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Abstract

Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons 

but there is also growing evidence for white matter (WM) deterioration. The primary objective of 

this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging 

(DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM 

tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study 

collected imaging and neuropsychological data on gene-positive HD participants without a clinical 

diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM 

tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital 

fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of 

DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial 

diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects 

into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset 

indexed by genetic exposure. We observed significant differences in WM properties for each of 

the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the 

Medium CAP group presented differences in the ATR and IFO in comparison to controls. 
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Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with 

neuropsychological measures of executive functioning. These results suggest long-range tracts 

essential for cross-region information transfer show early vulnerability in HD and may explain 

cognitive problems often present in the prodromal stage.
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Introduction

Huntington disease (HD) is a progressive neurodegenerative disorder characterized by 

motor, cognitive, and behavioral disturbances. HD is inherited in an autosomal dominant 

fashion where there is an expansion of polygutamine (cytosine-adenine-guanine [CAG]) 

repeats in the huntingtin gene. The manifestation of motor symptoms is used to clinically 

diagnose the disease. On average, motor onset occurs in the fourth decade of life, with a life 

expectancy after motor onset of 15 to 20 years (Harper, 1991; Hayden, 1981). 

Unfortunately, present day pharmacologic options for treatment only target symptoms, and 

do not slow or stop disease progression. Therefore, there are several studies, such as 

Neurobiological Predictors of Huntington's Disease (PREDICT-HD) and TRACK-HD, 

focused on identifying biomarkers of disease progression to judge efficacy of new 

treatments (Paulsen et al., 2008; Tabrizi et al., 2011).

Structural magnetic resonance imaging (s-MRI) has uncovered consistent features of disease 

progression in both diagnosed and prodromal HD individuals (Esmaeilzadeh et al., 2011). 

Atrophy of the caudate and putamen was demonstrated in symptomatic HD individuals 

(Jernigan et al., 1991) and shown to be a progressive feature of HD (Aylward et al., 1997) 

that was evident many years prior to diagnosis (Paulsen et al., 2008; Tabrizi et al., 2012). 

The degree of basal ganglia atrophy is predictive of years to disease onset in prodromal HD 

patients (Aylward et al., 1996; Harris et al., 1999) and correlated with greater clinical 

impairment (Campodonico et al., 1998; Harris et al., 1999). In addition to the extensively 

studied basal ganglia abnormalities, evidence of decreased white matter (WM) volume is 

demonstrated in prodromal HD individuals more than 15 years from diagnosis (Paulsen et 

al., 2006; Paulsen et al., 2010). There is also evidence that WM has a greater association 

with cognitive deficits in symptomatic HD individuals than the correlation between 

decreased striatal volume and cognitive deficits (Beglinger et al., 2005). As for specific 

regions of WM, features of frontal lobe WM have consistently tracked with the clinical 

features of HD (Aylward et al., 1998). Much like striatal volume, frontal lobe WM volume 

loss was first demonstrated in diagnosed HD (Aylward et al., 1998) and later in prodromal 

HD individuals (Stoffers et al., 2010).

Although decrease in WM volume correlates with disease progression in HD, characterizing 

WM microstructural changes (in addition to volume) may be helpful in understanding 

clinical manifestations of HD.
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Diffusion-weighted imaging (DWI) is a method for detecting and quantifying tissue 

microstructure. WM contains significant restrictions to water mobility and reductions in 

anisotropy may reflect altered properties due to disease processes. Diffusion can be modeled 

at each voxel as a tensor to compose a diffusion tensor image (DTI) (Basser and Pierpaoli, 

1996). The diffusion tensor model decomposes diffusion into direction and magnitude with 

eigenvectors and eigenvalues, respectively, where diffusion tensor scalars are derived from 

the eigenvalues. Diffusion tensor scalar measures are therefore numerical representations of 

diffusion anisotropy degree or magnitude and are computed at the voxel level or averaged 

over a region of interest (Basser, 1995; Basser and Pierpaoli, 1996; Jones et al., 2013). 

Fractional anisotropy (FA) is dimensionless and represents degree of diffusion anisotropy or 

ordered diffusion on a scale of 0 (isotropic or disordered diffusion) to 1 (high anisotropy or 

ordered diffusion). Therefore, an area of high FA contains uniform diffusion or minimal 

crossing fibers (Basser and Pierpaoli, 1996; Jones et al., 2013). In humans, decreases in FA 

have been used to detect differences in normal appearing WM in individuals with multiple 

sclerosis (Filippi et al., 2001) and Alzheimer disease (Huang et al., 2007) in comparison to 

controls. Mean diffusivity (MD, units = mm2/sec) represents average diffusion magnitude 

along the three eigenvectors of the diffusion tensor model (Basser, 1995). Axial diffusivity 

(AD, units = mm2/sec) is the magnitude of diffusion of the principal eigenvector, while 

radial diffusivity (RD, units = mm2/sec) is the average magnitude along the second and third 

eigenvectors (Basser, 1995). In animal studies, changes in RD and AD have been shown to 

correlate with incomplete myelination (Song et al., 2002) or myelin injury (Song et al., 

2003; Song et al., 2005) and axonal injury (Song et al., 2003), respectively.

WM tracts innervating the prefrontal cortex (PFC) are of particular interest in HD because 

of known connections between the PFC and portions of the basal ganglia (Alexander et al., 

1986) and the importance of PFC-mediated networks in cognitive and executive functioning 

(Roberts et al., 1998). Early studies of WM volume (Aylward et al., 1998) provided 

evidence that the frontal lobe WM volume is affected in HD subjects. Voxel-based scalar 

studies on PFC WM have reported significantly increased and/or decreased FA and 

increased MD in both prodromal (Magnotta et al., 2009; Reading et al., 2005; Rosas et al., 

2006) and symptomatic HD (Della Nave et al., 2010; Delmaire et al., 2013; Rosas et al., 

2006) participants relative to gene-negative controls. ROI-based scalar analyses of PFC WM 

have reported decreased FA and increased MD in WM passing through the superior frontal 

cortex in early HD (Dumas et al., 2012), while increased MD and RD were seen in inferior 

and lateral PFC WM in prodromal HD groups relative to controls (Matsui et al., 2014). In 

the aforementioned scalar analyses, diffusivity in the HD participants correlated with poorer 

performance on cognitive tests such as the Stroop Color and Word Test (Dumas et al., 2012) 

and Trail Making Test Part B (Delmaire et al., 2013; Matsui et al., 2014) that are both 

abnormal in prodromal HD participants (Paulsen et al., 2013).

This study used tractography to build upon aforementioned voxel (Magnotta et al., 2009; 

Reading et al., 2005; Rosas et al., 2006) and region of interest based (Dumas et al., 2012; 

Matsui et al., 2014) studies in prodromal HD subjects. Tractography-based methods use 

DWI to provide tract-specific information about WM properties and thereby reveal specific 

anatomical tracts that show alterations as a function of HD progression. In our study, a tract-
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based analysis was performed on four well-established PFC WM fiber tracts: the prefrontal 

section of the corpus callosum (PFCC), left and right anterior thalamic radiations (ATRs), 

left and right inferior fronto-occipital fasciculi (IFOs), and left and right uncinate fasciculi 

(UNCs). The PFCC is a large inter-hemispheric tract of fibers that projects from the genu of 

the corpus callosum (Wakana et al., 2004). These four PFC WM fiber tracts were selected 

for their connection to the PFC and demonstrated relationship to both prodromal HD and 

cognitive reserve. Previously, a voxel-based WM study (Rizk-Jackson et al., 2011) indicated 

the PFCC and UNC together might be a good imaging biomarker for the prodromal HD 

group. The IFO and UNC were also correlated to cognitive reserve in an Alzheimer disease 

study in comparison to the healthy controls (Arenaza-Urquijo et al., 2011). Previous 

tractography-based studies, though not focusing specifically on the PFC tracts examined 

here, suggest that the PFC may be altered in symptomatic HD subjects. Bohanna and 

colleagues investigated 12 symptomatic HD patients and 14 matched controls from a single 

site and found higher FA and MD in WM projections from the caudate and putamen to the 

PFC (Bohanna et al., 2011). Recently, Poudel and colleagues studied 35 prodromal 

participants, 36 symptomatic participants, and 35 controls from two sites and found robust 

alterations in WM connections between putamen and lateral prefrontal cortex in both 

symptomatic HD and prodromal HD participants. RD was higher in this tract, although there 

were no differences in FA. Additionally, Phillips and colleagues (Phillips et al., 2014) 

analyzed DWI data from 25 prodromal participants, 25 symptomatic participants, and 50 

controls from a single site. They demonstrated widespread deep WM changes for 

symptomatic HD participants and more limited changes in prodromal HD for DWI measures 

of large long-range tracts (including some portions of the PFC).

This study is a novel in-depth investigation of specific WM tracts emanating from the PFC 

measured from 146 prodromal and 65 control participants collected at 15 PREDICT-HD 

sites. The PFCC, ATR, IFO, and UNC WM tracts were selected for their connection to the 

PFC and demonstrated relationship to both prodromal HD and cognitive reserve. To expand 

on the initial tractography work in HD, we exclusively focused on identifying changes in the 

prodromal phase with streamline tractography using the largest sample (to our knowledge) 

of imaging and neuropsychological data collected from prodromal HD subjects. In addition, 

this study demonstrates the feasibility of processing and analyzing DWI data on a scale 

similar to the requirements of proposed clinical trials that often require several hundred 

participants from multiple sites to obtain sufficient sample sizes. We hypothesized that 

diffusivity differences along each tract among groups of prodromal HD participants 

separated by degree of genetic exposure would be significantly different from controls. It 

was also hypothesized that the strength of differences in diffusivity would be a function of 

genetic exposure that was previously well established by age and CAG repeat length (Zhang 

et al., 2011), with the group with the highest genetic exposure showing the greatest 

difference. In addition, we hypothesized changes in diffusivity will correlate with cognitive 

performances in prodromal HD (Paulsen et al., 2013).
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Materials and Methods

Participants

Imaging and clinical data collected from 15 PREDICT-HD sites included 65 controls and 

146 prodromal CAG-expanded individuals. PREDICT-HD is a multisite collaboration with 

the goal of utilizing neurobiological and clinical markers to understand the progression of 

HD before diagnosis and provide candidate disease markers to assist future preventative HD 

clinical trials. We obtained written informed consent from each participant, and all research 

was performed in compliance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki) and the standards established by the Institutional Review Board at 

each respective site. Healthy controls were members of HD families who did not possess the 

CAG expansion. Based on their CAG-Age Product (CAP) designation (Zhang et al., 2011), 

prodromal CAG-expanded individuals were stratified into Low (n = 43; CAP < 287.16), 

Medium (n = 54; 287.16 < CAP < 367.12), and High (n = 49; CAP > 367.12) groups of HD 

diagnosis probability. The CAP score is similar to disease burden (i.e., genetic toxicity) and 

is an index of cumulative toxicity of the HD genetic mutation at a given age (Zhang et al., 

2011). Table I lists a summary of participant characteristics, and their site information is 

listed in the Supplementary Material Table SI.

Measures

Participants were evaluated by experienced clinicians certified in the administration of the 

Unified Huntington's Disease Rating Scale (UHDRS) (Huntington Study Group, 1996). 

Formal diagnosis of HD was based on a Diagnostic Confidence Level (DCL) rating of 4, 

indicating the “unequivocal presence of an otherwise unexplained extrapyramidal movement 

disorder” with > 99% confidence according to the certified motor rater (Huntington Study 

Group, 1996). We excluded participants with a rating of DCL = 4 at scan time to restrict this 

analysis to prodromal HD subjects. The total motor impairment score (sum of all the 

individual motor ratings from the UHDRS) is reported (Huntington Study Group, 1996). 

Cognitive performance was assessed with the Symbol Digit Modalities Test (SDMT), the 

Stroop Color and Word Test, and the Trail Making Test (TMT). The SDMT score is the 

number of correct matches between numbers and their designated symbol based on a key 

and is a reflection of psychomotor speed, cognitive flexibility and working memory (Smith, 

1991). The Stroop Color and Word Test score is a measure of processing speed and 

executive function, as it measures the number of correct responses in three conditions: color 

naming (name colors), word reading (read color names), and interference (inhibition of 

dominant reading response while naming color) (Stroop, 1935). The TMT score is a measure 

of psychomotor speed and executive functions. The TMT score is the number of seconds 

required to sequentially connect numbers (TMT Part A, TMTA) followed by a task 

requiring the alternation of sequential numbers and letters (TMT Part B, TMTB) both in 

ascending order (Reitan, 1958). A greater time required to complete the TMT results in a 

higher score and is interpreted as worse performance or poorer function. A summary of 

participant characteristics and scores on the six cognitive measures is provided in Table I.
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Imaging

Imaging data consisted of multimodal structural (T1- and T2-weighted images) and 

diffusion-weighted images collected on 3 Tesla scanners. Due to the multisite nature of our 

study, this data set contains representative data sets from Siemens, Philips, and GE-

manufactured scanners. Our earlier work (Magnotta et al., 2012) investigated multicenter 

reliability of mean DTI scalar measures in lobar WM: intra-subject coefficient of variation 

(CV) was typically < 1% and inter-site CV only increased to 1-3%. A diffusion-weighted 

scan for a single participant consisted minimally of 30 noncollinear diffusion-weighted 

gradients with diffusion-weighting of b = 1000 sec∕mm2 and at least one b = 0 sec∕mm2 (b0 

image or subvolume without diffusion weighting) acquisition. Imaging parameters for all the 

sites that contributed scans for our study are shown in the Supplemental Material in Tables 

S.II for DWIs and Tables S.III and S.IV for structural images. All scans were transferred to 

The University of Iowa for processing and analysis.

Image processing

An image-processing pipeline was carefully designed and tested for robust processing of 

both s-MRI and DWI datasets acquired from the multicenter PREDICT-HD study.

s-MRI pre-processing—All visual inspections and pre-processing of images were 

completed at the University of Iowa Scalable Informatics, Neuroscience, Analysis, 

Processing, and Software Engineering (SINAPSE) Laboratory while blinded to participant 

group status. All T1- and T2-weighted images were first visually inspected and given a 

quality rating ranging from zero (unusable) to 10 (best quality). Structural images that 

received a quality rating lower than six were excluded from further processing and analysis, 

which resulted in excluding approximately 7% of available structural images. All images 

collected in the same scan session (i.e. 1-3 repeats of T1- and T2-weighted images within a 

single scan session) were processed simultaneously using methods previously described 

(BRAINSia, 2013; Pierson et al., 2011). The best-rated T1-weighted image within a scan 

session was used to estimate a consistent AC-PC anatomical orientation with a constellation-

based landmark detection algorithm (BRAINS Constellation Detector) that uses the anterior 

and posterior commissures and the mid-sagittal plane as prominent features (Ghayoor et al., 

2013). The remaining T1- and T2-weighted images that passed visual inspection were 

rigidly aligned to the spatially normalized T1-weighted image (Young Kim and Johnson, 

2013). Each of the multimodal images were bias-field corrected using an atlas-based 

classification algorithm (BRAINSABC), resulting in 17 tissue probability maps and average 

images of each modality resampled to a 1 mm × 1 mm × 1 mm voxel lattice. Brain tissue 

probability maps were converted to a brain mask and used to skull-strip the participant's 

corresponding average bias-field corrected T1- and T2-weighted images.

DWI pre-processing—DTIPrep (Liu et al., 2010; Oguz et al., 2014) performed several 

quality assurance steps and removed gradient sub-volumes within the DWI scan that did not 

meet its minimal quality criteria. If a participant received multiple DWI scans in a single 

session, the repetitions were concatenated end-to-end and processed by DTIPrep. DTIPrep 

first detected intensity artifacts (which were often susceptibility artifacts) by comparing 

normalized correlation values of corresponding neighboring slices across all volumes within 
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a DWI scan. A subvolume containing an intensity artifact was removed if it possessed a 

normalized correlation value outside the designated number of standard derivations from the 

average normalized correlation value. Interlace artifacts were detected in a similar manner 

where normalized correlation coefficients were computed between interleaving slices for 

each subvolume. If a DWI scan contained multiple b0 images due to concatenation of 

multiple scans within a session or collection of multiple b0 images per scan, DTIPrep also 

averaged multiple b0 images within a scan to create a single reference average b0 image per 

DWI scan. All DWI sub-volumes were co-registered to the averaged b0 image via affine 

transform for eddy-current and head motion artifact correction, as eddy current-induced 

distortions can lead to miss between different DWI scans and eventually to error in the 

tensor image in all voxels. The final step in DTIPrep removed subvolumes with remaining 

residual motion or translation relative to the averaged b0 image and updated the diffusion 

weighting directions based on the rotational component of the affine transform. DTIPrep 

excluded an entire scan if the number of diffusion-weighted subvolumes fell below 30. The 

final output of DTIPrep contained an averaged b0 image and only those DWI sub-volumes 

that passed the above quality assurance tests. Of the available DWI scans, DTIPrep excluded 

approximately 13% from further analysis. The output of DTIPrep was again visually 

inspected to ensure that the DWI scan was indeed free of interlace artifact, dropout, major 

susceptibility artifacts, and incomplete brain coverage. We have previously reported the 

multicenter reliability of using DTIPrep, and used DTIPrep in a DTI scalar study (Matsui et 

al., 2013).

DTI derivation from DWI—DTIs were estimated by using a weighted least squares 

method (Kingsley, 2006) in the original DWI space in the area limited to the brain mask. For 

each subject, a nonlinear transform was derived from the average b0 image in the DWI scan 

produced by DTIPrep in the previous section to the corresponding bias field-corrected T2-

weighted s-MRI using the symmetric image normalization (SyN) registration method 

(Avants et al., 2008). The inverse of this nonlinear transform was used to resample a binary 

brain mask in s-MRI space to DWI space to provide optimal brain masking during the tensor 

estimation step. A DTI was then estimated using the preprocessed DWI and the deformed 

brain mask. The transformation from the averaged b0 image of a participant's DWI to the 

corresponding bias field corrected T2-weighted image was then used to resample the 

resulting DTI to s-MRI space. In the resampling process, preservation of principal direction 

(PPD) mode with linear interpolation was used to resample the DTIs in the Log-Euclidean 

domain (Alexander et al., 2001; Arsigny et al., 2006; Budin et al., 2010; Kaiser, 2013) into 

the s-MRI anatomical space.

Unbiased cross-sectional DTI template building—An unbiased template space was 

created with the unbiased template building algorithm originally proposed by Avants and 

coauthors (Avants and Gee, 2004; Avants et al., 2010), and was used to create four major 

PFC WM tracts: PFCC, left and right ATR, left and right IFO, and left and right UNC. FA, 

MD, AD, and RD were then projected to each derived tract skeleton for the analysis in 

relation to groups and cognitive variables. High anatomical resolution T1-weighted images 

from all healthy controls and prodromal HD participants were equally weighted in the 

creation of the unbiased T1-weighted template. Each participant's DTI was resampled into 
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the unbiased T1-weighted template space using the ResampleDTILogEuclidean tool (Budin 

et al., 2010). Each participant's DTI was previously aligned to the participant's T1-weighted 

image space. Thus, the transform defined by the template building process was directly 

applied to the DTI in order to consistently place them in template space, as suggested by 

Tustison and coauthors, to minimize circularity bias of our study's experimental design 

(Tustison et al., 2014).

Resampled DTIs were then averaged with a tool called dtiaverage (Kaiser, 2013) to form the 

final DTI template that served as the unbiased DTI template for fiber tracking. The unbiased 

DTI template was visually inspected to ensure valid alignment with its corresponding T1-

weighted template and to ensure orientations of major fiber tracts were consistent with 

known anatomical organization (i.e. inferior tracts were oriented anterior to posterior, while 

corticospinal tracts were oriented superior to inferior). Figure I shows several axial views of 

the T1-weighted template (upper) that was used to construct the corresponding unbiased 

DTI template (bottom).

Fiber tracking on the unbiased diffusion tensor template—Full brain tractography 

was performed on the unbiased DTI template using the streamline tractography module and 

recommended parameter settings available in 3D Slicer (Fedorov et al., 2012) called 

TractographyLabelMapSeeding (Wassermann, 2013b). The recommended parameter 

settings for seed spacing of 0.75 × 0.75 × 0.75mm3 and linear measure ((λ1 - λ2/λ3) greater 

than or equal to 0.3 were used to initiate tractography. Tract termination criteria included 

exceeding a length of 800mm, developing track curvature less than 0.7 degrees per 

millimeter, or encountering a voxel whose fractional anisotropy was less than 0.1. An 

integration step length of 0.5 mm3 was used and tracts below 10mm in length were 

excluded.

Fiber tract selection—Fiber tracts were selected manually with the 

TractographyDisplay graphical user interface tool from the Slicer toolkit that allows 

isolation of individual tracts with an adjustable selection box (Wassermann, 2013a). Several 

WM tractography atlases and references were used for anatomical reference while selecting 

the tracts (Catani and Thiebaut de Schotten, 2008; Oishi et al., 2011; Wakana et al., 2007; 

Wakana et al., 2004), along with visual inspection of the fiber tracts by a tractography expert 

from a national tractography user group. The following four major WM PFC fiber tracts 

were selected for analysis: PFCC, ATR, IFO, and UNC. The PFCC included projections 

from the genu of the corpus callosum into the frontal lobe, while the ATR involved 

radiations to the PFC associated with the mediodorsal thalamic nuclei (Wakana et al., 2007). 

The IFO in our study is based on the definition established by Wakana and coauthors, which 

includes fronto-parietal connections passing through the external capsule (Wakana et al., 

2007). The UNC included projections from the anterior temporal lobe to the medial and 

lateral orbitofrontal cortex (Catani and Thiebaut de Schotten, 2008; Wakana et al., 2007).

DTI scalar measure from fiber tracts—A tract probability map (TPM) (whose values 

ranged from 0 to 1) was computed for each fiber tract using the method described by 

Wasserman and colleagues (Wassermann et al., 2010a; Wassermann et al., 2010b). Each 

TPM was then skeletonized in the space of the DTI atlas using the tract-based spatial 
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statistics (TBSS) skeletonization tool (Smith et al., 2006) from the Oxford Centre for 

Functional MRI of the Brain's (FMRIB) Software Library (FSL, v5.0.4) (Smith et al., 2004). 

The skeleton of each tract was a curved sheet to represent the curved surface along the 

center of the tract. DTI scalar values (FA, MD, AD, and RD) from each participant were 

then projected to each tract's skeletonized TPM. For each voxel on the TPM skeleton, the 

DTI scalar map is searched along the direction perpendicular to the tract within an area 

restricted by a distance map of the TPM skeleton to find the maximum DTI scalar value. 

The maximum DTI scalar value is then assigned to the voxel on the TPM skeleton (Smith et 

al., 2006; Wassermann et al., 2010b).

Figure II shows several views of the fiber tracts (UNC, PFCC, IFO, and ATR) derived from 

whole brain tractography of the DTI templates overlaid on the T1-weighted template. The 

tracts are highlighted as left UNC (light blue), right UNC (dark blue), PFCC (yellow), left 

IFO (light red), right IFO (dark red), left ATR (light green), and right ATR (dark green).

Descriptions of regions containing significantly different DTI scalar values between CAP 

groups and controls will be referred to using the regions identified in Figures S.I, S.II, S.III, 

and S.IV in the Supplemental Material for the PFCC, ATR, IFO, and UNC fiber tracts, 

respectively. The WM tract region names in our study were influenced by the convention 

FreeSurfer uses to label both cortical gray and white matter regions. The medial 

orbitofrontal gyrus has been given a separate label in the IFO and UNC since it is included 

in the lateral orbitofrontal region defined by FreeSurfer (Desikan et al., 2006). All the 

regions were defined in Table II. Figures SI – SIV in the Supplemental Material contain 

more detailed figures.

Statistical analysis

Comparison of mean DTI scalars between controls and CAP groups—In order 

to compare mean values of FA, MD, AD, and RD along tract skeletons between controls and 

CAP group, the permutation tests program called randomise (Winkler et al., 2014) from the 

FSL 5.0.4 package was used to detect differences in mean DTI scalars along tract skeletons. 

Comparisons were made between controls and CAP groups using analysis of covariance 

GLM models. For each GLM model, age at scan, years of education, gender, and site of data 

collection served as covariates in unpaired two-sample t-tests using 50,000 permutations. 

The threshold-free cluster enhancement (TFCE) method (Smith and Nichols, 2009) in 

randomise was used to obtain the distribution of data in our study to avoid setting a primary 

statistic threshold on the tract skeleton of interest before looking for differences in DTI 

scalar values between controls and CAP groups. The main advantage of using the TFCE 

approach is that it is designed to find both focal and diffuse areas containing significant 

differences in signal. The TFCE approach computes a TFCE score for each voxel that is 

determined by the voxel itself and immediately adjacent voxels that are contributing signal. 

Using a score for each voxel for statistical inference instead of the raw signal enhances areas 

of signal that may be part of a cluster without a primary statistic image threshold (such as 

that in cluster-based thresholding), making it easier to discriminate between background 

noise and signal. Corrections for multiple comparisons within tract skeleton and across 
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contrasts were done on the p-value maps with false discovery rate (FDR) from FSL 5.0.4 at 

a criterion of q < 0.05.

Correlations between DTI scalars and cognitive performance in prodromal HD 
participants—randomise was used to determine how DTI scalars (FA, MD, AD, and RD) 

correlated with performance on the following cognitive variables: SDMT, Stroop Word, 

Stroop Color, Stroop Interference, TMTA, and TMTB using the TFCE method. Only 

prodromal HD participants were included in the correlation analysis with age, years of 

education, gender, and site of data collection as covariates. Again, corrections for multiple 

comparisons within tract skeleton and across contrasts were done on the p-value maps with 

FDR from FSL 5.0.4 at a criterion of q < 0.05.

Results

Mean DTI scalar differences between controls and CAP groups

In this section, we review the results when comparing controls to the three HD CAP groups 

for each of the mean DTI scalars (FA, MD, AD, and RD) within each of the seven PFC 

tracts (PFCC, IFO[L/R], ATR[L/R], and UNC[L/R]). Results in Figure III provide a 

summary of the permutation results indicating the percentage of each tract skeleton that 

differed on each of the four scalar measures between groups. For each of the areas that 

showed significant differences, we additionally plotted the mean DTI scalar values for each 

participant in Figure IV (High vs. Controls) and Figure V (Medium vs. Controls). There 

were no significant differences in any of the tracts for any of the four DTI measures between 

the Low CAP group and control subjects.

Of the four tracts examined in our study, the IFO had the largest percentage of tract skeleton 

area where measurable differences between the controls and Medium or High CAP groups 

were present for diffusivity measures. The ATR demonstrated increased MD, RD, and AD 

for the Medium and High CAP groups compared to the Control group for regions 

immediately adjacent to the caudate. The PFCC showed increased MD, RD, and AD for the 

High CAP group compared to the Control group throughout the tract. Increased RD was 

seen for the Medium CAP group in comparison to the Control group in regions immediately 

anterior to the caudate. The UNC differences were generally weaker, with detectable 

differences only between the controls and the High CAP group.

Out of the three CAP groups, the High CAP group presented the most widespread findings 

across PFC tracts with regard to all four DTI scalar measures. The IFO tract showed the 

most widespread diffusivity difference between High and Control groups and also presented 

evidence of FA changes that were not observed elsewhere. It is important to note that 

significant differences in MD and RD were noticeable in all seven PFC tracts when 

comparing the High CAP and Control groups.

As anticipated, the Medium CAP group presented changes in areas similar to the High CAP 

group but were not as widespread, reflecting the Medium CAP group's less severe genetic 

toxicity. ATR and IFO showed symmetrical diffusivity differences for FA and MD and RD 

and MD, respectively, between Control and Medium CAP groups. Mean RD change was 
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observed in the PFCC tract while there were no findings for the UNC tract. Mean DTI scalar 

differences also generally presented with left-right symmetry, as illustrated in Figure III.

Association between neuropsychological performance and DTI scalar values

Similar to the results provided in Figure III, correlational analyses between 

neuropsychological performance and diffusion-tensor metrics are summarized in Figure VI. 

After permutation-based correction, we identified the percentage of each tract skeleton that 

correlated with each of the neuropsychological variables. Across all regions, lower FA and 

higher MD, RD, and AD were linked to greater impairment in neuropsychological 

performance. Among the four scalar measures, correlational findings relating to 

neuropsychological performance were most widespread for MD and RD. For the PFCC, DTI 

scalar measures were broadly related to neuropsychological performance on all but the 

Stroop Interference task. Significant relationships between FA, MD, and RD but not AD 

with neuropsychological measures were present in the PFCC. In the ATR, MD and RD were 

significantly correlated with performance on the SDMT, Stroop Color, Stroop Word, and 

TMTB tasks. The IFO, MD and RD measures were significantly correlated with 

performance on the SDMT and TMTA/B tasks and fewer correlations with performance on 

the Stroop tasks. Of the four tracts examined, the UNC showed the lowest correlation with 

neuropsychological performance, with significant associations bilaterally for TMTB with 

RD and TMTA with FA. Please see supplemental tables and figures (Tables SVII, SVIII and 

Figure SVII) for a more detailed characterization of these correlational findings.

Discussion

Prior work has documented the effectiveness of DWI in studying WM changes throughout 

HD progression. The purpose of this study is to describe and examine the diffusivity 

properties of four major PFC WM tracts in prodromal HD participants and how WM 

alterations relate to genetic toxicity and neuropsychological test scores. Our results are in 

general agreement with previous prodromal HD DTI scalar studies that showed decreased 

FA and increased MD, AD, and RD associated with increased CAP scores. We also 

identified significant increases in MD and RD profiles between the Medium CAP group and 

healthy controls in the IFO tracts.

Decreased FA and increased MD, AD, and RD together suggest decreased anisotropy that is 

generally thought to reflect compromise in the WM cell membranes. This finding is 

consistent with at least one animal study showing greater anisotropic diffusion in areas 

containing multiple axons versus those areas with fewer axons, demonstrating that WM 

sheaths and greater numbers of axons are important sources of anisotropic diffusion 

(Takahashi et al., 2002). Other animal studies have shown decreased myelin integrity is 

specific to an increase in RD, and is a separate process from axonal injury (Song et al., 

2003; Song et al., 2002; Song et al., 2005). In animal studies, AD was decreased due to 

axonal injury in the same studies showing increased (Song et al., 2003) or unchanged RD 

(Song et al., 2002; Song et al., 2005). Another animal study showed that both AD and RD 

were decreased and the authors attributed this change to Wallerian degeneration (Sun et al., 

2008).
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Increased AD has been seen in the WM of HD subjects in the corpus callosum (Rosas et al., 

2010). Comparatively, AD also decreases with time in HD subjects (Weaver et al., 2009). 

Collectively, the changes in diffusivity throughout multiple tracts in our study support 

previous findings of global WM volume abnormalities in prodromal HD subjects (Paulsen et 

al., 2006; Paulsen et al., 2010; Phillips et al., 2014).

Increased MD and RD and, to a lesser degree, decreased FA, negatively correlated with 

cognitive performance for many of the tracts in our study. TMTA and TMTB performance 

time was highly correlated with FA, MD, and RD in almost all tracts. SDMT also had many 

significant correlations in the PFCC, IFO and ATR. Stroop Word Test scores were limited to 

significant correlations in the PFCC for FA, MD and RD, and in the ATR tracts for MD and 

RD. Together, the gradient of effects seen in the differences in DTI scalar values and their 

correlations with cognitive variables that have a documented association with cognitive 

changes in prodromal HD participants suggest DWI scalar tensor values can be reliable 

markers of disease progression. For example, the results of our study suggest that 

monitoring MD and RD in the IFO while measuring TMT time may serve as a reliable 

biomarker to monitor disease progression in the prodromal HD stage. In addition, 

correlations between compromised cognitive performance and diffusivity changes that imply 

decreased WM functionality are consistent with findings of reduced functional brain 

connectivity seen in prodromal HD individuals that becomes more widespread in manifest 

HD (Dumas et al., 2013).

Maturation of the PFCC has been reported to be associated with language development 

(Paul, 2011), and alterations in the PFCC have been linked to autism (Jou et al., 2011). The 

ATR runs through the anterior limb of the internal capsule and connects the PFC to the 

mediodorsal thalamic nucleus (Wakana et al., 2004) that is believed to be involved with 

declarative memory (Mamah et al., 2010; Van der Werf et al., 2003). Robust associations 

between an infant's visuospatial working memory performance and ATR have also been 

found (Short et al., 2013). The IFO connects the orbitofrontal areas to the ventral occipital 

lobe, while coursing through the external capsule (Catani and Thiebaut de Schotten, 2008; 

Wakana et al., 2004). The IFO is believed to only exist in humans (Catani et al., 2007) and 

may have a role in reading (Epelbaum et al., 2008), attention (Doricchi et al., 2008), and 

visual processing (Rudrauf et al., 2008). Alterations in WM properties in the IFO has been 

linked to autism (Jou et al., 2011). The UNC connects the orbitofrontal cortex to the anterior 

lobe (Catani and Thiebaut de Schotten, 2008; Wakana et al., 2004) and may be involved in 

episodic memory, language, and social emotional processing (Von Der Heide et al., 2013). 

Increased mean AD of the UNC was identified in medial temporal lobe epilepsy patients 

(Kim et al., 2011).

Overall in our study, MD and RD reliably produced the most widespread and significant 

findings in the mean differences between controls and those with the greatest disease burden 

and showed the highest association with cognitive performance decline. Of all cognitive 

measures evaluated, TMT is the most highly correlated with diffusivity changes in almost 

every tract. These findings with MD, RD, and TMT times are consistent with a previous 

study that investigated mean scalar values in a limited number of regions of interest (ROI) in 

PFC WM (Matsui et al., 2014). Widespread positive correlations between decreased 
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cognitive functioning measured by increased TMT times (O'Rourke et al., 2011) and 

microstructural damage indicators (increased MD and RD and decreased FA) are seen in our 

study. Increased TMTA times demonstrated in prodromal HD participants may be explained 

by deficits in attention and visual processing caused by diffusivity changes in the WM of the 

IFOs that reflect increased genetic toxicity (Doricchi et al., 2008; Rudrauf et al., 2008). 

Additionally, increased TMTB times that are indicative of deficits in memory performance 

were related to diffusivity changes in the WM of the ATRs and UNCs that also tracked with 

increased genetic toxicity (Mamah et al., 2010; O'Rourke et al., 2011; Van der Werf et al., 

2003; Von Der Heide et al., 2013). Recognizing that the SDMT score is a measure of 

working memory, one may deduce that decreased SDMT performance is caused in part by 

the biological changes that resulted in diffusivity changes in the ATRs and left UNC (Smith, 

1991; Von Der Heide et al., 2013).

One of the main limitations in this study was the lack of direct susceptibility distortion 

correction on the s-MRIs or DWIs. Since we were examining WM in the PFC, susceptibility 

distortion correction may have greatly improved our results, especially in the orbitofrontal 

and temporal regions as they are in close proximity to large air-tissue interfaces. Although 

efforts were made to limit the analysis of distorted images, findings in the UNC may have 

been more widespread if structural anatomy and WM fiber tracts were more accurate. 

Another limitation of this study was the use of streamline tractography instead of a more 

sophisticated fiber tracking algorithm. Many fiber tracking algorithms that derive tracts from 

more than a single tensor require performing fiber tracking on DWIs instead of tensor 

images and would require a DWI atlas-based approach. In this study, we did not employ a 

DWI atlas-based approach because that would involve nonlinearly deforming individual 

DWI subvolumes, which may have introduced unknown error and further distortion of 

diffusion information. It will be important for future studies to compare and contrast 

different fiber tracking algorithms in prodromal HD. In addition, although our CAP group 

analyses point to degeneration of WM tracts as a function of disease burden, it will be 

important for longitudinal studies to identify changes in WM over time. These studies would 

benefit from larger sample sizes to more effectively identify associations between WM and 

cognitive changes.

Future directions include expanding upon these findings in the PFC by examining other 

tracts of interest related to prodromal HD. In addition to WM in the PFC, it may also be 

useful to examine WM extending from the PFC to the striatum and beyond to characterize 

how HD affects corticostriatal loops in their entirety. Ultimately, the above analyses will be 

expanded to characterize changes in individual subjects longitudinally.

Conclusion

Our study examined the diffusivity properties of major WM tracts in the PFC in prodromal 

HD. The effects seen in the differences in DTI scalar values and their correlations with 

cognitive performance measures known to track with genetic toxicity in prodromal HD 

participants suggest DWI can be a reliable marker of disease progression. Specifically, the 

results of our study suggest that monitoring MD and RD in the PFC while measuring 

cognitive metrics of HD provide a reliable model to further characterize prodromal HD.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. 
T1-weighted (top) and DTI (bottom) templates that are encoded with color maps.
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Figure II. 
White matter tracts extending to the prefrontal cortex that were examined in this study are 

highlighted with different colors: left uncinate fasciculus (light blue), right uncinate 

fasciculus (dark blue), anatomical prefrontal white matter tracts of the corpus callosum 

(yellow), left inferior fronto-occipital fasciculus (light red), right inferior fronto-occipital 

fasciculus (dark red), left anterior thalamic radiations (light green), and right anterior 

thalamic radiations (dark green).
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Figure III. 
Percentages of voxels in each tract skeleton containing significant differences in diffusion 

tensor image scalars between controls and CAG-age product (CAP) groups. These results 

were acquired with the threshold-free cluster enhancement method at 50,000 permutations 

and corrected with false discovery rate at a criterion of q < 0.05 for left (l) and right (r). 

More details are shown in Figure IV and Figure V. Abbreviations: PFCC, anatomical 

prefrontal WM tracts of the corpus callosum; ATR(l), anterior thalamic radiations left; 

ATR(r), anterior thalamic radiations right; IFO(l), inferior fronto-occipital fasciculus left; 

IFO(r), inferior fronto-occipital fasciculus right; UNC(l), uncinate fasciculus left; UNC(r), 

uncinate fasciculus right; FA, fractional anisotropy; AD, axial diffusivity; RD, radial 

diffusivity; MD, mean diffusivity.
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Figure IV. 
Detailed differences in diffusion tensor image scalars between control and High CAG-age 

product (CAP) groups. Plots of mean diffusion tensor image scalars across tract skeleton 

voxels that contained significant differences between Control and High CAG-age product 

(CAP) groups for each participant. These results were acquired with the threshold-free 

cluster enhancement method at 50,000 permutations and corrected with false discovery rate 

at a criterion of q < 0.05 for left (l) and right (r). Abbreviations: PFCC, anatomical prefrontal 

WM tracts of the corpus callosum; ATR(l), anterior thalamic radiations left; ATR(r), 

anterior thalamic radiations right; IFO(l), inferior fronto-occipital fasciculus left; IFO(r), 

inferior fronto-occipital fasciculus right; UNC(l), uncinate fasciculus left; UNC(r), uncinate 

fasciculus right; FA, fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; MD, 

mean diffusivity.
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Figure V. 
Detailed differences in diffusion tensor image scalars between control and Medium CAG-

age product (CAP) groups. Plots of mean diffusion tensor image scalars across tract skeleton 

voxels that contained significant differences between control and Medium CAG-age product 

(CAP) groups for each participant. These results were acquired with the threshold-free 

cluster enhancement method at 50,000 permutations and corrected with false discovery rate 

at a criterion of q < 0.05 for left (l) and right (r). Abbreviations: PFCC, anatomical prefrontal 

WM tracts of the corpus callosum; ATR(l), anterior thalamic radiations left; ATR(r), 

anterior thalamic radiations right; IFO(l), inferior fronto-occipital fasciculus left; IFO(r), 

inferior fronto-occipital fasciculus right; AD, axial diffusivity; MD, mean diffusivity; RD, 

radial diffusivity; Med, medium.
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Figure VI. 
Percentages of voxels in each tract skeleton containing significant correlations between 

diffusion tensor image scalars and cognitive variables that showed decreased anisotropy was 

related to cognitive decline for prodromal Huntington disease participants. These results 

were acquired with the threshold-free cluster enhancement method with 50,000 permutations 

and corrected with false discovery rate at a criterion of q < 0.05. Abbreviations: TMTA, 

Trail Making Test A; TMTB, Trail Making Test B; SDMT, Symbol Digit Modalities Test; S 

Word, Stroop Color and Word Test – word condition; S Color, Stroop Color and Word Test 

– color condition; PFCC, anatomical prefrontal WM tracts of the corpus callosum; ATR(l), 

anterior thalamic radiations left; ATR(r), anterior thalamic radiations right; IFO(l), inferior 

fronto-occipital fasciculus left; IFO(r), inferior fronto-occipital fasciculus right; UNC(l), 

uncinate fasciculus left; UNC(r), uncinate fasciculus right; FA, fractional anisotropy; AD, 

axial diffusivity; RD, radial diffusivity; MD, mean diffusivity.
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Table I

Summary of demographic and clinical data for healthy controls and prodromal Huntington disease 

participants, including number of participants in each control and CAG-age product group.

Demographic Mean (SD)

Number of subjects Control Low Medium High

Age (years) 46.4 (11.4) 34.4 (8.6) 40.8 (9.9) 45.3 (12.0)

Educ (years) 15.4 (2.2) 14.7 (2.5) 15.0 (2.3) 14.9 (2.9)

Motor 3.8 (3.6) 2.5 (3.5) 6.1 (4.7) 7.7 (7.1)

SDMT 54.8 (10.4) 60.0 (10.3) 52.0 (9.6) 48.1 (10.1)

S Color 84.7 (12.4) 87.1 (13.6) 78.8 (11.6) 74.9 (14.3)

S Word 104.6 (15.1) 106.9 (17.6) 99.4 (16.6) 98.1 (19.9)

S Interference 49.6 (9.5) 52.5 (11.7) 48.0 (10.4) 44.9 (11.9)

TMTA 21.5 (6.3) 20.6 (6.0) 23.2 (7.7) 25.1 (7.5)

TMTB 51.4 (22.7) 49.9 (16.9) 56.3 (24.8) 60.9 (23.6)

Gender 22M/43F 9M/34F 16M/38F 13M/36F

Total N 65 43 54 49

Abbreviations: Educ, Education; Motor, Sum of all items of the Unified Huntington's Disease Rating Scale motor assessment scale; SDMT, 
Symbol Digit Modalities Test; S Color, Stroop Color and Word Test – color condition; S Word, Stroop Color and Word Test – word condition; S 
Interference, Strop Color and Word Test – interference condition; TMTA, Trail Making Test, Part A; TMTB, Trail Making Test, Part B.
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Table II

Four tracks with labeled regions.

PFCC IFO

PFCC1 Right medial orbitofrontal WM. IFO1 Medial orbitofrontal gyrus.

PFCC2 Posterior to right anterior cingulate WM. IFO2 Lateral orbitofrontal WM.

PFCC3 Lateral to right rostral anterior cingulate WM. IFO3 Pars orbitalis WM.

PFCC4 Inferior to right caudal anterior cingulate. IFO4 Pars triangularis WM.

PFCC5 Lateral to right superior frontal WM, medial to right rostral 
middle frontal WM.

IFO5 WM lateral to the putamen, medial to the insular gyrus.

PFCC6 Right superior frontal WM. IFO6 WM posterior to the putamen but does not terminate in 
the occipital or parietal lobe.

PFCC7 Left medial orbitofrontal WM. IFO7 WM that projects to the occipital lobe.

PFCC8 Posterior to left anterior cingulate WM. IFO8 WM that projects to the parietal lobe.

PFCC9 Lateral to left rostral anterior cingulate WM.

PFCC10 Inferior to left caudal anterior cingulate.

PFCC11 Lateral to left superior frontal WM, medial to left rostral 
middle frontal WM.

ATRs UNCs

ATR1 Thalamus. UNC1 Medial orbitofrontal gyrus.

ATR2 Lateral to caudate. UNC2 Posterior portion of lateral orbitofrontal WM.

ATR3 Lateral to rostral anterior cingulate WM. UNC3 Connecting point between temporal and frontal lobe, 
lateral to insular gyrus.

ATR4 Lateral to superior frontal WM, medial to rostral middle 
frontal WM.

UNC4 Lateral to amygdala, medial to superior temporal gyrus.

ATR5 Superior frontal WM. UNC5 Superior temporal WM.

Abbreviations: PFCC, anatomical prefrontal white matter (WM) tracts of the corpus callosum; ATR, anterior thalamic radiations; IFO, inferior 
fronto-occipital fasciculus; UNC, uncinate fasciculus.
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