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Summary

Medulloblastoma is the most common malignant pediatric brain tumor. Current treatments 

including surgery, craniospinal radiation and high-dose chemotherapy have led to improvement in 

survival. However, the risk for recurrence as well as significant long-term neurocognitive and 

endocrine sequelae associated with current treatment modalities underscore the urgent need for 

novel tumor-specific, normal brain-sparing therapies. It has also provided the impetus for research 

focused on providing a better understanding of medulloblastoma biology. The expectation is that 

such studies will lead to the identification of new therapeutic targets and eventually to an increase 

in personalized treatment approaches.
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Approximately 400–500 new cases of medulloblastoma (MB) are recorded in the USA 

every year, primarily in children [1]. Current treatment includes surgery followed by 

radiation and chemotherapy [2,3]. Event-free survival and overall survival vary based on 

histology: (desmoplastic/nodular MB [DNMB] or MB with extensive nodularity [MBEN], 

classic MB [CMB] and large-cell/anaplastic [LCA]), extent of resection and presence of 

metastatic disease at diagnosis. Mortality rates have declined with 60–80% of patients 

surviving the disease [4,5]. Unfortunately, survivors have poor quality of life associated with 

disease and therapy-related side effects including long-term physical, endocrine, intellectual 

and cognitive impairment [6]. Furthermore, these children are at risk for recurrence and 

secondary malignancies [6]. Children younger than 3 years of age also tend to have worse 

outcomes [7]. Thus, there is an urgent need to re-evaluate and recalibrate clinical practice to 

limit damage to the developing brain and to improve survival. The research and clinical 

community have mined human tumor samples to help determine a path forward. As 

discussed below, studies focused on genetic and epigenetic analyses of patient tumors have 

shown that MB is not a single disease [8]. This is further complicated by intratumoral 

heterogeneity, leading to a growing recognition that in place of a uniform therapeutic 

approach for all MB patients, clinical decisions should take into consideration 

histopathology and clinical staging in conjunction with knowledge of tumor biology [8,9].

Here, we provide an overview of emerging data from high-throughput analyses of patient 

tumors, studies on signaling pathways with animal models and efforts to identify novel 

molecular targets for clinical application. We also discuss the state of newly initiated clinical 

trials to test molecularly targeted therapies and immunotherapy, and efforts to integrate 

conventional and novel treatment approaches (Figure 1).

Cerebellar development & MB subtypes

Earliest studies of MB patients suggested a link between perturbations in cerebellar 

development and genesis of the disease. Familial inheritance accounts for a subset of MBs 

and is seen in patients with Gorlin’s, Turcots and Li-Fraumeni syndrome [10]. Gorlin’s 

syndrome associated with inactivating mutations in the PTCH-1, -2 and SUFU tumor 

suppressor genes, predisposes to MB development by deregulating the Sonic Hedgehog 

(Shh) developmental pathway [10]. Turcot’s syndrome is characterized by inactivating 

mutations in the APC gene, and results in constitutive activation of the Wingless (Wnt) 

signaling pathway [10]. Finally, patients with Li–Fraumeni syndrome have germline 

mutations in the p53 tumor supressor gene, which predisposes them to various cancers 

including MB [10]. These observations have led to the generation of the first genetically 

engineered mice (GEM) models for Shh and the Wnt driven MBs [11–13]. The animal 

models in turn have been critical for the identification of the granule neural precursors 

(GNPs) and the rhombic lip precursors as the cells of origin of Shh and Wnt tumors 

respectively, the identification of downstream signaling cascade, and finally investigations 

on targeted therapy.

Sproadic MBs are driven by Shh pathway activation in approximately 20–25% of the cases, 

while Wnt pathway activation drives approximately 15% of these tumors. Amplifications in 
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c-MYC and N-MYC occur in 5% of human MBs, while increased expression of gene or 

protein in the absence of amplification is common in 20–40% of tumors and is associated 

with poor prognosis [14].

MB genomics

In one of the first application of high-throughput methodologies to pediatric brain tumors, 

the Pomeroy group showed MBs and atypical teratoid rhabdoid tumors to be distinct disease 

entities [5]. The disconnect between histological subtyping and outcomes subsequently 

provided the impetus for international collaborative genome-based studies and efforts to 

reclassify MBs based on their molecular profile. These genetic and transcriptional profiling 

studies have led to the identification of four distinct molecular subtypes of MB: WNT/

Wingless, SHH/Sonic Hedgehog, Group 3 and Group 4 [14–26]. Whereas WNT sub-group 

of tumors displayed predominantly CMB histology, SHH tumors included the DNMBs, 

CMBs and LCA subgroups. Group 3 and 4 tumors present as CMBs or highly aggressive 

LCAs [14–26]. The molecular classification of MBs in combination with histopathology has 

also allowed better prediction of likelihood of metastasis. Thus, patients with WNT tumors 

rarely have metastasis and respond well to therapy, whereas a subset of children with Shh-

driven tumors as well as children with high-risk Group 3 and intermediate-risk Group 4 

MBs have a significantly increased risk of developing disseminated disease [14–26].

Nevertheless, the same aggressive approach is used to treat all MB patients. SHH, Group 3 

and Group 4 patients fail to benefit from the current treatment approaches [3]. Given the 

better outcomes seen in patients with Wnt-driven tumors, the merits and demerits of 

treatment de-escalation, specifically craniospinal radiation is being critically debated within 

the clinical community.

Time for paradigm shift in MB therapeutics?

MB genomics has not only significantly advanced our understanding of tumor biology, but 

also led to the molecular reclassification of these tumors and set the stage for recalibrating 

treatment based on specific needs of each patient. We summarize below the hallmarks of the 

various MB subgroups, preclinical investigations with mouse models and important clinical 

steps to help improve survival and quality of life.

WNT subgroup

Wnt tumors characterized by constitutive activation of Wnt signaling exhibit mutations in 

CTNNB1, AXIN1 and CTNNB1-associated chromatin re-modelers such as SMARCA4 and 

CREBBP and epigenetic silencing of genes encoding Wnt signaling antagonists, SFRP and 

DKK1 [23–29]. Mutations in p53 are seen in approximately 16% of WNT subgroup tumors 

[30].

GEM models have definitively shown that constitutive activation of Wnt-β-Catenin 

signaling in cells of the lower rhombic lip drives development of lesions with proliferating 

Zic1+ cells [13]. In agreement with data from patient samples, 15% of these mice suffer 

concurrent deletion of p53, resulting in tumors that recapitulate features of human WNT 
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subtype of tumors [13]. These studies also identified genes that maintain this cell lineage 

(DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in 

tumorigenesis [13].

Because patients with Wnt tumors have good prognosis and respond well to current standard 

of care, de-escalation of treatment has been prioritized for clinical evaluation so as to 

maintain optimum cure rates while aiming for a reduction in side effects [3].

SHH subtype

SHH-subtype MBs are distinguished by constitutive activation of Shh signaling due to 

lossof- function mutations in PTCH1/2 and SUFU, gain of function mutations in SMO or 

GLI-1/2 amplification, and account for approximately 50% of Shh driven MBs [13–26]. P53 

mutations are seen in a subset of patients with Shh-driven MBs, and portends poor prognosis 

[30]. These tumors are frequently of the DNMB or MBEN histological subtypes, although a 

few LCA variants are seen. Indeed, DNMB and MBEN histological subtypes are seen 

exclusively within the SHH subgroup of MBs. While the prognosis is generally good for 

patients with Shh-driven tumors, children that present with LCA tumors often have poor 

prognosis [13–26]. The mechanism(s) underlying this variability are not clear. Mutations in 

the gene encoding the telomerase reverse transcriptase were seen in approximately 83% of 

MBs obtained from adult patients, but had an interesting association with good prognosis 

[31].

GEM models carrying deletion of a copy of the PTCH1 gene or knock-in of commonly 

occurring SMO1 mutations in patients have unequivocally shown that Shh-driven MBs arise 

from cerebellar GNPs [11,12]. These animal models in conjunction with cell culture systems 

have unraveled the biology and regulatory network of Shh signaling, providing novel 

druggable nodes and the basis for numerous preclinical studies. For example, 

pharmacological inhibition of SMO blocks signal transduction and tumor cell proliferation 

[32–35]. However, even brief inhibition of Shh signaling in mouse models with the inhibitor 

HhAntag caused permanent defects in bone development in young mice, precluding further 

investigations [34]. MBs harboring mutations in PTCH1 are responsive to SMO inhibitors 

such as GDC-0449/vismodegib, whereas mutations (in SUFU) or amplification (of MYCN) 

of downstream signaling molecules render tumor cells unresponsive to such agents [36,37]. 

Cholesterol and specific oxysterols are required for Shh pathway signaling, and 

pharmacological inhibition of their synthesis blocks signal transduction and tumor cell 

proliferation [38].

Receptor tyrosine kinases including IGF and HGF/c-Met signaling through PI3K are 

required for Shh-mediated tumorigenesis. PI3K inhibitors, AKT inhibitors, HGF-blocking 

antibodies alone or in combination with SHH ligand neutralizing antibodies, SMO 

antagonists and Gas and Survivin inhibitors have all elicited robust response in mouse 

models [39–45].

Although, the role of Notch signaling in MB genesis has been debated, a recent 

transcriptome analysis of pediatric MB samples showed that HES1 overexpression is 

directly related to shorter survival [46–48]. Although, these analyses were not conducted 
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specifically in the context of Shh-driven tumors, the observations that Notch2 regulates GCP 

proliferation and that it plays a role in tumor development in SmoA1 mouse models suggest 

a role for Notch activation in Shh-driven tumors [47,49]. Interestingly, studies with a novel 

GEM model have shown Shh group of MBs to be generated by activation of Notch signaling 

in neural stem cells and or in glial cells [50]. If true, pharmacological inhibition of Notch 

signaling in tumor stem cells or in the tumor microenvironment could be applied for 

treatment of patients with Shh subgroup of MBs [51]. There is now evidence for negative 

regulation of Wnt signaling by SUFU, indicating cross-talk between Shh and Wnt signaling 

pathways as well [52]. These factors will impact the effectiveness of Shh inhibitors in 

patients and should be considered during trial design.

In one of the first studies to show therapeutic potential of targeting MB metabolism, 

Gershon and colleagues demonstrated PI3K signaling-dependent induction of aerobic 

glycolysis in tumors in Smo-M2 mice [53]. Loss of aerobic glycolysis blocked tumor growth 

and promoted long-term survival in tumor-bearing mice. Shh signaling has been linked to 

the regulation of the MB epigenome by promoting increased transcription and sustained 

activation of histone deacetylases (HDACs) leading to increased GNP proliferation [54]. 

Thus, HDAC inhibitors may have applications in the treatment of Shh- driven MBs.

The variable responsiveness of MBs to chemotherapy and radiation has been attributed to its 

heterogeneity and the presence of a population of cells called tumor-propagating cells [55]. 

These cells are often stem cell-like and are marked by the cell surface antigen CD15/

SSEA-1. In PTCH mutant mice, CD15+ tumor-propagating cells have dysregulated 

expression of Aurora kinase and Polo-like kinases (PLK), proteins involved in control of 

G2-M transit [55]. This vulnerability could be targeted by pharmacological inhibition using 

the PLK antagonist BI2536, which also enhanced the sensitivity of tumor cells to 

conventional chemotherapy in vitro and in vivo [55,56].

PI3K/AKT activation is important in MB dissemination and radio-resistance in mice [57–

60]. In preclinical studies, the drugs (PIK-75 and YM024) targeting the p110α catalytic 

subunit of PI3K suppressed MB growth [59]. In addition, YM024 and IC87114 (an inhibitor 

of the p110δ subunit of PI3K) impaired MB cell migration and invasion. The mTORC1 

inhibitor RAPA (rapamycin) also suppressed proliferation and migration of MB cells, 

although the novel mTORC1/2 inhibitor-pp242 appeared to have greater efficacy in 

inhibiting these processes [59]. Targeting the AKT kinase PDK1 alone with OSU03012 or 

in combination with the RAPA analog CCI-779 also synergistically blocked AKT activation 

resulting in potent suppression of MB growth in vitro and in vivo [59]. Interestingly, an 

association between elevated expression of the chromatin remodeler, REST, and 

leptomeningeal disease development was shown in a subset of patients with Shh-driven 

tumors [61]. A similar observation was made by a separate study, although not necessarily 

in the context of constitutive Shh activation, which raises the possibility that REST may 

have a role in driving metastatic disease [62]. REST is associated with a number of 

druggable activities such as HDAC1/2, the histone methyl transferase-G9a and the histone 

lysine demethylase LSD1, and REST-high MBs are more sensitive to HDAC inhibitors 

compared to low-REST isogenic cells [61]. REST also represses the transcription of the 
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anti-proliferative deubiquitylase USP37, and drugs that reactivate USP37 expression may 

have therapeutic applications [63].

Preclinical studies directed at understanding therapeutic resistance in Shh-driven MBs have 

identified mutations in SMO, GLI-2 amplification and activation of PI3K signaling as major 

contributors to drug resistance [36]. For example, resistance to the SMO inhibitor 

vismodegib was attributed to D473H point mutation in SMO [37]. However, resistance to 

the drug saridegib was independent of the D473H mutation and Gli2 amplification, and was 

attributed to induction of P-glycoprotein activity [35]. Resistance to the SMO antagonist 

NVP-LDE225 in vivo could be countered by inhibiting PI3K activity using either NVP-

BKM120 (a PI3K inhibitor) or NVP-BEZ235 (a dual PI3K and mTOR inhibitor) and 

mitigated by PTEN loss, suggesting that PI3K activation constitutes a mechanism of drug 

resistance in Shh-driven MBs [64,65].

Group 3

These tumors account for 25% of all MBs and occur more commonly in males and young 

children, and hardly ever comprise adult patients [13–26]. They frequently encompass the 

LCA and CMB histologic subtypes, with 50% of the patients exhibiting metastasis at 

presentation [13–26]. Survival is the lowest in children in this group and is currently at a 

dismal 20% [13–26].

Recent data suggest that cerebellar GNPs may give rise to Group 3 tumors, although the 

drivers for this subgroup of tumors are likely to be distinct from constitutive Shh activation 

[66–68]. Mutations in p53 that are seen in Shh and Wnt tumor subgroups are absent in 

subgroup 3 tumors [30]. Gains in chromosome 1q, 7 and 17q and deletions of 10q,11, 16q 

and 17p are frequently detected, indicating a high level of genomic instability [66–68]. 

Elevated c-Myc expression often with focal amplification of the locus, PVT1-Myc fusion, 

elevated expression of OTX2, as well as an increased frequency of mutations in histone H3 

lysine (K)-27 demethylases are hallmarks of Group 3 MBs [66–68]. OTX2 overexpression 

and knockdown is associated with up- and downregulated expression of several polycomb 

genes including EZH2, EED, SUZ12 and RBBP4 and genes encoding H3K27 demethylases: 

KDM6A, KDM6B, JARID2 and KDM7A [66,69]. A novel genetically engineered mouse 

model with constitutive OTX2 expression in the postnatal hind-brain showed accumulation 

of clusters of proliferative cells originating from neural progenitors of the rhombic lip 

(dorsal brain stem) and migrating GNPs in cerebellar white matter [70]. OTX2 knockdown 

in human MB cells increased survival of tumorbearing mice, indicating that OTX2 is 

necessary for tumor maintenance [71]. Studies such as these not only provide insights into 

mechanisms by which chromatin remodeling is involved in tumor development, but also 

provide a new class of drug targets. For example, the OTX2 target- EZH2 can be 

pharmacologically manipulated by GS2816126, an agent under clinical investigation for 

adult patients with hematological malignancies [72].

A novel mouse xenograft model (HD-MB03) established from a patient tumor with 

molecular features Group 3 MBs including isochromosome 17q and MYC amplification 

revealed strong expression of a number of HDACs, including HDAC-2, -5, -8 and -9 [73]. 
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Consistent with these findings, HD-MB03 cells displayed increased sensitivity to the HDAC 

inhibitors, vorinostat and panobinostat [73]. These inhibitors also conferred increased 

radiation sensitivity to HD-MB03 cells, providing support for the use of HDAC inhibitors 

for the treatment of patients with Group 3 MBs [73].

Molecules that contribute to leptomeningeal disease development in Group 3 tumors are 

understudied [74,75]. Myc is a prime candidate because of its known roles in regulating 

migration, invasion and angiogenesis, processes critical to tumor metastasis. Myc inhibition 

for cancer therapy has been investigated over the years with little success. Nevertheless, 

agents that target Myc such as S2T1–6OTD, a telomestatin derivative that can bind to the c-

Myc promoter, as well as agents that can modulate Myc expression including all-trans-

retinoic acid (ATRA), the quassinoid analog NBT-272, the anti-convulsant and HDAC 

inhibitor-valproic acid (VPA), the polyphenol resveratrol, have shown efficacy in vitro and 

in mice, and their further investigation in MYC-high MBs may be warranted [76,77]. The 

availability of three separate Myc-driven mouse models of LCA MB should further aid in 

such preclinical studies [78–81].

Immunotherapy is being increasingly viewed as a weapon for use in combination therapy or 

as an alternative to conventional treatments [82–85]. The ability of immune cells to traffic 

also increases their attractiveness for treatment of metastatic disease. However, MBs appear 

to be immunosuppressive in comparison to other pediatric brain tumors and have fewer 

infiltrating immune cells, which are dominated by immunosuppressive M2 macrophages, 

CD8+ and CD4+ T cells [86]. The elevated expression of the nonclassical MHC CD1d gene, 

which encodes a receptor for a class of cytotoxic T cells, was recently leveraged to show 

tumor regression in an Shh mouse model and could be an attractive option for other 

metastatic MB subgroups as well [87]. The application of T cells for MB treatment could 

however be hampered by the low expression of HLA-I in neural tumors. The use of chimeric 

antigen receptor (CAR)-T cells avoids this problem and the use of CAR-T cells specific for 

HER2 showed efficacy against MB in a murine model [88]. The requirement for tumor-

associated antigens (TAAs) can also be circumvented by harnessing the power of 

components of the innate immune system, such as natural killer (NK) cells [89–91]. NK 

cells have been tested successfully in cell culture systems [89–91].

Because B-cell function appears to be unaffected in MB patients, antibodies specific for a 

few TAAs can be evaluated alone or in conjunction with radiation or chemotherapy [92]. 

SHH and HGF blocking antibodies have been studied for efficacy in murine xenograft 

models [41]. Finally, antibodies against immunosuppressive molecules or drugs such as 

HDAC inhibitors that can increase tumor immunogenicity and alter the sensitivity of MBs to 

immune cells appear attractive for MB treatment [93].

Group 4

Group 4 tumors occur more frequently in older children and accounts for 35% of all MBs. 

Tumors are frequently of CMB histology with a few instances of LCA [23–29]. Metastasis 

is observed in 33% of these cases at diagnosis [23– 29]. Mutations in p53 have not been 

described [30]. These tumors exhibit a neuronal molecular signature and exhibit elevated 
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expression of OTX2, N-Myc, FST and CDK6 [13–26]. Isochromosome 17q and deletion of 

17p is a common occurrence [13–26]. Children with Group 4 tumors have an intermediate 

prognosis [13–26]. Group 4 tumors in adult patients have a particularly poor prognosis [13–

26]. Although, these MBs are the most commonly occurring tumors, their biology is the 

least understood.

N-Myc expression is elevated in human Group 4 MBs and its overexpression driven by the 

hind-brain specific Glt-2 promoter in postnatal neural stem cells resulted in non-Shh 

dependent, disseminated tumors with classic and LCA histology. Metastatic disease 

development combined with elevated N-Myc and their non-Shh signature suggest that these 

tumors may resemble human subgroup 4 MBs [79].

Bmi-1 is a polycomb group repressor complex gene overexpressed across all MB subgroups 

but most significantly in Group 4 tumors and is associated with deregulation of cell adhesion 

molecules. In vitro assays identified Bmi-1 dependent perturbation of cell adhesion and 

motility through repression of bone morphogenetic proteins (BMPs) [94]. In vivo, Bmi-1 

controlled invasion in a novel xenograft model of human MB [94]. Thus, BMP agonists may 

have potential application in the treatment of Group 4 MBs [94].

Tumor biology drives novel clinical trials

Despite considerable preclinical data for targeted therapy, only few agents have been 

investigated as single agents or in combination with standard of care drugs in pediatric 

clinical trials. The SMO inhibitor GDC-0449/ vismodegib was recently evaluated in a Phase 

I clinical trial (NCT00822458) involving children with refractory or relapsed MB [95–98]. 

The drug was well tolerated with a recommended Phase II dose of 150 or 300 mg. Two 

dose-limiting toxicities were observed [98]. A partial response was seen in a participant with 

metastatic MB [98]. It is under active evaluation in combination with temozolomide in a 

Phase I/II study in children (NCT01878617) and adults (NCT01601184) with MB. NVP-

LDE225 (sonidegib) is another SMO inhibitor under clinical investigation as monotherapy 

in pediatric and adult MB patients (NCT01125800) [99]. It was well tolerated and response 

was observed in a few patients [98]. A Phase I study of sonidegib in combination with 

buparlisib (PI3K inhibitor) in adults with advanced solid tumors is ongoing 

(NCT01576666). The AKT inhibitor MK-2206 was evaluated in a Phase I/II trial of 

pediatric patients with refractory solid tumors (NCT01231919); study results remain to be 

released. mTOR inhibitors have been scrutinized in a number of trials for pediatric solid 

tumors. In a Phase I study, the drug everolimusin was well tolerated with a maximum 

tolerated dose (MTD) of 5 mg/m2 [100]. deforolimus, another mTOR inhibitor, was well 

tolerated in a Phase I trial of pediatric patients with advanced cancers, with one partial 

response several instances of stable disease [101]. The Phase I study of a third mTOR 

inhibitor, temsirolimus, revealed safety. However, an MTD was not obtained, and the drug 

failed to meet criteria for its use as a single agent [102]. Temsirolimus has also been paired 

with irinotecan and temozolomide (NCT01141244, COG-ADVL0918) in a completed Phase 

I study for young patients with relapsed or refractory solid tumors; study results have not 

been posted. The most recent mTOR inhibitor under evaluation in a Phase I trial is 

ridaforolimus, both alone (NCT01431534) and in combination with dalotuzumab 

Gopalakrishnan et al. Page 8

CNS Oncol. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(NCT01431547). Results of these studies have not been posted. A Phase I (NCT01670175) 

studying the combination of rapamycin (sirolimus), cyclophosphamide and topotecan, in 

pediatric and young adults with relapsed and refractory solid tumors is currently open. 

sirolimus was previously studied in combination with vinblastine (NCT01135563); no 

results have been published to date.

The Notch pathway is known to be important for maintenance of tumor stem cells, a 

population believed to contribute to treatment resistance [103]. Notch inhibition by the agent 

MK-0752 was evaluated in a recently completed Phase I trial of pediatric patients with 

recurrent CNS tumors [103]. Though safety was demonstrated efficacy was modest, thus 

undermining its use in future trials [103].

HDAC inhibitors have been investigated in two separate Phase I trials in pediatric patients 

with relapsed/refractory CNS tumors. The HDAC inhibitor vorinostat was well tolerated 

when combined with either temozolomide or bortezomib (NCT01076530, NCT00994500) 

[104,105]. The combination of vorinostat, isotretinoin and chemotherapy is under 

investigation in young patients with embryonal tumor (NCT00867178).

Immunotherapy has been gaining ground as a therapeutic approach for CNS malignancies. 

The intrathecal infusion of lymphocyte-activated killer (LAK) cells from allogeneic donors 

in a cohort of six patients with disseminated MB showed some success with three patients 

displaying no disease or neurological toxicity following treatment [106]. One other case 

report also echoed this success, warranting further investigation of LAK cells for pediatric 

CNS tumors [107]. A novel clinical trial investigating the safety and feasibility of fourth 

ventricular infusion of ex vivo expanded and activated NK cells has recently received US 

FDA approval and is anticipated to begin accruing pediatric patients with recurrent/

refractory tumors of the posterior fossa.

131I conjugated GD2 antibodies have been evaluated for the treatment of MB, although a 

major drawback has been neuropathy associated with the use of GD2 as a target [108]. The 

use of high-dose chemotherapy followed by autologous stem cell transplant currently being 

pursued in multiple clinical trials holds promise, and has been attributed to the ‘resetting’ of 

the immune system [109]. However, the high relapse rates underscore the need for new 

combinations to augment the host antitumor immune response.

Conclusion & future perspective

The above discussion has provided a panoramic view of the preclinical studies that have 

examined the feasibility of targeting MBs. Of these, a few novel agents targeting Shh 

signaling and PI3K pathway have been explored in Phase I clinical trials in children (Figure 

1). At present, very few have been studied in Phase II/III trials. Trial designs should take 

into consideration inter- and intratumoral heterogeneity in MBs, and also leverage high-

throughput genomics and epigenomics to arrive at a panel of biomarkers that will help 

predict patient response to therapeutics.
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Practice points

• Medulloblastoma is a heterogeneous disease.

• Molecular subgrouping and biology in conjunction with histopathology is 

increasingly driving prognostication.

• Molecular mechanisms underlying metastatic disease remain to be fully 

understood.

• Molecular subgrouping provides an opportunity for personalized medicine.

• Combination chemotherapeutic approaches will be important to tackle treatment 

resistance.

• Immunotherapy may be a novel tool for the treatment of pediatric brain tumors.
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Figure 1. Overview of major signaling pathways and druggable nodels in medulloblastoma
Targets of drugs under clinical investigation in children with pediatric solid/brain tumors are 

circled.
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