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Abstract

The attempt frequency or prefactor (k0) of the transition state rate equation of protein folding 

kinetics has been estimated to be on the order of 106 s−1, which is many orders of magnitude 

smaller than that of chemical reactions. Herein, we use the mini-protein Trp-cage to show that it is 

possible to significantly increase the value of k0 for a protein folding reaction by rigidifying the 

transition state. This is achieved by reducing the conformational flexibility of a key structural 

element (i.e., an α-helix) formed in the transition state via photoisomerization of an azobenzene 

cross-linker. We find that this strategy not only decreases the folding time of the Trp-cage peptide 

by more than an order of magnitude (to ~100 ns at 25 °C) but also exposes parallel folding 

pathways, allowing us to provide, to the best of our knowledge, the first quantitative assessment of 

the curvature of the transition state free energy surface of a protein.
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Conformational diffusion on an energy landscape that is biased towards the native state 

ensures that protein folding is a thermodynamically robust and productive event.1–4 

However, during folding, the free energy of the system does not always show a monotonic 

decrease; instead, it can increase over a relatively small region of the landscape, leading to 

the formation of folding free energy barriers. Since these barriers contain key information 

for achieving a comprehensive understanding of the mechanisms of protein folding, 

significant efforts have been made to investigate how and why such kinetic bottlenecks are 

generated, as well as the structural characteristics of the associated transition states.5 More 

recently, several studies have focused on elucidating the dynamic aspects of the folding free 

energy barrier, such as the roughness of the underlying free energy surface6 and the 

transition path time.7–8 According to Kramers’ theory,9
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(1)

where R is the gas constant and T is the absolute temperature, the rate of a barrier-crossing 

process is determined not only by the height of the barrier (ΔG≠) but also the curvatures of 

the reactant ( ) and transition state ( ) potential wells, as well as the friction coefficient 

(γ). The latter manifests as the roughness of the potential energy surface. While direct 

experimental assessments of ωR and ωB are currently not possible, many previous 

studies10–11 have been performed to determine the pre-exponential factor, often referred to 

as the attempt frequency (k0). Interestingly, the value of k0 for protein folding is estimated to 

be in the range of 103 – 106 s−1,12 which is several orders of magnitude smaller than that 

observed for chemical reactions and, thus, suggests that the curvature of the protein folding 

transition state potential well (i.e., ) is intrinsically small. This is consistent with the well-

recognized notion that the folding transition state consists of an ensemble of structures that 

contain only a fraction of the native contacts and hence is inherently flexible. On the other 

hand, gas phase chemical reactions between small molecules often encounter a transition 

state that contains a single, distinct species in a highly-constrained geometric configuration. 

In this regard, we hypothesize that by rigidifying the folding transition state one could 

significantly increase ωB and hence k0 (Equation 1). In this proof-of-concept study, we 

chose a mini-protein, Trp-cage,13–14 as our model system and employed an azobenzene 

cross-linker to modify the curvature of its free energy barrier.

Trp-cage is one of the most extensively studied model peptide systems in protein 

folding,15–54 which has led to a fairly detailed understanding of its folding mechanism. For 

example, both experimental22,40–41,48–50 and computational16–18,23–24,27,30–39,42,44,46–47 

studies have shown that the α-helix is either partially or completely formed in the major 

folding transition state, often without the presence of many native tertiary stabilizing 

interactions. Thus, this feature provides a unique opportunity to modify the characteristics of 

the folding transition state of Trp-cage via a photoactivatable cross-linker. As shown (Figure 

1), our working hypothesis is that upon imposing a geometric constraint on the Trp-cage α-

helix via photo-induced isomerization of an azobenzene cross-linker, we will be able to not 

only initiate folding but also force the conformational search to pass through a more 

rigidified transition state, thus making the attempt frequency (i.e., k0) of this folding 

‘reaction’ larger.

We chose an amidoazobenzene derivative as the photoactivatable cross-linker based on the 

fact that (1) its cis isomeric form supports or stabilizes α-helical conformations when 

attached between the i and i+7 positions of a peptide,55 whereas its trans form does not, (2) 

its trans form is thermodynamically more favorable (>95%) in the dark at room 

temperature,56 (3) upon irradiation with 355 nm light, the trans to cis isomerization occurs 

on the picosecond timescale,57 which is significantly faster than the folding time of Trp-

cage, and (4) the spontaneous back-reaction, i.e. the cis to trans isomerization, takes place 

on the timescale of minutes at room temperature.58 Specifically, we introduced the 

azobenzene moiety into a mutant of the Trp-cage 10b variant containing cysteine 
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substitutions at residues 1 and 8 (sequence: CAYAQWLCDGGPSSGRPPPS), using 

standard cysteine alkylation methods.55 As indicated above, the resultant Trp-cage peptide 

(hereafter referred to as 10b-azob) should fold only when the azobenzene cross-linker is in 

its cis isomeric form (Figure 1).

As shown (Figure 2), the π-π* transition of trans amidoazobenzene at ~367 nm has a 

significant decrease in intensity upon irradiation of 10b-azob with 355 nm light, whereas 

there is a gain in absorbance at ~258 nm, which corresponds to the π-π* transition of cis 

amidoazobenzene.55 Furthermore, as expected (Figure 3), the circular dichroism (CD) 

spectrum of the dark-equilibrated 10b-azob sample (in a 20/80 trifluoroethanol/water 

mixture) indicates that the peptide adopts mostly disordered conformations, whereas the CD 

spectrum of the light-irradiated sample indicates that light absorption indeed prompts α-

helix formation. The reason that we added trifluoroethanol (TFE), which is known to 

promote α-helix formation,59 is that in pure water the light-irradiated peptide exhibits 

relatively low helicity. This is most likely due to the fact that addition of the azobenzene 

cross-linker eliminates the favorable N-terminal helical cap, which has been shown to be 

detrimental to the stability of Trp-cage.60–61 More importantly, in the presence of 20% TFE 

the CD signal of the light-irradiated 10-azob sample at 222 nm shows a similar sigmoidal 

dependence on temperature as that of the wild type peptide (Figure 3, inset), suggesting that 

the peptide’s cage structure is formed when the azobenzene moiety is in its cis form and that 

the addition of TFE compensates for the loss of helix stability upon cross-linking. The latter 

is supported by the fact that addition of 20% TFE only leads to a small increase (~7 °C) in 

the thermal melting temperature of Trp-cage 10b (Supporting Information).

The light-induced folding kinetics of 10b-azob were probed using a time-resolved infrared 

(IR) apparatus.62 Briefly, the 355 nm pump pulse (3–5 ns) was derived from a Minilite II 

Nd:YAG laser (Continuum, CA), and a tunable 1001-TLC quantum cascade (QC) laser 

(Daylight Solutions, CA) was used as the continuous-wave (CW) IR probe. As indicated 

(Figure 4), the light-induced conformational dynamics of 10b-azob at 25 °C, probed at 1630 

cm−1 where helical content is known to absorb,63 show an increase in absorbance as a 

function of time, consistent with the CD results (Figure 3). What is more interesting, 

however, is that this kinetic trace is best fit to a double-exponential with time constants that 

differ by an order of magnitude (i.e., 90 ns versus 1.1 μs). Further measurements at 1680 

cm−1, where disordered conformations have a larger absorbance, show identical results 

(Figure 4). Previously, we have shown that the folding time of Trp-cage 10b is 

approximately 1.6 μs at 25 °C.40 Thus, the slower kinetic phase in the current case is similar 

to the folding kinetics of the wild type peptide, whereas the faster kinetic phase represents a 

previously unobserved folding event. Taken together, these results indicate that by photo-

initiating isomerization of an azobenzene cross-linker added to the α-helical segment of the 

Trp-cage sequence, we are creating either two parallel pathways that have distinctly 

different folding rates or a sequential pathway that involves a folding intermediate.

It has recently been shown that the 310-helix of Trp-cage 10b folds on the order of hundreds 

of nanoseconds and formation of this structure is considered to be the last step in the folding 

process.40 However, it is unlikely that the fast component seen in these experiments comes 

from 310-helix formation for two reasons. First, 310-helices typically absorb in the 1660 
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cm−1 region,64 yet the ~100 ns component observed for 10b-azob is detected at both 1630 

cm−1 and 1680 cm−1. Also, the 310-helix of Trp-cage 10b is relatively unstable and, as a 

result, the previous study40 was only able to detect its folding-unfolding kinetics at 

temperatures below ~20 °C. Another possibility is that the fast phase reports on formation of 

an intermediate state that contains a native or native-like α-helix, which goes on to form the 

folded Trp-cage structure with a slower folding rate. To test this possibility, we studied the 

photo-induced conformational dynamics of another azobenzene cross-linked peptide that 

corresponds to the Trp-cage 10b α-helix (sequence: CAYAQWLCD, hereafter referred to as 

10b-h-azob). As indicated (Figure 5), the light-induced kinetics of 10b-h-azob in the 

presence of 20% TFE, probed at 1630 and 1680 cm−1, can be described by a single-

exponential function, with a time constant of approximately 1.0 μs for both cases. This result 

is consistent with the study of Serrano et al., 65 which showed that the folding time of a 

helical peptide with a sidechain-sidechain cross-linker is on the order of 1 μs. Perhaps most 

importantly, our 10b-h-azob results are in line with those of Hamm and coworkers,66 who 

observed that the presence of an azobenzene cross-linker in a short α-helical peptide acts as 

a thermodynamic constraint rather than a dynamic one. In this regard, they observed that 

rather than initiating a fast downhill folding process, the azobenzene photoswitch allowed 

for the stabilization of metastable, non-native free-energy traps. Therefore, these results 

prompt us to conclude that the fast (i.e., ~100 ns) component seen in the case of 10b-azob 

does not arise from an early, partially-folded, on-pathway Trp-cage intermediate wherein 

only the α-helix is formed; instead, it corresponds to an alternative but much faster folding 

pathway. Similarly, a sequential scenario in which the α-helix is formed in ~1 μs followed 

by a 100 ns folding event can also be ruled out, as the current experimental strategy is 

unable to detect a fast kinetic event following a slower one. Moreover, these kinetic results 

also argue against the idea that the faster folding component of 10b-azob results from a 

decrease in the folding free energy barrier, as we would expect similar double-exponential 

behavior for 10b-h-azob in this case. This is because, as discussed above, the rate-limiting 

step in Trp-cage folding corresponds to helix formation. Thus, tertiary interactions with the 

rest of the 10b-azob peptide seem to play an influential role in creating this alternate protein 

folding pathway. Indeed, kinetic measurements carried out on 10b-azob at different 

temperatures reveal that both rates have very similar dependences on temperature (Figure 4, 

inset), further supporting the idea that the azobenzene cross-linker is not affecting the free 

energy barrier height but rather altering the frequency with which the system leaves the 

transition state region.

In summary, because an additional parallel pathway originating from the same reactant can 

only lead to an increase in the overall reaction rate, our interpretation implies, as shown in 

the following kinetic scheme, that upon photoisomerization of the azobenzene cross-linker 

two distinguishable conformational ensembles (U1,cis and U2,cis) in the unfolded potential 

well of 10b-azob are rapidly formed,
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where A1 ≈ 10A2, , and the exchange rate between U1,cis and U2,cis is 

significantly slower than their folding rates to form Fcis. Also of note, both k1 and k2 are 

significantly faster than the single-exponential folding rate (τF is in the range of 5–7 μs) of 

another cross-linked Trp-cage peptide.61 It was shown previously that when a helix cross-

linker, m-xylene, was placed between positions 4 and 8 of the Trp-cage 10b sequence, both 

the folding and unfolding rates of the resultant peptide were significantly decreased in 

comparison to those of the wild-type Trp-cage 10b.61,67 This was attributed to a frictional 

effect of m-xylene, as it was located at the most sterically congested region of the peptide. 

Since the azobenzene cross-linker is not only longer but also more flexible than m-xylene, it 

is expected to cause a much smaller perturbation due to internal friction. In addition, in 

keeping with the present hypothesis, the findings obtained with the m-xylene cross-linker 

suggest that crossing-linking a single α-helical turn is insufficient to significantly increase 

the rigidity of the folding transition state.

The notion that the two kinetic phases of 10b-azob arise from parallel folding pathways that 

have identical or comparable free energy barriers suggests that we could further estimate the 

value of ωB, which, to the best of our knowledge, has never been done before. Based on Eq. 

1, it is easy to show that

(2)

assuming that ωR for both the fast and slow pathways is the same, where kS and kF are the 

rate constants of the slow and fast components, respectively, while ωBS and ωBF are the 

frequencies of the respective transition-state harmonic potential wells. In turn, these 

frequencies determine the free energy (GB) of motion along the folding coordinate (q) near 

the transition state:

(3)

where m is the effective mass of the particle. Following Eq. 3, one can easily show that for 

the same displacement along the folding coordinate, i.e. Δq, the free energy difference 

between the two aforementioned harmonic wells would be:

(4)
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Thus, by combining Eqs. 2 and 4 and using the experimentally determined values of kS and 

kF, one could solve for ωBS and ωBF if ΔGB and Δq are known. While both are difficult, if 

not impossible, to be determined, we can make reasonable estimates in the current case. As 

concluded above, the fast folding phase arises from a more rigid transition state. In other 

words, it is the entropic effect of the azobenzene cross-linker that makes ωBF larger. Using 

the values for change in conformational entropy upon helix formation determined by 

Hofrichter et al., 68 we estimated the maximum entropic stabilization of helical structure 

arising from the azobenenze cross-linker to be approximately 6 kcal/mol. By further 

assuming that the peptide, which has a molecular weight of 2049.2 g/mol, needs to move a 

distance that is one-fourth of the radius of gyration of Trp-cage in order to cross the 

transition state, or Δq = 3 Å,23 we found that ωBS = 5.24 × 1010 rad/s. This estimate provides 

what, to the best of our knowledge, is the first experimental assessment of the frequency of 

the protein folding transition state. By further assuming that ωR is on the same order of 

magnitude as ωB, an assumption commonly used in the literature,10,12 and D = 10−6 cm2/s 

as an upper limit,69 we estimated k0 to be 6.9 × 106 s−1 for the folding kinetics of the 

unconstrained Trp-cage peptide.

Despite its approximate nature, the above calculation yields a k0 value that is in good 

agreement with previously estimated values based on measurements of the folding rate of 

ultrafast folders11 and the rate of contact formation in unfolded protein ensembles,70 as well 

as those based on simulations10 and theoretical predictions.71 In particular, this value 

compares well with that (107±1 s−1) determined by Yu et al., 8 who used single-molecule 

force spectroscopy to characterize the folding free energy landscape and rate of a prion 

protein. Therefore, these agreements provide further support, albeit indirectly, of our 

interpretation and analysis of the kinetics results obtained with 10b-azob.

Although all of the evidence supports the aforementioned folding mechanism of 10b-azob, it 

is worth mentioning that an alternative interpretation for the observed nonexponential 

behavior is due to projection of the protein onto an incipient downhill folding landscape 

upon azobenzene isomerization. Gruebele and coworkers72–73 have found that under certain 

conditions, proteins can be engineered to fold in a complex manner in which there is both a 

slow phase due to some molecules diffusing on a landscape containing a barrier (activated 

folding) and a fast phase resulting from other molecules navigating a barrier-less landscape 

(downhill folding). We have tentatively ruled out this possibility based on the kinetic results 

of 10b-h-azob (Figure 5) and the similar temperature dependence of the fast and slow rate 

constants of 10b-azob (Figure 4).

While extensive effort has gone into identifying the structures of folding transition states of 

peptides and proteins, aside from the ability to further stabilize these proteins and to obtain 

generic protein design strategies there have not been many examples of using this 

knowledge to actively change the nature of a protein’s folding, e.g. altering the shape of the 

protein folding free energy barrier. Here, we show, using Trp-cage as a testbed, that it is 

possible to tune the attempt frequency of protein folding dynamics via rigidification of the 

transition state. Specifically, we exploit the trans to cis isomerization of an azobenzene 

cross-linker via phototriggering to not only initiate folding but also provide a certain degree 

of constraint on the conformational flexibility of the α-helix of Trp-cage, which has 
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previously been shown to be formed in the transition state. Transient IR measurements 

reveal that this strategy produces biphasic kinetics of folding, with time constants that differ 

by an order of magnitude (i.e., 100 ns versus 1 μs). Further control experiments on a truncate 

of Trp-cage containing just the α-helix segment provide strong evidence indicating that the 

fast kinetic phase does not arise from an intermediate; instead, it is confirmation of a parallel 

folding pathway whose transition-state potential well has a larger curvature in comparison to 

that of the wild-type Trp-cage. Moreover, from these experimental results, we are able to 

estimate the frequency of the transition state of Trp-cage to be on the order of 1010 rad/s.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic representation of how the azobenzene cross-linker alters the curvature of the 

folding free energy surface of Trp-cage.
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Figure 2. 
Absorption spectra of dark-equilibrated and light-irradiated 10b-azob peptides (~10 μM), as 

indicated. The light-irradiated sample was prepared by irradiating the dark-equilibrated 

sample with 355 nm light (~8.8 mW cm−2) for 5 minutes.
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Figure 3. 
CD spectra of dark-equilibrated and light-irradiated 10b-azob samples (~33 μM in a 20/80 

trifluoroethanol/water solution), as indicated. The light-irradiated sample was prepared as 

described in the caption of Figure 2. Inset: CD T-melt of the light-irradiated 10b-azob 

sample, monitored at 222 nm. The solid line is a fit of the data to a two-state model using the 

same thermodynamic parameters determined for the wild-type Trp-cage 10b.40
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Figure 4. 
Conformational kinetics of 10b-azob (in a 20/80 trifluoroethanol/water solution) induced by 

a nanosecond 355 nm laser pulse and probed at different frequencies, as indicated. These 

kinetic traces were collected at 25 °C and in each case a linear and instrument-limited signal 

arising from the solvent due to the pump induced temperature jump (approximately 1 °C) 

has been subtracted for clarity. The smooth lines are fits of these traces to a double-

exponential function with the following time constants (relative percentages): 90 ± 20 ns (74 

%) and 1100 ± 100 ns (26 %) for 1630 cm−1, and 120 ± 20 ns (54 %) and 1000 ± 90 ns (46 

%) for 1680 cm−1. Inset: Temperature dependence of the fast and slow rate constants of 10b-

azob obtained at 1630 cm−1.
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Figure 5. 
Conformational kinetics of 10b-h-azob (in a 20/80 trifluoroethanol/water solution) induced 

by a nanosecond 355 nm laser pulse and probed at different frequencies, as indicated. These 

kinetic traces were collected at 24.4 °C and in each case a linear background signal arising 

from the solvent has been subtracted for clarity. The smooth lines are fits of these traces to a 

single-exponential function with the following time constants: 960 ± 60 ns for 1630 cm−1, 

and 860 ± 40 ns for 1680 cm−1.
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