 16 synapomorphies defining a clade composed of all gastric cancer (GDS1210) as well as uterine sarcoma and leiomyom specimens (GDS533).
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TABLE 10
SUMMARY OF THE CHARACTERISTICS OF A PARSIMONIOUS PHYLOGENETIC ANALYSIS THROUGH
POLARITY ASSESSMENT OF GENE-EXPRESSION VALUES FOLLOWED BY A MAXIMUM PARSIMONY
ANALYSIS

• Offers a qualitative assessment of microarray gene expression data by sorting expression values into derived or ancestral.
• Identifies synapomorphies (shared derived expression states) and uses them to delineate clades (class discovery). Synapomorphies are

also the potential biomarkers.
• Searches for the most parsimonious classification of specimens; the one with minimum number of steps, reversals, and parallels.
• Efficiently models the heterogeneous expression profiles of the diseased specimens. Those with fast mutation rate such as cancer.
• Incorporates gene expressions that violate normal distribution in a set of specimens—e.g., dichotomously expressed genes.
• Reduces the sensitivity to experimental noise.
• Permits pooling of multiple experiments.
• Allows intra and intercomparability of data.
• Produces higher concordance between gene lists than statistical methods (F & t-statistics and fold change).
• Offers a nonparametric data-based, not specimen-based, gene listing and gene linkage.
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