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Abstract

Being the largest and most visible organ of the body and heavily influenced by environmental 

factors, skin is ideal to study long-term effects of aging. Throughout our lifetime, we accumulate 

damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, 

impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. 

Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing 

incidence over the last several decades. Melanoma incidence is directly related to age, with 

highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this 

review, we will focus on UV-induced carcinogenesis and photo aging along with natural 

protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced 

injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active 

compound to protect the skin against UV injury and prevent aging symptoms by up-regulating 

melanin production. We will discuss its use as a topically-applied root-derived formulation of the 

Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been 

used in various Aryuvedic teas and therapeutic preparations.
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UV and solar radiation

Due to its anatomic location at the external boundary of the body, skin is exposed to a 

variety of environmental factors such as UV radiation that derives naturally from the sun. 

Solar UV exposure is a major causative factor for age-related changes such as skin cancer 

development. UV radiation is composed of UVA, UVB and UVC components based on 

photon wavelength with UVA having the longest wavelengths (315–400 nm), UVB being 
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mid-range (290–320 nm) and UVC being the shortest wavelengths (100–280 nm). Ambient 

sunlight is composed primarily of UVA (90–95%) and UVB (5–10%) energy, with most 

solar UVC absorbed by the ozone layer (Fig. 1).

Naturally occurring UV radiation is the environmental mutagen responsible for the largest 

percentage of environmentally induced skin pathologies, including erythema and 

inflammation, degenerative aging changes, and cancer [1]. Humans are exposed to UV 

radiation primarily as a consequence of unprotected exposure to sunlight [2]. UV radiation 

has many deleterious effects on cells [3–5]. UV radiation produces both direct and indirect 

DNA damage, and each can result in mutagenesis in skin cells. The DNA double helix can 

absorb energy from shorter-wave UV photons and undergo covalent modification. 

Neighboring pyrimidines are particularly vulnerable to direct UV damage at the 5–6 double 

bond position. When UV causes this bond to break, abnormal covalent interactions between 

adjacent thymines and/or cytosines can result. There are two main DNA lesions that result 

from UV-induced damage to the 5–6 double bond: (1) cyclobutane dimers formed from two 

covalent bonds between adjacent pyrimidines to form a ring structure, and (2) pyrimidine 

6-4 pyrimidone (6,4)- photoproducts that form upon reaction of the open 5–6 double bond 

with the exocyclic moiety of an adjacent 3' pyrimidine [6]. Both of these lesions distort the 

double helix and can lead to mutation, and an individual skin cell may accumulate up to 

100,000 such lesions from one day’s worth of sun exposure [7]. UV radiation also damages 

cellular macromolecules indirectly, through production of oxidative free radicals [8]. 

Several DNA modifications can result from oxidative injury, including 7,8-dihydro-8-

oxoguanine (8-oxoguanine; 8-OH-dG), which promotes mutagenesis (specifically GC-TA 

transversion mutations [9]. Both direct and indirect DNA changes interfere with 

transcription and replication, and render skin cells susceptible to mutagenesis. Much of solar 

UV energy is absorbed by stratospheric ozone, and the gradual depletion of stratospheric 

ozone over the last several decades has resulted in higher levels of solar UV radiation that 

strikes the surface of the Earth [10]. Increased ambient UV radiation from global climate 

change may be an important factor to explain the burgeoning prevalence of melanoma and 

skin cancer over the last several decades [11–14].

UVB is a well-characterized mutagen and inducer of skin cancers [15], but recent studies 

have implicated an increasing role of UVA as a carcinogen [16–18] likely through its pro-

oxidative effects and possibly through other mechanisms such as telomere shortening [19]. 

In addition, UVA is less able to induce melanin production compared to UVB, leaving the 

skin less able to protect itself against further UV insult [15, 19–22]. Increasing attention is 

being paid to the potential impact of UVA radiation to areas of the body rarely exposed to 

natural UV, including the vulva and oral mucosa, even focusing on differential cellular 

repair and apoptosis depending on anatomic site [23]. The role of UVA in melanoma 

formation is also suggested by the observation of rising melanoma incidence over the last 

several decades and sunscreen use in the 1980s when only UVB-blocking sunscreens were 

used.
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Factors contributing to UV exposure

Geographical variations such as altitude, latitude and urbanization all determine ambient UV 

strength. Because atmospheric particles such as dust or water droplets can scatter, reflect or 

otherwise interfere with UV photons, the more atmosphere sunlight has to traverse, the 

weaker its energy will be at the surface of the earth. At higher altitudes, with less 

atmosphere for sunlight to traverse before hitting land, there is higher exposure to UV and a 

higher risk for melanoma. There is a 2% increase in risk with every 10 meter rise in altitude 

[24] and in addition those living at altitudes over 1400 meters above sea level are at most 

risk for developing melanoma [25]. In addition to living in high altitudes, occupations 

routinely operating at high altitudes such as airplane pilots and mountain guides have a 

higher incidence of melanoma and precancerous lesions [26, 27].

UV strength is strongest at the equator because sunlight hits the earth most directly at the 

equator. Toward the poles, sunlight hits the earth obliquely and must pass through more 

atmosphere. Not surprisingly, there is a higher incidence of melanoma in locales closest to 

the equator, most especially among Caucasians [28] who are most UV-sensitive because of 

lower cutaneous melanin pigments, but also among lower-risk populations of darker skin 

tone [29]. In a study of the Norwegian Cancer Registry, decreased latitude by 10° was 

associated with a 2–2.5 increased risk of melanoma [30]. Another study of 5700 melanoma 

cases worldwide found a 1.5- fold increased risk when living at latitudes closer than 20° 

from the equator [31]. Importantly, though latitude risk for melanoma has been historically 

strong, recent studies suggest decreased correlation [32], or even an opposite trend. A 2012 

study of Northern Europeans, for example, showed an increase in melanoma incidence with 

increase in latitude beyond 50° north of the equator [33], perhaps due to the dramatic rise in 

artificial indoor tanning.

Urban-versus-rural lifestyle also seems to be important, with as much as a 50% increased 

melanoma risk in urban regions [34]. Urbanization may affect cancer risk by bringing 

together many independent risk factors such as occupational chemical exposure, social 

pressures regarding skin appearance, easy access to indoor tanning, and higher socio-

economic levels lending to increased use of indoor tanning and holiday travel [35]. The 

increase in urbanization worldwide and the increase in these activities may help explain the 

rise in melanoma rates for northern Caucasian populations that would otherwise not be 

exposed to natural risk factors such as latitude [24].

Age

UV exposure may account for up to 80% of visible signs of aging in the skin including dry 

appearance, scalping, wrinkling [15] and impaired pigmentation, and photoaging correlates 

with cancer risk. A 2012 study of Central Europeans, for example, showed those with early 

signs of wrinkling on the neck were over four times more susceptible to melanoma than the 

general population. Freckling on the back also showed over three times the risk [21]. 

Cutaneous photoaging and melanoma risk both correlate with age and UV exposure. The 

average age of melanoma diagnosis is about 55 and incidence varies worldwide from five to 

over 60 cases per 100,000 people per year [12]. Although melanoma is a malignancy mostly 
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diagnosed in the fifth and sixth decade of life, one fifth of cases occur in young adults [36, 

37]. It is important to note, however, that the UV exposure and accumulation of DNA 

damage that underlie melanoma formation begin with sun exposure early in youth, which is 

why sun protection in the pediatric years is so important. There is a significant correlation of 

melanoma risk with excessive sun exposure before age 10, perhaps contributed to by 

structural anatomical differences between the skin of children and adults making it easier for 

UV to penetrate [38]. Childhood UV exposure also increases the risk of young adult 

melanoma (melanoma under the age of 30) by over three times, showing how exposure can 

accelerate the process of carcinogenesis [39]. Furthermore, a new study published in 2014 of 

over three million people in Sweden showed that accumulation of UV damage begins as 

early as in the neonate, with melanoma incidence increased in those born in the spring and 

summer versus those born in the fall or winter [40]. Indeed, some estimates indicate that up 

to 80% of lifetime UV exposure occur before the age of 20 because of the outdoor 

recreational habits of children.

This risk for melanoma among the middle-aged population has risen in the past few decades. 

An epidemiologic study in Minnesota found an incidence of 60 cases per 100,000 in 2009 

compared to just eight per 100,000 in 1970; that is a 24-fold increase in risk for this 

population. Another unfortunate finding is the steady increase in occurrence in young adults, 

particularly for young women in the United States (US). Whereas young American women 

aged 15–39 had a melanoma incidence rate of 6 out of 100,000 cases in 1973, their rate 

more than doubled to 14 out of 100,000 cases per year in 2006 [41]. Because of ongoing 

recreational UV trends such as increased use of artificial tanning sources, melanoma rates 

are expected to continue to rise [37], making this disease an increasing public health threat.

Artificial UV and Tanning Beds

Indoor tanning use has dramatically risen in the last thirty years and is predicted to continue 

rising largely because of societal and commercial incentives for a tanned appearance viewed 

by many as appealing. In 2013, over 40% of adolescents aged 15 to 18 had tried indoor 

tanning with about 18% using indoor tanning routinely [42]. A recent large-scale systematic 

review, published in 2014, reported that over 50% of college-aged students tried indoor 

tanning, with over 40% using it in the past year. In a 2014 study of college-aged women 

from 18 to 25 years of age, 25% of current users could be classified as tanning-dependent 

[43]. Similarly, prevalence among American adults may be as high as 35% [42, 44]. 

Interestingly, tanning behavior has increasingly been compared to classic “substance use” 

disorders, with some classifying frequent indoor UV patronage as a true addiction [45, 46]. 

Tanning-addictive behaviors have been associated especially with young age, other high-risk 

behaviors and psychiatric disorders [45, 46]. Indoor tanning involves exposure to high doses 

of UV with the intent to trigger skin pigmentary responses. Tanning beds emit varying 

blends of UVA and UVB energy, and their use is clearly linked with photoaging, 

keratinocyte malignancies and melanoma. Generally, most basic tanning beds emit a blend 

of UVB and UVA radiation with more advanced beds emitting mostly UVA radiation to 

emulate natural UV radiation. However, with UVA now firmly implicated in melanoma 

carcinogenesis, such beds may be no safer than those with higher UVB output. Alarmingly, 

despite strong epidemiologic data correlating younger age of tanning bed use with skin 
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cancers, tanning bed use among minors is poorly regulated and its use increasing. In 2013, 

the National Conference of State Legislatures of USA approved new laws limiting or 

banning the use of tanning beds by adolescents, however actual laws that govern indoor 

tanning among minors vary by state with most states not prohibiting use among minors. Use 

of tanning salons before the age of 35 years is associated with a 75% increased lifetime 

melanoma risk [47], therefore the increasing use of tanning beds may be an important factor 

to explain the increasing incidence of melanoma in recent decades.

Sunburns and Melanoma

Overexposure to UV is a key factor in development of skin cancers, and melanoma 

incidence correlates particularly with intermittent intense UV exposures that cause sunburn. 

More than five sunburns in a lifetime doubles risk for melanoma and there is increased risk 

for melanoma as a young adult if there are increased sunburns in childhood [31, 39, 48]. The 

melanoma-sunburn link may reflect the contribution of inflammatory mediators to 

carcinogenesis or perhaps a particular threshold above which the dose of UV must exceed in 

order to transform melanocytes. Nonetheless, intense blistering sunburns seem to play a role 

in many cases of melanoma. Unfortunately, over half of all adults in the US suffered from 

sunburn in 2013 and prevalence of sunburn in the US population today is over 50% in all 

adults and over 65% in fair-skinned young adults under the age of 30. Furthermore, 

prevalence of sunburn has not declined despite the variety of lotions, sprays and clothing 

advertised and available for sun protection [49]. Risk of sunburn is complex and influenced 

by a variety of factors ranging from geography, cloud cover, climate, societal norms relating 

to amount of clothing worn, etc. Not surprisingly, incidence of sunburns in children (and 

indoor tanning use among adolescents) correlates with parental attitudes regarding sun 

protection. For this reason, educational campaigns targeted at parents’ ideas about UV safety 

might be particularly useful for prevention and protection against UV-induced skin 

pathologies [50].

The melanocortin 1 receptor (MC1R) and the tanning response

One important aspect of the solar radiation in human’s skin is the adaptive tanning response. 

After UV exposure, cellular damage response activation induces melanin production by 

melanocytes and proliferation and melanin deposition in keratinocytes, all of which result in 

enhanced pigmentation of the skin. This important physiologic pathway is a natural UV-

protective response to protect the skin against further UV insult after an initial UV exposure. 

The ability of the skin to tan depends on the function and activity of the cutaneous 

melanocortin 1 receptor (MC1R) signaling pathway [51–55] (Fig. 2).

The MC1R is a Gs-couple protein located in the extracellular membranes of epidermal 

melanocytes. When bound by agonistic ligands, most notably α-melanocyte stimulating 

hormone (α-MSH) [51], the MC1R initiates a cascade of UV-protective events mediated by 

activation of adenylyl cyclase and generation of the second messenger cAMP. MC1R 

activates adenylate cyclase that converts ATP to cAMP which activates protein kinase A 

(PKA). PKA phosphorylates the cAMP-responsive binding element (CREB) and induces 

activation of the microphthalmia (MITF) transcription factor. MITF is a myc-like master 
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transcription factor that, in melanocytes, drives expression of tyrosinase and other pigment 

biosynthetic enzymes. In this way, epidermal melanocytes produce melanin pigment that 

gets deposited in the epidermis to physically interfere with penetration of UV photons, 

thereby protecting skin cells from the damaging effects of sunlight [56]. Importantly, MC1R 

signaling also influences the ability of melanocytes to recover from UV-induced DNA 

damage [57–61]. Overall, there is much evidence placing MC1R as a “master regulator” of 

melanocyte UV physiologic responses.

Pigmentation phenotype depends on MC1R signaling

Loss-of-function polymorphisms of MC1R lead to a fair-skinned, sun-sensitive, and cancer-

prone phenotype [62–64]. The major MC1R polymorphisms among human populations are 

the so-called “red hair colored” (RHC) genotypes that yield a characteristic UV-sensitive 

and melanoma-prone phenotype, namely propensity for sun burning rather than tanning, fair 

skin complexion, freckling and red/blonde hair. The RHC phenotype include R151C, 

R160W and D294H MC1R genotypes [65–67]. In these cases, there is blunted cAMP 

production in melanocytes, and the skin produces less of the highly UV-protective dark 

brown/black pigment species known as eumelanin. Instead, there is production of a red/

blonde pigment known as pheomelanin that is much less effective at blocking incoming UV 

energy and may even potentiate UV-induced oxidative injury. Without effective cAMP 

induction in melanocytes, as is the case in MC1R-defective individuals, the skin cannot 

accumulate significant amounts of eumelanin and therefore will be prone to UV damage and 

carcinogenesis.

Forskolin rescues cAMP deficient signaling

Forskolin is a naturally derived diterpenoid extracted from the roots of the Plectranthus 

barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in 

various Aryuvedic teas and therapeutic preparations. Forskolin, which is a skin-permeable 

compound, directly activates adenylate cyclase to induce production of cAMP. Our 

laboratory was among the first to show that topical application of forskolin promoted UV-

independent production of eumelanin in an MC1R-defective fair-skinned animal model 

[53], , resulting in robust UV protection by interfering with epidermal penetration of UV 

photons [68]. Pharmacologic stimulation of cAMP using forskolin may protect the skin in 

ways other than through melanin induction. For example, cAMP provided enhancement of 

keratinocyte migration to promote wound healing [69] and it also decreased blister 

formation [70]. De Vries and co-workers proposed using a topical cAMP approach to 

regulate beta-adrenergic response in psoriasis patients [71]. Interestingly, cAMP stimulation 

has also been studied as an activator of hair follicle activity and has been considered as a 

therapy for age-related hair loss [72, 73]. We and others have been interested in the UV-

protective consequences of topical cAMP induction to promote melanin protection from 

UV-mediated DNA damage [68] and to enhance levels and/or activity of key DNA repair 

and antioxidant enzymes [74]. Forskolin and other cAMP-promoting agents may also 

protect the skin against UVB- induced apoptosis [75] and by promoting epidermal 

thickening which also aids in resisting UV damage [76]. In particular, Scott et al. reported 

that cAMP-mediated accumulation of basal and epidermal keratinocytes resulted in a 
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melanin-independent mechanism of blocking UVA and UVB penetration into the skin [76]. 

Others reported that forskolin protected against generation of oxidative stress by decreasing 

levels of nitric oxide [77] and enhancing stimulation of the cytoplasmic antioxidant enzyme 

copper/zinc superoxide dismutase (Cu/ZnSOD) [78]. Taken together, studies suggest that 

pharmacologic induction of cAMP in the skin may represent a potential UV-protective 

strategy for MC1R-defective individuals who are fair-skinned, sun-sensitive and melanoma 

prone.

Oxidative stress and aging

Reactive oxidative species (ROS) are produced by cells during normal metabolic activities 

such as mitochondrial oxidative phosphorylation, however levels of ROS vary with UV 

exposure and levels of antioxidant enzymes. Figure 3 shows a simplified scheme of the 

location of protective antioxidant enzymes in the cell (Fig. 3).

Without inactivation, ROS damage macromolecules including lipid, proteins and DNA. UV, 

particularly longer-wavelength UVA, is a well-known inducer of ROS, and UV-induced 

oxidative stress may be an important contributive factor for melanoma [80–82]. ROS can 

inappropriately activate signaling pathways, interfere with genome maintenance and affect 

apoptosis. Numerous studies have tested the effects of solar radiation and oxidative stress on 

the skin [29, 83–85], and oxidative stress has been linked to age-related loss of skin 

elasticity [86–88], defective cellular signaling [68] and photoaging [89, 90]. Because it 

triggers cellular damage pathways, oxidative stress activates cellular senescence which is 

thought to directly lead to photoaging [91–94]. Cellular senescence is associated with a 

reduced capacity to divide and proliferate, sometimes in conjunction with shortening of 

telomeres [95–98]. Yokoo et al. found that exposing cells to a pro-oxidant agent (H2O2) 

impaired telomerase function which eventually resulted in telomere shortening, decreased 

proliferation and cellular enlargement [97]. Wrinkling of the skin is one of the most overt 

signs of photoaging, and UV exposure can induce wrinkling over time [99–102]. Though the 

molecular mechanism(s) of wrinkling are likely to be complex, UV exposure may reduce 

elastic properties of the skin to alter the three-dimensional structure of elastic fibers [103]. 

Using an animal model, Shin et al. noted an inverse correlation between wrinkling and 

important antioxidant enzymes that reduce cellular levels of ROS [104]. Thus UV-induced 

oxidative cutaneous damage may play a major role in photoaging.

Cells have a network of antioxidants and antioxidant enzymes that function to inactivate 

ROS and limit free radical injury. Because they house the enzymes that mediate the electron 

transport chain, mitochondria are the main intracellular source of endogenous levels of ROS. 

Manganese superoxide dismutase (MnSOD), a mitochondrial protein, is a major regulator of 

ROS in the mitochondria. Glutathione is the most widely expressed antioxidant in the cell, 

and its levels and oxidation state are regulated by feedback signaling dependent on total 

ROS level. Increases in ROS lead to use and depletion of glutathione and trigger recruitment 

of antioxidant enzymes such as catalase and superoxide dismutases (SODs).

Many synthetic and natural products have been reported to enhance levels of antioxidant 

enzymes, which make them therapeutic candidates to mitigate UV-mediated damage and to 
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prevent the health consequences of UV exposure. Some products include alpha-tocopherol, 

selenium, phloretin, ferulic acid, flavangenol, lipoic acid, and uric acid [57, 105–111] as 

well as a variety of flavonoids derived from plants including pomegranate and strawberry 

[112, 113]. Lipid-soluble carotinoids such as lycopene and beta-carotene have been reported 

to scavenge superoxide radicals [114] and to promote vitamin A activity [115]. However, 

large doses of UV may inactivate carotenoids in the skin and promote degradation of dermal 

collagen and elastin [114, 116]. Vitamin C is another anti-oxidant compound that has been 

studied as a UV photoprotective agent [108], particularly in combination with other 

compounds such as ferulic acid and phloretin [108].

There is emerging evidence implicating MC1R and cAMP signaling in regulating 

antioxidant proteins. Using keratinocytes transfected with MC1R, Henri et al. reported lower 

cellular levels of ROS after pharmacologic activation MC1R /cAMP pathway and higher 

levels of ROS when PKA was pharmacologically inhibited [117]. In other work using 

human melanocytes, Song and colleagues found that αMSH-induced MC1R signaling 

increased levels of catalase after UV exposure. Catalase is an antioxidant enzyme that 

converts excess of hydrogen peroxide molecules to water and molecular oxygen [118]. 

Finally, Kaderaro and coworkers reported that cAMP stimulation reduced levels of 

hydrogen peroxide, an important ROS, in human melanocytes after UV exposure [74]. 

Therefore, there is great interest in exploiting the MC1R UV-protective signaling pathway 

as a protective mechanism against UV-mediated oxidative injury.

Conclusions

UV exposure is one of the most important environmental health hazards, clearly causative 

for age-related skin changes such as wrinkling, pigmentary changes, thinning and 

carcinogenesis. Because of complex societal factors, UV exposure may actually be 

increasing through increased occupational and recreational activities including indoor 

tanning. As we learn more about innate signaling mechanisms that regulate natural 

antioxidant defense pathways in the skin such as the MC1R hormonal axis, new approaches 

are being designed to exploit these signaling pathways to delay or even prevent free-radical 

induced symptoms of aging. Use of natural extracts such as forskolin derived from the roots 

of the Plectranthus barbatus (Coleus forskolii) plant may enhance protection against UV-

induce molecular damage to the skin. cAMP-induced melanin deposition and antioxidant 

induction may prove to be an important therapeutic opportunity to reduce UV-mediated 

pathologies.
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Figure 1. 
UV radiation in ambient sunlight is composed primarily of UVA and UVB energy. Most 

UVC is absorbed by the ozone, therefore although it is highly bioactive, terrestrial 

organisms are not exposed to significant levels of UVC. UVB can cause direct damage to 

DNA and reach the epidermis. UVA can penetrate the dermis and increases levels of ROS 

that indirectly induce DNA mutagenesis.
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Figure 2. 
MC1R signaling cascade in melanocytes. Activated by its agonist alpha-MSH, MC1R 

promotes cAMP second messenger generation which induces melanocyte differentiation and 

survival pathways involving PKA, CREB and Mitf. In this way, cAMP induces both 

melanin production and antioxidants that reduce cellular ROS. cAMP, cyclic adenosine 

monophosphate. PKA, protein kinase A. pCREB, phosphorylated cAMP response binding 

element. ROS, reactive oxygen species. MITF, microphthalmia (Mitf) transcription factor.
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Figure 3. 
Cellular antioxidant defenses. UV induces a variety of free radical and oxidative molecules, 

which because of their chemical reactivity alter the molecular structure and damage lipids, 

proteins and nucleic acids [79]. Antioxidant enzymes mediate the removal of ROS, with 

different enzymes functioning in specific compartments (e.g. MnSOD localized to 

mitochondria). If not removed, ROS may react with DNA and other cell signal proteins, 
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impairing their function. ECSOD, Extracellular Superoxide dismutase. Cu/Zn SOD, copper/

zinc superoxide dismutase. MnSOD, Manganese Superoxide dismutase.
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