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Abstract

The endoplasmic reticulum-lysosome-Golgi network plays an important role in Reelin 

glycosylation, and its proteolytic processing. Golgi complex fragmentation is associated with the 

separation of Reelin from this network. Kainic acid (KA) is an excitotoxic agent commonly used 

to induce epilepsy in rodents. The relationship between KA-induced neuronal damage and Golgi 

complex fragmentation has not been investigated, leaving a major gap in our understanding of the 

molecular mechanism underlying the development of pathophysiology in epilepsy. We cultured 

primary rat cortical neurons either in ambient condition (control) or treated with a range of KA 

doses to reveal whether Golgi complex fragmentation impaired neuronal function. The half-life 

maximal inhibitory concentration (IC50) value of KA was detected to be approximately 5 µM, 

whereby at these concentrations KA impaired neuronal viability, which was closely associated 

with initial Golgi complex fragmentation and subsequent reduction in both the expression and 

glycosylation patterns of Reelin. These findings implicate that Golgi complex fragmentation and 
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Reelin dysfunction are key contributors to neuronal cell death in the early stage of epilepsy 

pathophysiology, thereby representing as novel disease biomarkers, as well as potent therapeutic 

targets for epilepsy.
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Introduction

Epilepsy is a debilitating neurological disorder affecting approximately 2% of the world’s 

population. Over three million Americans suffer from some form of epilepsy, with mesial 

temporal lobe epilepsy (TLE) being the most common, arising from the temporal lobe 

structures of amygdala, hippocampus, and parahippocampal gyrus [1]. Despite the 

availability of many antiepileptic drugs (AEDs), greater than 30% of TLE patients will have 

seizures refractory to standard therapeutics, highlighting the need for more effective 

therapies. [2].

The Golgi complex is localized around the centriole, a regulator of cell-cycle progression, 

and is a cytoplasmic organelle that participates in maturation and modification of membrane 

proteins during transport from the site of synthesis in the endoplasmic reticulum (ER) [3] 

[4]. Golgi complex fragmentation irreversibly occurs during apoptosis, when the Golgi 

complex fragments to produce clusters of vesicles that disperse throughout the cytoplasm 

[5]. The Golgi complex fragmentation is not only essential for cell entry into mitosis [6], but 

also is a pathological feature of several neurodegenerative diseases including Alzheimer’s 

disease [7], Parkinson’s disease [8], amyotrophic lateral sclerosis [9], and Creutzfeldt-Jakob 

disease [10].

Reelin is an extracellular matrix glycoprotein [11] synthesized and secreted by Cajal-Retzius 

cells in the marginal zone of the cortex [12]. It localizes to Golgi complex [13] where it is 

extensively processed within the ER-lysosome-Golgi network [5]. Secreted Reelin binds the 

apolipoprotein 2 receptor (ApoE2R) and the very low density lipoprotein receptor (VLDLR) 

[14] as well as the extracellular domain of ephrin B proteins (EFNBs) [15], which associate 

with ApoE2R and VLDLR. These interactions in turn induce phosphorylation of the 

cytoplasmic adaptor protein Disabled-1 (Dab-1) by Src family tyrosine kinases (SFKs), Fyn 

and Src, associated with signaling of integrin pathways [16]. The physiological dysfunction 

of Reelin has been implicated in the pathogenesis of several neurodegenerative diseases 

including epilepsy [17] [18], depression [19], schizophrenia [15], and Alzheimer’s disease 

[11] [20]. The ER-lysosome-Golgi network assumes a major function in Reelin protein 

modification (glycosylation), its proteolytic processing (180 and 320 kDa fragments), and 

the synthesis of proteoglycans, which are composed of molecules of extracellular matrix 

[11].

Unilateral injection of kainic acid (KA), an agonist to the excitatory neurotransmitter 

glutamate, into rodent brain induces epileptic activity and epileptic seizures, and granule cell 

dispersion [21]. KA possesses neurotoxicity involving epileptogenic effect via the α-
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amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors that 

respond to the neurotransmitter glutamate [22]. KA induced caspase activation and 

subsequent DNA fragmentation are key features of the apoptotic pathway leading to 

neuronal death [23,24]. However, KA-induced Golgi complex fragmentation remains to be 

examined in electrophysiological hyperactivity models, which mimic seizure and epilepsy.

In this study, we observed that the administration of KA in primary rat neuronal cells 

promoted neuronal dysfunction by facilitating the Golgi complex fragmentation/dispersal, 

which in turn may damage a sophisticated network of biochemical reactions involved in 

energy production and macromolecular biosynthesis. The present results demonstrated that a 

dysfunctional Golgi-Reelin interaction may contribute to the disease pathophysiology of 

epilepsy.

Materials and methods

Cell Culture

Primary rat neuronal cells (PRNCs) were obtained from BrainBit (E18 rat cortex). 

According to the previous reference [25], cells (4 × 104 cells/well) were suspended in 200 µl 

Neural Medium (NbActive 4, BrainBit NB4-500) containing 2 mM l- glutamine and 2% 

B27 in the absence of antibiotics and grown in poly-l-lysine-coated 96-well plates (BD 

354516) at 37°C in humidified atmosphere containing 5% CO2 in 40% of the neuron and 

60% astrocyte cell population [25]. After 3 days of culturing (approximately 60% cell 

confluence), PRNCs were exposed to KA (1.25 nM ~ 125 µM) for 3 days at 37°C.

Measurement of Cell Viability

Measurement of cell viability was performed by both fluorescent live/dead cell assay and 

trypan blue exclusion method [26]. A two-color fluorescence cell viability assay was 

performed by calcein acetoxymethyl ester (calcein-AM, Invitrogen C3099) to be retained 

within live cells, including an intense uniform green fluorescence and ethidium homodimer 

(EthD-1) to bind the nuclei of damaged cells. Following treatment, the cells were incubated 

with 2 µM calcein-AM and 4 µM EthD-1 for 45 min at room temperature in dark. After 

washing once with phosphate buffer saline, PBS, (Sigma-Aldrich P-3813), the green 

fluorescence of the live cells was measured by the Gemini EX florescence plate reader 

(Molecular Device), excitation at 490 nm and emission at 520 nm. In addition, trypan blue 

(Gibco 15250, 0.4%) exclusion method was conducted and mean viable cell counts were 

calculated in 4 randomly selected areas (1 mm2, n = 10) to reveal the cell viability. Briefly, 

within 5 min after adding trypan blue, we digitally captured under microscope (200×) 10 

pictures (approximately 100 cells/picture) for each condition, then randomly selected 5 

pictures, and counted the number of cells for each individual treatment condition. 

Normalized cell viability was calculated from the following equation: viable cells (%) = 

[1.00 − (Number of blue cells /Number of total cells)] × 100. To precisely calibrate the cell 

viability, the values were standardized from florescence intensity and trypan blue data [25].
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Measurement of Mitochondrial Activity

Following cell culture, reduction of 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium 

bromide (MTT) (Roche 11465007001) by mitochondrial dehydrogenases was used as a 

measure of mitochondrial activity as previously described [25]. Briefly, the cells were 

treated with 0.5 mg/ml MTT solution at 37°C for 4 h, and subsequently incubated with lysis 

buffer for 14 h in the incubator in a humidified atmosphere at 37°C and 5% CO2. The 

optical density of solubilized purple forzmazan was measured at 570 nm on a Synergy HT 

plate reader (Bio-Tex).

Western Blot Analysis

PRNCs were treated with CelLytic MT mammalian lysis reagent (Sigma-Aldrich, C3228) 

with protease inhibitor cocktail (Sigma-Aldrich, I3786). The lysate was centrifuged at 3,000 

g and 4 °C for 15 min, and the supernatant was stored at −80°C until used. Protein samples 

(10 ~ 60 µg/lane) were run on 4~14% Tris-Glycine SDS-PAGE gel [27] and then transferred 

onto a nitrocellulose membrane (Bio-Rad 162-0112) at 30 V, 4 °C for 14 h. The 

nitrocellulose membranes were treated with PBS containing 0.1% Tween-20 and 5% non-fat 

milk (Bio-Rad 170-6404) for 45 min at room temperature. Membranes were then incubated 

with the primary antibodies, anti-Reelin mouse antibody (LSBio LS-C90872/49638, 1/500), 

anti-human natural killer-1 (HNK1) rabbit antibody (Bioss bs-1635R, 1/500), anti-

glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) [6C5] mouse antibody (Abcam 8245, 

1/5,000), and rabbit polyclonal anti- cis-Golgi glycoprotein of 130 kDa (GM130, Abcam 

ab28049, 1/500), at 4°C for 14 h. After washing with PBS containing 0.1% Tween-20 

(PBST), the nitrocellulose membrane was incubated with donkey anti-mouse 

IRDye800®CW secondary antibody (LI-COR 926-32212, 1/5,000) or donkey anti-rabbit 

IRDye800®CW secondary antibody (LI-COR 926-32213, 1/5,000) for 90 min at room 

temperature in dark. Immunoreactive detection using near-infrared fluorescence was 

performed according to protocol of Odyssey® Infrared Imaging System (LI-COR®). 

Molecular weight estimation of the full-length Reelin protein (400 kDa) and its fragments 

(180 kDa and 320 kDa) using SeeBlue®; Plus Pre-stained standard (Invitrogen, LC5925) 

was calculated from plotting a standard curve of logarithm molecular weight versus target 

protein mobility.

Immunoprecipitation (IP) Assays

After PRNC whole cell lysate (400 µg/100 µl PBS containing protease inhibitors (Sigma-

Aldrich, I3786)) was interacted with anti-Reelin mouse monoclonal antibody (LSBio LS-

C90872/49638, 1/50) at 4°C for 16 h, the lysate was incubated with 50 µl Protein G agarose 

beads (Invitrogen 10-1241) at 4°C for 4 h [11]. Following antibody-protein G complexes 

were washed 3 times with 4°C RIPA buffer (Sigma-Aldrich R0278), immune complexes 

were recovered by heating the samples at 95°C for 5 min in Laemmli SDS lysis buffer 

(Bioland Scientific LLC SAB02-01).

Immunocytochemistry Analysis

After PRNCs (8 ×104 cell/well) were cultured in 400 µl Neural medium containing 2 mM l- 

glutamine and 2% B27 in the absence of antibiotics in poly-l-lysine 8-chamber (BD 354632) 
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for 3 days, the cells were then exposed to 5 µM KA for 3 days and fixed in 4% 

paraformaldehyde [25]. The cells were washed 5 times for 10 min in PBST. Then they were 

blocked by 5% normal goat serum (Invitrogen 50062Z) in PBST for 1 h at room 

temperature. Primary antibodies, mouse monoclonal anti-Golgi formiminotransferase 

cyclodeaminase (FTCD, Abcam ab27043, 1/400), rabbit polyclonal anti- cis-Golgi 

glycoprotein of 130 kDa (GM130, Abcam ab28049, 1/400), rabbit polyclonal anti-ERp29 

(Abcam ab11420, 1/500) for detecting the ER marker protein, rabbit polyclonal anti-LAMP 

(Abcam ab24170, 1/100) for detecting the lysosome marker protein, and mouse monoclonal 

anti-Reelin (Abcam ab78540, 1/400) were used. The cells were incubated overnight at 4°C 

with primary antibody with 5% normal goat serum. The cells were washed 5 times for 10 

min in PBST and then soaked in 5% normal goat serum in PBST containing corresponding 

secondary antibodies, goat anti-mouse IgG-Alexa 488 (green, Invitrogen A11029, 1/1,000) 

and goat anti-rabbit IgG-Alexa 594 (red, Invitrogen A11037, 1/1,000) for 90 min in dark. 

Finally, cells were washed 5 times for 10 min in PBST and 3 times for 5 min in PBS, then 

processed for Hoechst 33258 (Sigma B2883) for 30 min, washed in PBS, and cover-slipped 

with Fluoromount. Immunofluorescent images were visualized using confocal microscope 

(Olympus FV1000). Control experiments were performed with the omission of the primary 

antibodies yielding negative results.

Data Analysis

Data were evaluated using one-way analysis of variance (ANOVA) followed by posthoc 

Bonferroni’s t-tests. Statistical significance was preset at p < 0.05. Data are represented as 

means ± SD from quintuplicates of each treatment condition. The value of IC50 was 

calculated from the equation Y = A + [(B−A)/(1 + (x/IC50)h) + (B−A)/(F−A) − 1], where Y 

is the observed value of individual KA concentration (x), A is the y axis value of the bottom 

plateau, B is maximal value, x is the concentration of KA, h is the Hill coefficient (h ≈ 1), F 

= (B + Baseline)/2, and Baseline is the y-axis value that defines 0%, maximal inhibition by 

KA [28]. The IC50 values were estimated by plotting the logarithmic values of the different 

KA doses using GraphPad Prism 6® software.

Results

Treatment of PRNCs with KA Resembles the Early Stage of Epilepsy

PRNC viability and mitochondrial activity were significantly decreased in a dose-dependent 

manner with KA administration; the estimated IC50 values for cell viability and 

mitochondrial activity are 5.89 ± 0.185 µM and 2.79 ± 0.515 µM, respectively (Fig. 1). 

Topiramate [2,3:4,5-bis-O-(1-methylethylidene)-b-D-fructopyranose sulfamate] (TPM, 

Sigma-Aldrich T0575), a commonly used AED [21] [22], antagonizes the AMPA/kainate 

receptor-mediated signaling pathway in cultured neurons in which the drug was shown to 

produce a slow depression of KA inward current activation [29]. To confirm that reduction 

of both cell viability and the mitochondrial activity depends on the KA-induced activation of 

AMPA/kainate receptors, cell viability and the mitochondrial activity were compared in the 

presence of both KA and TPM with that of KA alone. After exposure to 5 µM KA, both cell 

viability (F2, 26 = 73.37, p < 0.0001) (Fig. 2A) and mitochondrial activity (F2, 23 = 43.87, p < 

0.0001) (Fig. 2B) were significantly decreased. Treatment of PRNCs with TPM increased 
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both cell viability and mitochondrial activity in PRNCs exposed to KA (p’s < 0.05). 

Altogether, these results indicate that this in vitro KA paradigm is reminiscent of early stage 

epilepsy.

KA Induces the Collapse of ER-Lysosome-Golgi Network

FTCD co-localizes with GM130 on the Golgi complex membrane [30], therefore, these 

antibodies were used in combination to assess Golgi complex structure. Following 

incubation of PRNCs in 5 µM KA (previously calculated IC50 of cell viability) for 3 days at 

37°C, Golgi complex fragmentation/dispersal (Fig. 3) and collapse of ER-lysosome-Golgi 

network were observed. (Figs. 4 and 5). This study is the first to report that the Golgi 

complex fragmentation occurs in the early stages of epilepsy in vitro. The Golgi complex 

not only serves a pivotal role in trafficking of ion channels, plasma receptors, and other 

transmitter molecules, but also mediates transport of exogenous molecules by retrograde and 

trans-synaptic signal transduction [4]. Appropriate Golgi complex localization/positioning is 

essential for the processing, sorting, and transport of proteins and lipids involved in cell 

wound healing and maintenance of the membrane potential [3]. We hypothesized that Golgi 

complex fragmentation/dispersal influences the processing of extracellular matrix molecule 

Reelin.

Golgi complex Fragmentation/Dispersal Influences Reelin Processing

Reelin is an extracellular matrix glycoprotein that has important functions in brain 

development, adult neurogenesis, and maintenance of synaptic plasticity [12]. Reelin is 

tightly regulated at ER-lysosome-Golgi network and modified at Golgi complex [13]. 

Matrix metalloproteinases cleave the full-length Reelin protein (400 kDa) into both 180 kDa 

and 320 kDa fragments [31]. The 320 kDa fragment is required for proper protein folding 

and essential of signaling pathways’ activity via the specific Reelin receptors. We found that 

following KA-induced Golgi complex fragmentation, intracellular Reelin was dispersed 

from the Golgi complex (Fig. 6, represented by arrow heads and Fig. 7). Of note, there are 

three types of intracellular Reelin (180, 320, and 400 kDa), which unfortunately could not be 

distinguished intracellularly via immunocytochemistry when examining these Reelin 

subtypes and glycosylation. Thus, for immunocytochemistry, while the relative distances 

from nuclear surface of FTCD, GM130, Erp29 and LAMP were significantly longer in KA 

than controls (Figs. 3–5), Reelin was detected not to significantly differ from the controls 

(Fig. 6). On the other hand, protein expression (as shown in subsequent Western blot 

analysis) clearly showed the changes in ratio of intracellular Reelin subtypes and their 

glycosylation patterns. Accordingly, Western blot analysis (Figs. 8A, B) revealed that the 

320 kDa fragment, representing the secreted form of Reelin [32], was significantly 

decreased in KA-treated PRNCs compared to control, whereas the full-length Reelin protein 

(400 kDa) in KA-treated PRNCs was significantly increased (p < 0.05), indicating that 

proteolytic processing of Reelin was decreased in this acute KA neurotoxicity paradigm that 

mimics the early stage of epilepsy. Furthermore, the mobility of the top two bands in control 

was slightly shorter than that of PRNCs treated with 5 µM KA for 3 days at 37°C, 

demonstrating that these Reelin fragments are more extensively processed under normal 

physiologic conditions when compared with the KA-induced neurotoxicity in vitro. 

Accordingly, this KA-induced epilepsy likely contributed to the initiation of Golgi complex 
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fragmentation and the disruption of Reelin protein processing, subsequently resulting in 

dysfunctions such as decreased secreted Reelin, as well as impaired glycosylation.

HNK1 glycoepitope is expressed on the extracellular matrix of protein Reelin and, is 

sequentially biosynthesized by glucuronyltransferase and/or sulfotransferase on the Golgi 

complex membrane [33]. To confirm whether Golgi complex fragmentation affects the 

glycosylation of Reelin, we performed Western blot analysis using the anti-HNK-1 antibody 

after Reelin fragments were immunoprecipitated (described in Materials and Methods). We 

observed higher levels of glycosylated Reelin (320 kDa and 400 kDa) in the control group 

when compared to our experimental group of PRNCs treated with 5 µM KA for 3 days 

(Figs. 8c,d), although the glycosylated 180 kDa Reelin fragment was similar between 

groups. These data demonstrated that Golgi complex fragmentation impairs not only 

proteolytic processing of Reelin but also its glycosylation in the Golgi apparatus (Fig. 8), 

resulting in a decrease of physiologically active Reelin in the early stages of epilepsy. 

Moreover, GM130 co-localizes with FTCD on the Golgi complex membrane, and is a sensor 

of intracellular pH level. Here, we found that GM130 expression level under KA condition 

was significantly decreased (Fig. 9), suggesting PRNCs cytosol pH became acidic.

Discussion

Epilepsy may arise from multiple genetic mutations that produce functional deficits in a 

variety of voltage-dependent and/or ligand receptor-mediated ion channels. For example, 

dysfunction of a voltage-dependent Na+ channel in γ-aminobutyric acid (GABA) 

interneurons is critically associated with the severe myoclonic epilepsy in infancy [34]. 

Despite the availability of several AEDs, which antagonize the activity of specific ions 

channels, greater than 30% of TLE patients will have seizures that are refractory to all 

standard therapeutics. The precise mechanisms that contribute to the initiation and 

propagation of seizure activity have not yet been clearly defined [22], therefore this study 

sought to examine the role by which Golgi complex fragmentation initiates epilepsy 

pathophysiology in a cell culture paradigm.

Progress in investigating epilepsy has been facilitated by the establishment of in vitro and in 

vivo epilepsy models [2]. Epilepsy treatment has rationally involved AEDs [22] and 

subsequently has been explored using surgical approaches including electrical stimulation 

[35]. TPM restricts excitatory neurotransmission at the postsynaptic membrane, enhances 

inhibitory neurotransmission by allosterically modulating GABAA receptor-mediated Cl− 

current, and reduces spontaneous motor seizures in rats with KA-induced epilepsy [21]. A 

recent study reported that KA administration into the rat brain, resembling a chronic model 

of epilepsy in vivo, altered the proteolytic processing of Reelin [18]. Within short durations 

following administration of KA reduced both cell viability and the mitochondrial activity in 

a dose-dependent manner (Fig. 1), and TPM significantly reduced KAinduced neural 

toxicity (Fig. 2), indicating that this paradigm closely mimicked in vitro early stage epilepsy. 

Our acute KA-induced epilepsy model in neuronal cells allowed detection of Golgi complex 

fragmentation/dispersal (Figs. 3 ~ 6) and the collapse of ER-lysosome-Golgi network (Figs. 

4 and 5). In consideration of this previous study [18] indicating Reelin as closely associated 

with cell death in a chronic model of epilepsy, the present data now implicate that Reelin 
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also may play a critical role in the early stages of epilepsy, as a result of Golgi complex 

fragmentation. Additional in vivo experiments are warranted to further elucidate the 

molecular mechanisms accompanying this Reelin-Golgi complex fragmentation in epilepsy 

models.

Despite being linked to a significant number of neurodegenerative diseases, the role of Golgi 

complex fragmentation in mediating neurodegeneration remains relatively underexplored 

[23,24]. The initiation of Golgi complex fragmentation in Alzheimer’s disease has been 

reported to involve Cdk5 phosphorylating the pH sensitive cis-Golgi protein GM130, and 

subsequently GM130 is digested in lysosome [7]. Degradation of GM130 is associated with 

decreasing intracellular pH, and its depletion interferes with ER-lysosome-Golgi vascular 

trafficking [36]. We observed decreased expression of GM130 in the acute stage of KA-

induced neurotoxicity in comparison with healthy control groups (Fig. 9). Here, we found 

that epileptic activity was induced in vitro via KA-mediated activation of glutamatergic 

kainate receptors that respond to the neurotransmitter glutamate, coupled with Golgi 

complex fragmentation (Figs. 3 ~ 6). Glutamate deactivation occurs predominantly by 

glutamate transporter (EAA) in synapse and by glutamine synthase which catalyzes 

glutamate neutralization in adjacent glial cells. Excessive glutamate influx overloads the 

neutralizing capacity of EAA and hampers glutamate-glutamine recycling activity, leading 

to decreases in the intracellular pH in neurons. With these observations in mind, excessive 

activation of glutamate receptors on neurons may cause extreme decrements in intracellular 

pH, which appears to trigger the initiation of Golgi complex fragmentation and spread of 

seizure area in an epileptic brain. An alternative possibility is that ROS/lipid peroxides or 

unexpected secondary products directly attack the Golgi complex membranes leading to 

disruption of Golgi’s ultra-ribbon structure and its fragmentation.

Protein glycosylation is an important post-translational process that occurs at the ER-

lysosome-Golgi network. Glycosylation serves to stabilize the three dimensional structure of 

the protein, allowing for selective protein interactions that permit multiple distinct signal 

transduction patterns from the same gene. Furthermore, glycosylation aids in protein 

folding, affording intermediates more hydrophilic, which prevents protein aggregation, a 

crucial cascade event for neurodegeneration. Indeed, many pathologic proteins associated 

with neurodegenerative diseases (e.g., amyloid precursor protein, β-secretase 1, tau, α-

synuclein, and superoxide dismutase) are glycosylated [37]. Although the molecular 

mechanisms underlying protein glycosylation disorders are quite complex, it has been 

reported that interruption of the ER-lysosome-Golgi network contributes to the progression 

of neurodegenerative diseases. Processing glycosylation of Reelin is tightly regulated in ER/

Golgi apparatus. Reelin expression and glycosylation patterns are altered in the frontal 

cortex and cerebellum of Alzheimer’s disease patients [11]. The 180 kDa Reelin fragment 

interacts with α3β1 integrin receptors [38], but does not interact with ApoER2 and VLDL 

receptors [39]. In the present study, protein expression and glycosylation levels of 180 kDa 

Reelin fragments were comparable between control (healthy neurons) and PRNCs treated 

with 5 µM KA for 3 days (albeit early stage epilepsy) (Fig. 8). Expression and glycosylation 

of 320 kDa Reelin fragment were significantly increased in control compared with the KA-

treated group, suggesting that Golgi complex fragmentation and collapse of the ER-
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lysosome-Golgi network likely caused the decreased Reelin processing which might have 

contributed to initiation and progression of epilepsy. Administration of Reelin into the 

hippocampus has been shown to enhance LTP as result of the activation of SFKs, which 

increase N-methyl-D-aspartate (NMDA) receptor activity [16]. These observations advances 

the notion that 320 kDa Reelin fragment protein is a major neuromodulator that (1) increases 

glutamatergic neurotransmission mediated by the postsynaptic ApoER2 and VLDL 

receptors and therefore enhances synaptic plasticity, and (2) prevents the suppression of 

NMDA receptor and LTP in epilepsy patient’s brains, and that altered expression of Reelin 

(fragments ratio) and its signal transduction (glycosylation patterns), in part, participate in 

the initiation of epilepsy.

The present results revealed that Golgi complex fragmentation in initiation of KA 

neurotoxicity could decrease the physiological function of Reelin. Golgi complex 

fragmentation and Reelin dysfunction may be considered as disease biomarkers, as well as 

therapeutic targets for epilepsy. A limitation of the present study is the use of rat E18 

primary cortical cultures, with all endpoint readouts performed after 3 days in vitro. 

Accordingly, at this stage the neurons were immature, and had not formed any functional 

synaptic contacts yet. In order to recognize whether the observed aberrations in Golgi and 

Reelin translate to altered functional synaptic connectivity of primary neurons will require 

the use of mature functionally interconnected neurons. Moreover, we recognized the need 

for confirming the expression and proper localization of glutamate receptors in primary 

neurons and complemented by in vivo data to strengthen the clinical relevance of the 

findings. Given that Reelin is expressed in GABAergic interneurons (representing a minor 

neuronal population in E18 cortical neurons), additional studies are also warranted to 

provide some mechanistic insights how KA-induced hyperexcitability in primary neurons 

alters proteolytic processing and glycosylation of Reelin in interneurons. That epilepsy is a 

network disease may limit the direct translational application of primary neurons, which 

represent an artificial system with a specific number of neuronal subtypes. Nonetheless, the 

present results provide valuable informative data for understanding disease pathology and 

developing treatments directed at targeting immature neurons expressing Golgi and Reelin 

dysregulation. In this study, we report that KA irreversibly damages the endoplasmic 

reticulum-lysosome-Golgi network which then leads to abnormal Reelin proteolytic 

processing. Restoring and reinforcing the ER-lysosome-Golgi network and its interaction 

with Reelin could be exploited as novel therapeutic regimens for attenuating epilepsy and 

relevant neurodegenerative diseases.
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Fig. 1. 
Dose-response effects on cell viability and relative mitochondrial activity based on KA 

concentrations. After cultured PRNCs were incubated with KA for 3 days at 37°C, cell 

viability and mitochondrial activity were measured by using calcein assay (A) and MTT 

assay (B), respectively. The IC50 values were estimated by using GraphPad Prism 6® 

software.
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Fig. 2. 
Topiramate (TPM) significantly reduced both cell death and mitochondrial dysfunction 

induced by KA administration. Cultured PRNCs were subjected to 5 µM KA alone, or 5 µM 

KA in the presence of 50 µM TPM, or 50 µM TPM alone for 3 days at 37°C, then cell 

viability and mitochondrial activity were measured by using calcein assay (A) and MTT 

assay (B). There were no significant differences in both cell viability and mitochondrial 

activity between control and 50 µM TPM only treatment. ***P < 0.001.
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Fig. 3. 
Immunofluorescence showing gross changes in Golgi complex distribution/morphology in 

response to KA-administration with PRNCs for 3 days at 37°C. PRNCs were fixed and 

stained for the Golgi complex using antibodies against FTCD (green) and GM130 (red) and 

for nuclei using Hoechst 33258 (blue). (A–C) Control, FTCD and GM130 work in tandem 

with localizing closely nuclei, whereas (D–F) PRNCs were incubated with 5 µM KA for 3 

days at 37°C. (G) Quantifications correspond to Golgi fragmentation, distance of 

reconstructed anti-FTCD, and anti-GM130 fluorescent signal from nuclear surface. In 

control condition, P value of FTCD versus GM130 is 0.687, and the value in KA condition 

is 0.369. KA-induced epilepsy provoked Golgi complex fragmentation/dispersal. ***P < 

0.001. Scale bars = 5µm.
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Fig. 4. 
Immunofluorescence showing gross changes interaction between Golgi complex and ER 

distribution/morphology in response to KA-administration with PRNCs for 3 days at 37°C. 

PRNCs were fixed and stained for the Golgi complex and ER using antibodies against 

FTCD (green) and ERp29 (red), respectively, and for nuclei using Hoechst 33258 (blue). 

(A–C) Control, Golgi closely localized with ER which distributed around nuclei. (D–F) 

PRNCs were incubated with 5 µM KA for 3 days at 37°C. KA-induced epilepsy provoked 

Golgi complex fragmentation/dispersal, and ER are seen dislocated around nuclei. (G) 

Quantification of ER dislocation from nuclear surface corresponded to distance of 

reconstructed anti-ERp29 fluorescent signal from nuclear surface. **P < 0.01. Scale bars = 

5µm.
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Fig. 5. 
Immunofluorescence showing gross changes interaction between Golgi complex and 

lysosome distribution/morphology in response to KA-administration with PRNCs for 3 days 

at 37°C. PRNCs were fixed and stained for the Golgi complex and lysosome using 

antibodies against FTCD (green) and LAMP (red), respectively, and for nuclei using 

Hoechst 33258 (blue). (A–C) Control, Golgi and lysosome are closely localized. (D–F) 

PRNCs were incubated with 5 µM KA for 3 days at 37°C. KA-induced epilepsy provoked 

Golgi complex and lysosome dispersal. (G) Quantification of lysosome dispersal 

corresponded to distance of reconstructed anti-LAMP fluorescent signal from nuclear 

surface. *P < 0.05. Scale bars = 5µm.
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Fig. 6. 
Intracellular Reelin (white arrow) dislocated at Golgi complex (yellow arrow) in response to 

KA. PRNCs were cultured with KA for 3 days at 37°C. PRNCs were fixed and stained for 

Reelin and Golgi complex using antibodies against Reelin (green) and GM 130 (red), 

respectively, and for nuclei using Hoechst 33258 (blue). (A–C) Control, Intracellular Reelin 

co-localized with Golgi complex, (D–F) PRNCs were incubated with 5 µM KA for 3 days at 

37°C. (G) Quantification of Reelin distribution around nuclei corresponded to distance of 

reconstructed anti-Reelin fluorescent signal from nuclear surface. Scale bars = 5µm.
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Fig. 7. 
Quantification of intracellular Reelin dislocated from Golgi complex. Comparison of 

distance from nuclear surface. The distribution of intracellular Reelin consists of Golgi 

complex in control condition, whereas in KA condition the division of Reelin separated 

from distribution of Golgi complex. ** P <0.01.
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Fig. 8. 
Golgi complex fragmentation impairs Reelin mobilization. (A and B) Western blot analysis 

using anti-Reelin mouse antibody showed Reelin bands (180, 320, and 400 kDa). In healthy 

neurons (control), bands of 320 kDa and 400 kDa Reelin mobilized shorter than that of 

epilepsy model (KA). (C and D) IP analysis using anti-Reelin mouse antibody demonstrated 

that the density of 320 kDa Reelin fragment and the full-length Reelin protein (400 kDa) in 

healthy neuronal condition is significantly higher than that of epilepsy model, although 180 

kDa Reelin fragment is similarly expressed in both conditions. *P < 0.05. **P < 0.01.
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Fig. 9. 
Western blotting analysis of GM130 expression in PRNCs. Following incubation of PRNCs 

in 5 µM KA for 3 days at 37°C (KA) or in absence of KA (control), GM130 expression level 

under KA condition was significantly decreased, indicating pH acidity of PRNC cytosol. 

***P < 0.001.

Kaneko et al. Page 21

Mol Neurobiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


