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Abstract

Purpose—To develop a positron emission tomography (PET) attenuation correction method for 

brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) 

images from T1-weighted MR and atlas CT images.

Materials and Methods—In this institutional review board–approved and HIPAA-compliant 

study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A 

probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo 

CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For 

nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR 

patches. The mean absolute percentage error (MAPE) on PET images was computed as the 
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normalized mean absolute difference in PET signal intensity between a method and the reference 

standard continuous CT attenuation correction method. Friedman analysis of variance and 

Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the 

PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas 

(mean atlas) methods.

Results—The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 

3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, 

which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). 

Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, 

±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher 

than other methods (P < .01).

Conclusion—PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by 

reducing PET error owing to attenuation correction.

An integrated positron emission tomography (PET)/magnetic resonance (MR) system that 

allows simultaneous acquisition of both MR and PET images offers a unique opportunity to 

study various diseases by taking advantage of the functional capabilities of PET and the 

anatomic imaging capabilities of MR imaging. MR imaging does not involve ionizing 

radiation and can be used safely in pediatric studies or for repeated longitudinal follow-up, 

while computed tomography (CT) increases the radiation dose delivered to patients. In 

addition, a simultaneous acquisition allows better spatial and temporal correlations of 

MR/PET measurements, which is invaluable for dynamic studies (1).

By using PET/CT systems, a piecewise bilinear rescaling of CT numbers (in Hounsfield 

units) of low-dose CT to PET of 511 keV yields an accurate attenuation map for PET 

imaging (2,3). This method, referred to as scaled CT, is considered the current standard of 

reference for PET attenuation correction (4,5). Unlike PET/CT, attenuation correction is 

challenging for PET/MR. A particular problem is differentiating bone from air; both have 

similar MR signal intensity but very different attenuation effects. Substituting the bone 

attenuation coefficient with that of air or soft tissue results in up to 20% underestimation of 

PET activity in the head (5–7).

A variety of MR-based attenuation correction approaches have been proposed by using 

either segmentation-based (5,7–12) or continuous CT prediction methods (13–15). Thus far, 

direct quantitative validations against the reference standard scaled CT attenuation 

correction have not yet been performed in a large number of subjects. In this study, we 

sought to develop a probabilistic air segmentation and sparse regression (PASSR) method 

for continuous pseudo CT estimation from T1-weighted MR images to improve air and bone 

separation and representation of local structure. The purpose of our study was to develop a 

PET attenuation correction method for brain PET/MR imaging by estimating pseudo CT 

images from T1-weighted MR and atlas CT images.
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Materials and Methods

Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided the 

Florbetapir (Amyvid; Avid Radiopharmaceuticals, Philadelphia, Pa) tracers, and Siemens 

Medical Solutions provided financial support for this study. The authors had full control of 

the data and the information submitted for publication.

Image Acquisition

In this institutional review board–approved and Health Insurance Portability and 

Accountability Act–compliant study, PET/MR/CT images were acquired in 20 normal 

subjects (median age, 67.5 years; interquartile range, 63–70 years; 14 women) after 

obtaining written consent. This study started in May 2012 and ended in October 2013. The 

enrollment inclusion criteria included healthy adults (18 years and older) with no other 

injections of PET radiotracers within 24 hours. The exclusion criteria included 

contraindications to PET/MR or PET/CT (eg, electronic medical devices), known 

claustrophobia, pregnancy, or breastfeeding. Twenty subjects who underwent imaging by 

using both MR/PET and PET/CT were selected from a total of 115 enrolled subjects in this 

proof-of-concept study. This selection did not depend on the characteristics of the subject 

and was performed prior to any image analyses. None of the 20 subjects was excluded from 

analysis. Fluorine 18 (18F) florbetapir PET images and three-dimensional magnetization-

prepared rapid gradient-echo T1-weighted MR images were acquired by using a hybrid 

MR/PET system (Biograph mMR; Siemens, Erlangen, Germany). Subjects were injected 

with 370 MBq of 18F florbetapir. The acquisition was started either 50 minutes after or 

immediately after tracer injection.

Structural T1-weighted images were acquired by using a magnetization-prepared rapid 

gradient-echo sequence (16) with the following imaging parameters: repetition time (msec)/

echo time (msec)/inversion time (msec), 2300/2.95/900; flip angle, 9°; number of partitions, 

176; field of view, 256 mm2; and voxel size of 1 × 1 × 1.2 mm3.

CT images were acquired by using a PET/CT system (Biograph 40 PET/CT; Siemens). CT 

images of the head were acquired by using 120 keV, 25 effective mAs with a voxel size of 

0.59 × 0.59 × 3.0 mm3, and a matrix size of 512 × 512 × 74.

Head CT and MR/PET images were acquired within a mean ± standard deviation of 10.5 

days ± 4 of each other, with no surgical procedures in between. All images were deidentified 

before image analysis.

Pseudo CT Derivation and Linear Attenuation Coefficient Maps

The major processing steps to derive pseudo CT by using the PASSR method include image 

registration, probabilistic air map–assisted air segmentation, and sparse regression (by Y.C., 

with 17 years of experience in image processing; a subject is outlined in Fig 1). We refer to 

the subject whose pseudo CT is to be estimated as the “template” and the remaining subjects 

as “atlases.” Twenty subjects were randomly divided into 10 pairs for tenfold cross-

validation.
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CT images from each subject were classified (by Y.C.) into air, tissue, and bone with a k-

means clustering algorithm. CT and air maps were rigidly aligned to the same subject’s T1-

weighted MR images by using the linear registration toolkit in FSL (the FMRIB [Functional 

Magnetic Resonance Imaging of the Brain] Software Library of the University of Oxford; 

www.fmrib.ox.ac.uk/) (17). A nonlinear symmetric diffeomorphic registration algorithm 

was used (by Y.C.) for aligning atlas T1-weighted MR, CT, and air images to the template 

(18,19).

Separating air and bone on MR images is challenging because of the low MR signal 

intensity on T1-weighted images (Fig 2a). The air space in the frontal bone, sinuses, and 

petrous bone and part of the occipital bone all appeared dark (Fig 2b). Since air is only 

located within specific anatomic locations (marked air regions on Fig 2c), the probabilistic 

air maps were computed as the percentage of aligned CT atlases that labeled a voxel as air 

(Fig 2d). Regions with an air probability higher than 20% were considered the candidate air 

space, within which an air/tissue two-class segmentation was performed to identify the final 

air space by using a hidden Markov random field segmentation on T1-weighted MR images 

(20). For an air voxel, its pseudo CT number was the mean of the CT number (in Hounsfield 

units) of the selected atlas CT images on which this voxel was labeled as air.

For a voxel on the template MR images, a small neighborhood (eg, 5 × 5 × 5) centered 

around this voxel was referred to as the template patch (Pt in the following equation). In an 

aligned MR atlas, a same size neighborhood was referred to as an atlas MR patch (PMR). 

PMR values were selected from a vicinity (eg, 7 × 7 × 7) centered at the anatomically 

corresponding voxel in an atlas referred to as the “search window.” Sparse regression can be 

used to select the most relevant PMR value among all the atlas patches within the search 

window. We adopted an elastic net method to obtain a representation of local patch through 

the following minimizing equation (21,22):

where α⃗ is the vector representing the weighting coefficients used to combine all the atlas 

PMR values to approximate the template Pt, and λ1 and λ2 are the weights for sparse and 

ridge regression terms, respectively. In this study, the patch size, search window, and λ2 and 

λ1 were empirically chosen as 5 × 5 × 5, 7 × 7 × 7, 0.01, and 0.0001, respectively. The 

obtained sparse coefficients were then applied for CT estimation via the following equation:

where Pc is the estimated pseudo CT patch at the template location, while PCT represents all 

the CT patches from the atlas with the same size and location as the PMR patch. More details 

can be found in Figure 1.

Pseudo CT images were converted (by M.J., with 2 years of experience with MR and PET) 

into linear attenuation coefficient μ-maps by using the well-established bilinear model in the 

study of Bai et al (2) on a continuous scale. We compared the attenuation correction 
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performance of PASSR with the Dixon method (vendor provided), CT segmentation, and a 

mean atlas method by using scaled CT as the standard of reference. With the Dixon method, 

three classes (air, fat, and soft tissue) were segmented, and linear attenuation coefficient 

values of 0, 0.085 cm−1, and 0.100 cm−1 were assigned, respectively. In the CT 

segmentation, a linear attenuation coefficient value of 0, 0.096 cm−1, and 0.151 cm−1 was 

given to air (CT number ≤ −200 HU), soft tissue (−200 HU ≤ CT number < 300 HU), and 

bone (300 HU ≤ CT number < 2000 HU), respectively (2,3,5). In the mean atlas, the mean 

of all the aligned atlas CT images were used as the pseudo CT template.

After uniformly dividing the whole computational domain into 16 regions, sparse regression 

was solved in parallel (by Y.C.) by using 16 2.8-GHz central processing units and 128-GB 

random access memory with one central processing unit for each domain. The total 

computational times for the mean atlas and PASSR methods were 2.5 hours and 10.5 hours, 

respectively.

PET Image Reconstruction and Accuracy Evaluation

The acquired PET list-mode raw data and the linear attenuation coefficient μ-maps 

generated with several different methods were reconstructed (by H.A., with 17 years of 

experience with MR and PET imaging) by using vendor-provided software (Siemens 

Medical Solutions). The ordered-subsets expectation maximization algorithm with three 

iterations and 21 subsets was used. The reconstructed images have a matrix size of 344 × 

344 × 127 and a voxel size of 2.09 × 2.09 × 2.04 mm3. In addition to attenuation correction, 

random and scattered coincidences were also corrected by using this software.

A mean absolute relative percentage error (MAPE) was computed (by M.J.) for the 

reconstructed PET images with each attenuation correction method (PETtested in the 

following equation) versus the reference standard (PETCTscl, where “CTscl” represents 

“scaled CT”) as the absolute value of (PETtested − PETCTscl)/PETCTscl × 100 within whole 

brain, gray matter, and white matter. In addition, the percentage of voxels within 2%, 5%, 

and 10% MAPE and the 99th percentile MAPE were computed (by M.J.) to evaluate the 

error distribution. Friedman analysis of variance and Wilcoxon matched-pairs tests were 

performed for statistical comparisons (by H.A.) by using GraphPad Prism 5 (GraphPad 

Software, La Jolla, Calif).

Results

The segmented air space is demonstrated in Figure 2e. Attenuation maps with two axial 

locations and one midsagittal section location are demonstrated in Figure 3. The scaled CT 

(Fig 3a), mean atlas (Fig 3d), and PASSR (Fig 3e) methods provided attenuation maps on a 

continuous scale. The interface between air and bone appeared blurred with the mean atlas 

method, while PASSR provided a better delineation between air and bone even in the 

sinuses and petrous bone, as marked by arrows on Figure 3.

Representative percentage error maps within the brain are overlaid onto T1-weighted images 

in three orthogonal views (Fig 3). Owing to different proximities to skull and air, spatially 

Chen et al. Page 5

Radiology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



varying attenuation correction errors were found across the brain. In general, the cortex 

region has larger attenuation correction errors than the deep brain (P < .0001).

Friedman analysis of variance was used to compare these four methods. Significant 

differences in MAPE were identified (Friedman analysis of variance, P < .0001) with 

PASSR, resulting in a significantly lower MAPE in the whole brain, gray matter, and white 

matter (Table 1). The percentage of voxels within ±2%, ±5%, and ±10% attenuation 

correction errors was also significantly different among these four methods (Friedman 

analysis of variance, P < .0001), with PASSR demonstrating significantly more voxels 

within each error range (Table 2). Moreover, the 99th percentile percentage error of PASSR 

(16.8% ± 4.5) was smaller than that of the Dixon method (50% ± 6.3, P < .0001), CT 

segmentation method (18.2% ± 4.2, P = .11), and mean atlas method (17.9% ± 4.5, P = .

022).

Discussion

A probabilistic air segmentation and sparse regression method was developed for PET 

attenuation correction, with a mean whole-brain PET error of 2.42% ± 1.0 by estimating 

continuous pseudo CT images from T1-weighted MR and atlas CT images. The PASSR 

outperforms the Dixon, CT segmentation, and mean atlas methods by reducing MAPE and 

the spatial extent of attenuation correction errors. The accuracy improvement is more 

pronounced in the cortical gray matter regions (Fig 3, Table 1). The percentage error 

computed in this study is a measure of the percentage error in standardized uptake value 

(SUV) caused by attenuation correction. Of note, SUV is a PET semiquantitative 

measurement for normalized radioactivity in patients. It has been demonstrated that elevated 

carbon 11 Pittsburgh compound B and reduced 18F fluorodeoxyglucose SUV in brain 

cortical regions were found 15 and 10 years, respectively, before the estimated onset of 

Alzheimer disease (23). An accurate PET attenuation correction, particularly in the cortical 

region, is essential for early detection of the subtle relative SUV change in patients with 

Alzheimer disease. Moreover, a threshold of fluorodeoxyglucose SUV has often been used 

to define tumor on the pretreatment images, and 15%–20% change from pretreatment 

fluorodeoxyglucose SUV may indicate a treatment response (24). A PET attenuation 

correction method that provides low spatially varying errors will facilitate tumor staging and 

treatment response assessment.

In practical MR/PET imaging, only MR images are available for attenuation correction. CT 

segmentation provides the best possible outcome among all segmentation-based attenuation 

correction methods. When compared with scaled CT, CT segmentation has errors from an 

underrepresentation of a large range of CT number values (in Hounsfield units) by using a 

limited set of coefficients. Similar to a previous study (15), the performance of CT 

segmentation was inferior to that of the mean atlas and PASSR methods, suggesting PET 

attenuation correction benefits from a continuous-valued attenuation map.

On the basis of T1-weighted MR images alone, the PASSR method achieves PET 

attenuation correction accuracy on a par with reported methods by using multispectral MR 

data (8,15). Because T1-weighted MR images are acquired routinely in clinical imaging, 
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PASSR does not necessitate the lengthening of total acquisition time by performing 

additional imaging for attenuation correction (25).

PASSR is distinctly different from two other pseudo CT–based methods published by 

Johansson et al (14) and Navalpakkam et al (15). PASSR emphasizes local information, 

while the two approaches are global methods that derive the whole-brain joint MR/CT 

distribution. We have demonstrated that sparse regression allows the selection of more 

closely correlated samples (22,26).

Major limitations of PASSR include the lengthy computation and challenges with abnormal 

anatomy. Use of more central processing units or a graphics processing unit for parallel 

computation and the inclusion of abnormal anatomy in the training samples may alleviate 

these problems.

In conclusion, we have developed a method for continuous pseudo CT estimation from 

probabilistic air map–assisted segmentation and sparse regression, which outperforms the 

Dixon, CT segmentation, and mean atlas methods in PET attenuation correction.
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Advance in Knowledge

■ A probabilistic air segmentation and sparse regression (PASSR) method was 

developed for PET attenuation correction; by using the PASSR method, the 

mean ± standard deviation absolute percentage error on PET images for the 

whole brain, gray matter, and white matter were 2.42% ± 1.0, 3.28% ± 0.93, 

and 2.16% ± 1.75, respectively, which were significantly lower (P < .01) than 

their counterparts by using Dixon, CT segmentation, and mean atlas methods.
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Implications for Patient Care

■ The proposed PASSR method provides PET attenuation correction without 

the need to acquire CT images, which simplifies imaging and reduces 

radiation exposure.

■ The PET accuracy achieved with this method allows for quantitative brain 

PET imaging by using PET/MR.
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Figure 1. 
Flowchart shows the PASSR pseudo CT estimation method. During image alignment, the 

atlas MR, CT, and air maps were all registered to target T1-weighted images. Candidate air 

space maps were then generated from the air probabilistic map. Air segmentation was 

performed by using target T1-weighted MR imaging within the candidate air space. For an 

air voxel, its pseudo CT number was the mean of the CT number (in Hounsfield units) of the 

selected atlas CT images in which this voxel was also labeled as air. For a nonair voxel, if 

the standard deviation of all atlas CT numbers was less than 30 HU, the mean of all atlas CT 

numbers was used as the estimated pseudo CT. Otherwise, a sparse regression for atlas MR 

was derived to represent the target MR images. For sparse regression, there were 7 × 7 × 7 × 

18 = 6174 candidate patches included with a search window of 7 voxels in each dimension. 

A ”target” refers to a subject whose pseudo CT is to be estimated; “atlas” refers to other 

subjects.
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Figure 2. 
Representative images obtained in a 71-year-old man at two axial section locations 

(separated into upper and lower rows): A, T1-weighted anatomic MR image, B, rescaled T1-

weighted MR image, C, aligned CT image, D, probabilistic air map, E, candidate air space, 

and, F, CT standard deviation maps. The color bar represents an air probability range of 

20%–100% for D and a CT number standard deviation range of 30–300 HU for F.

Chen et al. Page 13

Radiology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Representative linear attenuation coefficient μ-maps obtained in the same 71-year-old man 

as in Figure 2 at the same two axial section locations (upper row and second row, 

respectively) and one midsagittal location (third row) by using, A, scaled CT, B, CT 

segmentation, C, Dixon method, D, mean atlas method, and, E, PASSR. Whole-brain 

percentage error maps were obtained at three orthogonal views (fourth, fifth, and sixth rows) 
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by using μ-maps from, B, CT segmentation, C, Dixon method, D, mean atlas method, and, 

E, PASSR. Absolute percentage errors below 1% are not shown in color within the brain.
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