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Abstract

Purpose—To develop a quality assurance (QA) workflow using a robust, curated, manually-

segmented anatomic ROI library as a benchmark for quantitative assessment of different image 

registration techniques used for head and neck radiation therapy-simulation CT (SimCT) to 

diagnostic CT (DxCT) co-registration.

Materials and Methods—SimCTs and DxCTs of twenty patients with head and neck squamous 

cell carcinoma treated with curative-intent intensity modulated radiotherapy (IMRT) between 

August 2011 and May 2012 were retrospectively retrieved under an institutional review board 

approval. 68 reference anatomic regions of interest (ROIs) in addition to gross tumor and nodal 

targets were then manually contoured on each scan. DxCT was registered to SimCT rigidly, and 
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through 4 different deformable image registration (DIR) algorithms; Atlas-based, B-spline, 

demons, and optical flow. The resultant deformed ROIs were compared with manually contoured 

reference ROIs using similarity coefficient metrics (i.e. Dice similarity coefficient) and surface 

distance metrics (i.e. 95% maximum Hausdorff distance). Non-parametric Steel test with control 

was used to compare different DIR algorithms to rigid registration (RIR) with post hoc Wilcoxon 

rank test for stratified metric comparison.

Results—A total of 2720 anatomic and 50 tumor/nodal ROIs were delineated. All DIR 

algorithms showed improved performance over RIR for both anatomic and target ROIs 

conformance as shown for the majority of comparison metrics (Steel test, p-value <0.008 after 

Bonferroni correction). The performance of different algorithms varied substantially with 

stratification by specific anatomic structures/category, and SimCT image slice thickness.

Conclusion—Development of a formal ROI-based QA workflow for registration assessment 

revealed improved performance with DIR techniques over RIR. After QA, DIR implementation 

should be the standard for head and neck DxCT-SimCT allineation, especially for target 

delineation.

Introduction

Deformable image registration (DIR) is an increasingly common tool for applications in 

image-guided radiotherapy (IGRT) (1–3). DIR, as a tool for motion assessment/correction in 

tumors that move with respiration, as well as for adaptive re-contouring of target or 

anatomic volumes that alter over time, is becoming more widely utilized, as vendors 

integrate DIR solutions into commercial software packages (4–9). Additionally, emerging 

data suggest that, for head and neck cancers, DIR has demonstrable technical performance 

gain compared to rigid image registration (RIR) for adaptive radiotherapy, wherein a 

simulation CT dataset is co-registered with on-treatment CT or cone beam CT (10–13).

Simulation three-dimensional CT (SimCT) datasets are the initial component of radiation 

planning. SimCT datasets are then manually segmented to define both tumor and normal 

tissue volumes, with subsequent dose calculation performed using voxel-based electron 

density maps. Consequently, as the key imaging step in radiotherapy, all subsequent patient 

treatment dose delivery is entirely dependent on the quality of SimCT processes (e.g. target 

delineation, organ-at-risk segmentation, beam/intensity optimization, and dose calculation)

(14).

The intramodality registration of pre- and post-therapy head and neck diagnostic CTs 

(DxCT) to SimCT data is valuable in multiple radiotherapy applications e.g. target 

delineation and mapping the sites of post-therapy loco-regional recurrences to the original 

SimCT and dose grid(15–18). Nevertheless, such intramodality fusion of DxCT and SimCT 

is less commonly described in the literature and presents specific obstacles to image 

registration. First, DxCT acquisition routinely is performed on a curved tabletop without 

standardized head positioning, while the SimCT is obtained in a custom thermoplastic 

immobilization mask on a flat toped table, resulting in positional differences of head and 

neck tissues (15, 16). In several head and neck cancers, institutional use of a intraoral 

immobilization and displacement device, such as a custom dental stent (19), results in 
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placement of a new structure in the SimCT which was not present in the DxCT. 

Additionally, DxCT typically entails use of intravenous contrast for tumor assessment, while 

at our facility and many others, intravenous contrast is not utilized for SimCT, resulting in 

intensity differentials for the same structures (10). Acquisition parameters (e.g. slice 

thickness reconstruction (STR), field of view, kvp, etc.) may not be standardized between 

DxCT and SimCT. Finally, in many instances, due to either tumor progression or 

intervening therapy (surgical resection or induction chemotherapy) the anatomy is 

fundamentally altered between DxCT and SimCT. These factors, among others, make 

DxCT-to-SimCT registration a non-trivial task. As part of larger efforts to improve head and 

neck target delineation, as well as defining spatially accurate mapping of locoregional 

failure sites, the purpose of this study was to develop a quality assurance (QA) workflow 

using a robust, curated, manually-segmented anatomic ROI library as a benchmark for 

quantitative assessment of different image registration techniques used for head and neck 

radiation therapy-SimCT to DxCT co-registration.

Materials and methods

Study population

SimCT and DxCT DICOM files of twenty two head and neck cancer patients treated at our 

institution between August 2011 and May 2012, were retrospectively retrieved under 

Institutional Review Board approval. Inclusion criteria were pathologically proven diagnosis 

of squamous cell carcinoma of head and neck, treatment with curative-intent intensity 

modulated radiation therapy (IMRT), availability of non-contrast enhanced SimCT as well 

as contrast-enhanced DxCT for each patient within a maximum time interval of 4 weeks 

between both scans to minimize errors attributed to therapy or disease progression-

associated anatomic changes. A total of twenty patients were eligible while two patients 

were excluded, one for having massive disease progression and the other for having surgical 

resection during the interval between DxCT and SimCT. Patients and treatment 

characteristics are summarized in table 1.

Imaging characteristics

Non-contrast SimCTs were acquired after immobilizing patients with thermoplastic head 

and neck shoulder masks with slice thickness ranging from 1–3.75 mm, X-ray tube current 

ranging from 100–297 mA at 120 kVp. Display field of view (DFOV) was 500 mm, axial 

images were acquired using a matrix of 512 × 512 pixels, and reconstructed with a pixel size 

of 0.98 × 0.98 mm along the x, y axes. Comparatively, contrast-enhanced DxCT were 

acquired with slice thickness ranging from 1.25–3.75 mm, with X-ray tube current ranging 

from 160–436 mA at 120 kVp. DFOV ranged from 236–300 mm, and axial images were 

acquired using a matrix of 512 × 512 pixels, and reconstructed with a pixel size ranged from 

0.46 × 0.46 mm to 0.59 × 0.59 along the x, y axes. 120 cc contrast material was injected at a 

rate of 3cc/s followed by scanning after 90-second delay. (Detailed acquisition parameters 

are illustrated in a supplementary table 1)
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Manual segmentation of reference anatomic ROIs

For each patient, a series of 68 reference anatomic ROIs (18 bony, 3 cartilaginous, 7 

glandular, 30 muscular, 6 soft tissue, 4 vascular) in addition to gross primary tumor volume 

(GTV-P) and gross nodal target (GTV-N) were manually contoured on every patients DxCT 

and SimCT by both a third-year resident physician observer (MR) and a medical student 

(CAB). Contours were subsequently approved on a daily basis by a radiation oncologist with 

7 years’ experience (ASRM), and finally, ROIs were reviewed by an expert attending head 

and neck radiation oncologist with 8 years’ experience (CDF). Manual segmentation was 

performed using a commercial treatment planning software (Pinnacle 9.0, Phillips Medical 

Systems, Andover, MA). (Details of the segmented ROIs are available as a supplementary 

figure 1 and supplementary table 2)

Image registration

For each patient DICOM dataset, image registration was performed using baseline RIR 

allowing automatic scalable rigid registration of the DxCT to the SimCT using a block-

matching in-house GPU-based algorithm. Subsequently, each dataset was registered using a 

series of open-access and commercial registration algorithms. Two commercial multi-step 

DIR software were examined: Atlas-based (CMS ABAS 0.64, Elekta, AV, Stockholm, SE, 

2013) and B-spline (VelocityAI 2.8.1, Atlanta, GA, 2012). Atlas-based DIR, presented 

previously(20), consisted of five registration steps to deform the original DxCT to the 

SimCT: linear registration, head pose correction, poly-smooth non-linear registration, dense 

mutual-information deformable registration, and final refinement using deformable surface 

model (20); and while B-spline consisted of three registration steps: manually-adjusted rigid 

edit, auto-rigid registration, and auto-deformable registration (21).

Likewise, two non-commercial software, Demons (ITK Demons, Kitware, Inc., Clifton 

Park, NY, 2013)(22), and Optical Flow (23) algorithms were investigated. Noncommercial 

algorithms are often dependent on numerous human-entered variable parameters that 

determine the efficacy of an algorithm in registration. In order to provide valid comparison 

of commercial to non-commercial algorithms, an optimization step was performed utilizing 

approximately 100 human-verified identical landmark points on both DxCT and SimCT 

using the methodology that our authors have previously described (24). In this methodology, 

parameters were iteratively varied to create varying deformation fields mapping the DxCT 

to the SimCT. Subsequently, these deformation fields were applied to the landmark points 

on the DxCT to obtain deformed landmark points on the SimCT. Euclidean distances in 

corresponding landmark points between the deformed landmark points and the actual 

landmark points on the SimCT were calculated. Parameters that minimized the total 

Euclidean point distances obtained from applying these non-commercial algorithms to these 

landmark points were used in the ROI comparison described below.

Deformation vector fields were obtained from each image registration algorithm mapping 

the deformation of the DxCT onto the SimCT. For the commercial algorithms, the 

deformation transformed definitive voxels from the original DxCT onto the SimCT, while 

for the non-commercial algorithms; the deformation field was from the RigidCT. 

Subsequently, in a custom written Matlab (MATLAB R2012a, The MathWorks Inc., Natick, 
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MA, 2012) program, these deformation fields were applied to ROIs segmented on the DxCT 

to convert them into ‘deformed ROIs’ on the SimCT. Calculations (described below) were 

performed comparing the ‘deformed ROIs’ to the human-segmented ROIs on the SimCT.

Registration Algorithm assessment

After completion of rigid and deformable registration of native DICOM image files, the 

resultant deformed ROIs were compared with manually contoured reference ROIs for each 

of the 68 anatomic structures listed plus tumor and nodal targets. Figure 1 shows a 

schematic illustration of the QA workflow process developed, based on a previously 

presented software resource (TaCTICS, Target Contour Testing/Instructional Computer 

Software, https://github.com/kalpathy/tacticsRT)(25–27).

For each registration-deformed ROI/reference ROI pair, the following ROI-based overlap 

metrics (28–30) was assessed:

• volume overlap;

• maximum and 95% maximum Hausdorff distance (95%HD);

• false-positive, false-negative, and standard Dice similarity coefficients (DSC).

Individual metrics are detailed in Table 2. The different registration algorithms were then 

compared using different metrics for pooled ROIs overlap then compared after stratification 

by individual ROI, anatomical subgroup, and STR.

Interobserver variability

In order to interrogate the effect of interobserver variability in manual ROI delineation on 

the output metrics of different registration techniques post hoc, a subset of 12 ROIs (2 ROIs 

per each anatomic sub-group) were delineated by 3 expert observers in clinical target 

delineation (ASRM “7 years of experience”, SC “8 years of experience”, EKU “5 years of 

experience”) on paired SimCT-DxCT sets of two patients. The same workflow methodology 

described above was used to compare overlap and surface distance metrics obtained from 

expert segmentation to those of primary observer for each registration technique.

Statistical analysis

Statistical assessment was performed using JMP v 10.2 (SAS institute, Cary, NC). To assess 

algorithm performance for each metric listed, distributional statistics for listed metrics 

(Table 2) were tabulated for each anatomic ROI.

To determine the relative degree of potential difference of DIR compared to RIR, overlap 

metrics for anatomic and target ROIs mapped using DIR were compared to those mapped 

rigidly, with a p-value thresholding for multiple comparisons using Bonferroni correction 

through dividing the requisite α threshold of 0.05 by the number of subset comparisons, 

with resultant p-value specified for each comparison (vide infra). Distributional differences 

DIR algorithms (atlas-based, Demons, optical flow, and B-spline) compared to RIR alone 

were performed using the non-parametric Steel test with control (31) for between-algorithm 

difference, designating RIR as the standardized comparator (control). Between groups 
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comparison was performed for all metrics for pooled ROIs, and by each ROI separately, and 

reported with p-value thresholding for multiple comparisons applied graphically. Additional 

post hoc comparison of metrics after stratification by STR and ROI anatomic subgroup 

(bones, cartilages, muscles, glands, vessels, soft tissues) was calculated, with comparison 

using Wilcoxon rank(32) (paired comparison) or Kruskal-Wallis(33) (three or more groups 

comparison) non-parametric tests when comparing across strata with p-value thresholding 

for multiple comparisons. For evaluation of interobserver dependency, Cronbach’s alpha 

method was performed to assess agreement between expert observers for all delineated ROIs 

for all tested registration methods for DSC metric.

Results

Algorithm comparative performance

A total of 2720 anatomic ROIs were delineated (68 per each DICOM file) for all included 

patients’ paired SimCT-DxCT sets and a total number of 50 tumor/nodal ROIs were 

delineated in 15 of 20 patients paired sets (5 patients had no radiologic gross tumor or nodal 

targets after induction chemotherapy/surgery). Excepting optical flow, for surface distance 

metrics (i.e. 95% and maximum Hausdorff distance), and demons, for false negative dice, 

for all investigated DIR algorithms there was a detectable improvement in conformance with 

a manual ROI comparator over RIR for all pooled ROIs using all comparative metrics (Steel 

test, p < 0.008 after Bonferroni correction for multiple comparisons; p-value heat map is 

available as a supplementary figure 2). Estimation of differences between algorithms varied 

substantially with stratification by specific ROI; magnitude of effect size for the difference 

as compared to RIR control is illustrated as a p-value heat-map with color thresholding for 

multiple comparison correction (Figure 2). Figure 3 shows example of the visual comparison 

of the overlap between deformed ROIs and reference ROIs using the rigid versus the 

deformable registration.

For similarity coefficient metrics, the tested atlas based algorithm appears to have the best 

performance in this specific head and neck application (median DSC 0.68, median false 

negative Dice 0.06, and median false positive Dice 0.5). Likewise, for surface distance 

metrics, the atlas based algorithm had the least median distance error (4.6 mm 95%HD; 10.6 

mm maximum Hausdorff distance). (Supplementary figures 3 and 4 further illustrate utilized 

overlap and surface distance metrics, respectively, for all ROIs for each registration method 

as a graphical table)

Algorithm performance by Anatomical subgroup

The performance of each registration method varied significantly across different ROI sub-

groups (bones, cartilages, muscles, glands, vessels, soft tissues) as assessed for different 

metrics using Kruskal-Wallis test (p-value < 0.05) excepting, RIR (for volume overlap and 

95%HD), B-spline (for volume overlap), and Demons (for 95%HD). To directly compare 

specific anatomical sub-group performance for each registration algorithm, further analysis 

using paired Wilcoxon test showed that for the vast majority of registration algorithms bony 

and cartilaginous ROIs were significantly more concordant than muscular and vascular ROIs 

(Bonferroni-corrected p-value < 0.003 for multiple comparisons across the 6 ROI 
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subgroups). Likewise, for each anatomic category the ROIs conformance varied 

significantly across different registration methods for all assessed metrics (Kruskal-Wallis p-

value < 0.05) with comparatively better performance of atlas based DIR followed by B-

spline in all ROI sub-groups (Bonferroni-corrected p-value < 0.005 for multiple 

comparisons across the 5 registration methods), as illustrated visually in figure 4 for DSC 

and 95%HD metrics. The tumor and nodal ROIs conformance were best achieved with atlas 

based software with GTV-P median DSC and 95%HD of 0.65 and 4.6 mm, respectively, and 

GTV-N median DSC and 95% HD of 0.67 and 4.5 mm, respectively.

Algorithm performance by slice thickness reconstruction

STR of DxCT for all but two cases was uniform at 1.25 mm, while the SimCT STR was 

variable, with 10 cases reconstructed at a slice thickness of less than 3 mm (1–2.5mm) and 

10 cases reconstructed at a slice thickness of 3 mm or more (3–3.75 mm). The effect of 

variability in SimCT STR on the performance of individual registration method was most 

evident for the tested B-spline algorithm as shown in table 3, a system dependency not 

typically considered in image-registration QA, but of practical importance in clinical image 

acquisition.

Interobserver variability

In post hoc interobserver dependency assessment, for each registration technique there was 

no significant (all p > 0.05) difference between the mean values, for all metrics of all expert 

observers when compared to the primary observer except for the 95% HD for observer 3 in 

Atlas based and B-spline algorithms. Cronbach’s alpha assessment showed a minimum α of 

0.6527 “acceptable interobserver agreement” for rigid registration, and maximum α of 0.88 

for B-spline “Good interobserver agreement”. This confirms that the interobserver manual 

delineation variability was unlikely to substantively impact the outcomes of registration in 

this study (supplementary figure 5).

Discussion

Our results confirm that the tested DIR algorithms provided detectable performance 

advantages over RIR in our specific head and neck DxCT-simCT dataset, for the vast 

majority of ROI-based metrics. The performance of specific DIR algorithms varied across 

anatomical ROIs, with greater conformance of registering bony and cartilaginous ROIs to 

reference ROIs than for muscle and vascular ROIs. Furthermore, the difference between the 

registration accuracy of different structures of the anatomic class varied substantially. For 

example, certain bony structures (e.g. the clavicles) showed more distance error and reduced 

conformance as compared to other bony ROIs, likely due to the wide variation in shoulder 

position between both images. Another example is the relatively higher registration errors of 

tongue musculature ROIs and velar ROIs in the region adjacent to intraoral dental stents in 

the SimCT. Our QA method also revealed unanticipated algorithm dependencies, such STR, 

between SimCT and DxCT. STR notably impacted some algorithms disproportionately, 

most evident on B-spline fusions.
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Several previous studies have validated the use of DIR algorithms in IGRT for head and 

neck cancer. Approaches used to quantify the performance of distinct DIR in these studies 

include landmark identification (12), ROI-based comparison (3, 10, 13, 34, 35), or 

computational phantom deformation (8, 9, 36, 37); each of these methods have their specific 

caveats and limitations of application. In the examined setting of DxCT-SimCT co-

registration, the application of an evenly and densely distributed matrix of anatomic 

landmark points is intuitively understandable, and, with sufficient point placement, 

exceptionally spatially accurate and statistically robust as a validation method (24). Point 

placement is, nonetheless, comparatively resource intensive, requiring accurate manual 

identification of hundreds or thousands of points(24). Point placement in the head and neck 

is technically complicated secondary to substantial variation in patient position, image 

acquisition parameter differences (especially STR, which is a significant limit to voxel-wise 

point identification), and tubular internal anatomy of soft tissue ROIs in the neck, which 

enhances the difficulty of manually placing reproducible matched points in paired DxCT/

SimCT image sets. For this effort, small-scale (~100) landmark point placement was used as 

an intermediary step in our quality assurance chain for optimization of non-commercial DIR 

settings; however, large-scale landmark point registration efforts, while underway, have yet 

to be completed by our group owing to listed limitations.

As a part of this effort, we sought to develop a “head and neck QA ROI library”, as a robust 

set of labeled anatomic ROIs, in order to properly represent the unique characteristics of the 

head and neck anatomy, which contains multiple structures of different shapes, sizes and 

Hounsfield unit (HU) intensity gradients. ROI-based assessments, as used in the present 

series (i.e. carefully and rigorously reviewed and curated independently by two radiation 

oncologists after initial manual segmentation), give insight into changes of shape, volume 

and location of a structure. Thus, ROI or ROI-category specific performance differences can 

be ascertained, a feature that may be overlooked by “anatomically agnostic” DIR QA 

approaches such as point registration or image intensity-matching. Likewise, the large 

number of ROIs/ROI-categories used in this QA workflow more nearly approximate the 

range of DIR algorithm performance across anatomic sub-sites in the head and neck, as 

opposed to “sample ROI” methods, or use of a limited number of reference ROIs, which 

may underrepresent inter-regional DIR variation.

Only few studies have validated the registration of DxCT-SimCT; two of which have 

addressed the registration of pre-therapy diagnostic PET/CT to SimCT (15, 16), while two 

other studies have examined the registration of SimCT to post-recurrence DxCT (17, 18). 

The validation methodologies for DIR assessment in those studies varied from calculating 

the root mean squared error from a set of observer’s marked anatomic landmarks (15) to 

overlap indices and center of mass comparison for sample ROIs (16–18). Ireland et al.(15) 

and Hwang et al.(16) showed that, matching with our results, DIR achieved superior 

performance to RIR. Additionally, Due et al.(18) showed that DIR has higher reproducibility 

than RIR in repeated registration of center of mass points used to identify the origin of 

locoregional recurrences mapped to original SimCT. These results should critically question 

the utility of RIR as an accurate tool for head and neck registration extracranially, and we 

advise cautious use of RIR as only “rough guide” rather than serially implemented clinical 

tool for DxCT-simCT head and neck workflows. However, though optical flow (12) and 
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demons (3, 10, 36) algorithms have been studied and shown utility in adaptive radiotherapy 

applications, they failed to evince comparable results in the specific setting of head and neck 

DxCT-SimCT co-registration.

Several limitations must be noted. As a single institution study using retrospective image 

data, the standard caveats apply. Given this particular anatomic site (head and neck), and the 

fact that image sets (DxCT and simCT) were acquired using standard institutional operating 

procedures, excessive generalization regarding DIR algorithm performance in other 

anatomic sites, or differing acquisition settings is potentially specious. As the development 

of this QA process/ROI library was exceedingly resource-intensive, owing to the time 

required to manually segment and review a comparatively massive number of anatomic ROI 

structures, this library of paired DxCT-simCT images and ROI structure sets is provided as 

anonymized DICOM-RT files to any other researchers at “doi:10.6084/m9.figshare.999145–

51”(38). Additionally, the effect of surgical resection or induction chemotherapy on the 

quality of registration was not investigated in the present study as we sought to benchmark 

best performance scenarios and exclude the effect of anatomical distortion caused by huge 

tumors.

In summary, we developed a QA framework using a robust, curated, manually-segmented 

anatomic ROI library to quantitatively assess different image registration strategies used for 

head and neck DxCT to SimCT co-registration. The presented QA framework proved that 

DIR algorithms for most of the tested metrics improved registration performance over RIR 

yet with notable variability between different algorithms, suggesting careful validation of 

DIR before clinical implementation (e.g. target delineation) is imperative.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications for Patient Care

1- After proper quality assurance, Deformable image registration should replace rigid 

registration for radiotherapy applications involving head and neck Diagnostic to Therapy-

Simulation Computed Tomography registration.

2- Validation of any image registration strategy is crucial before implementation for 

specific clinical scenarios.
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Summary statement

The presented quality assurance framework proved that deformable image registration 

(DIR) algorithms for most of the tested metrics improved registration performance over 

rigid registration yet with notable variability between different algorithms, suggesting 

careful validation of DIR before clinical implementation.
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Figure 1. 
Schematic illustration of the quality assurance workflow process. Abbreviations: VF=vector 

fields; DVF=deformation vector fields; RF=rigid fusion; ROIs=regions of interest; 

SimCT=simulation CT; DxCT=diagnostic CT; DIR=deformable image registration.
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Figure 2. 
Heat map illustrates the relative performance of each of the DIR algorithms over the rigid 

registration for each anatomic structure using all comparison metrics. The more towards 

blue color means better performance. p-value thresholding for multiple comparisons was 

used with first threshold at p<0.008 for correction of multiple comparisons across 4 distinct 

registration algorithms (α = 0.05/6 “pairwise comparison of 4 DIR algorithms”), and 

p<0.0001 for multiple comparison across 68 distinct ROIs. Values shaded solid red are non-

significantly different from rigid segmentation. Abbreviations: OF=optical flow, ST=soft 

tissues, DSC=dice similarity coefficient, FN-DSC=false negative dice, FP-DSC=false 

positive Dice, 95%HD=95% Hausdorff distance, GTV-P=gross primary tumor volume, 

GTV-N=gross nodal volume.
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Figure 3. 
Visual depiction of the deformed-reference regions of interest (ROIs) overlay: the top panel 

shows example of deformed ROIs in blue and reference ROIs in red using rigid registration, 

while the lower panel shows the same ROIs when registered using DIR.
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Figure 4. 
a. Box-plot of Dice similarity coefficient analysis of each registration method by anatomic 

ROIs category. Pale line within the box indicates median value, while the box limits 

indicating the 25th and 75th percentiles. The lines represent the 10th and 90th percentiles, 

and the dots represent outliers.

b. Box-plot of 95% Haussdorff distance analysis of each registration method by anatomic 

ROIs category. Abbreviations: OF=optical flow, ST=soft tissues.
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Table 1

Patient characteristics.

Characteristics No.

Age (y)

 Median (range) 63 (50–78)

Sex

 Male 15

 Female 5

T Stage

 T1 4

 T2 5

 T3 8

 T4 2

 Tx 1

N Stage

 N0 3

 N1 4

 N2 11

 N3 1

 Nx 1

Primary sites

 Base of Tongue 7

 Tonsil 6

 Oral Cavity 1

 Larynx 3

 Nasopharyngeal/Maxillary sinus 2

 Salivary gland 1

Treatment

 IMRT alone 1

 Concurrent chemo-IMRT 5

 Induction chemotherapy + chemo- 9

IMRT 3

 Induction chemotherapy + IMRT 1

 Surgery + postoperative chemo-IMRT Induction chemo-IMRT + Surgery 1
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Table 2

Description of employed metrics, where A= algorithm-dependent deformed ROI volume, R= reference 

anatomic manually segmented ROI volume.

Metric Symbolic Expression Description Full agreement

Volume Overlap

The portion of the 
reference ROI which is 

overlapped by the 
segmentation

1

Dice Similarity Coefficient

The portion of overlap 
between the reference 
ROI and segmentation 
relative to the size of 

the reference ROI plus 
the size of the 
segmentation

1

False Negative Dice

The volume that the 
segmentation missed of 

the reference ROI 
relative to the size of 

the reference ROI plus 
the size of the 
segmentation

0

False Positive Dice

The volume of the 
segmentation not found 

within the reference 
ROI relative to the size 

of the reference ROI 
plus the size of the 

segmentation

0

95% maximum Hausdorff 
Distance (HD)

The maximum distance 
between a point in the 
segmentation and that 
of the reference ROI; 
for 95% maximum 
Hasudorrf, ±5%-ile 

outliers are discarded
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