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Abstract

The balance between tumor-promoting and tumor-suppressing immune responses and the 

difference between them ultimately determine whether a cancer escapes immune recognition 

mechanisms. Defining the complex relationships between the tumor itself, the tumor environment, 

and the immune system has been critical in facilitating the development of successful 

immunotherapies. This review explores the role of oncogenes in inducing cancer-associated 

inflammation, the local and systemic factors that lead to immune suppression, and immunotherapy 

approaches to overcome immune privilege.

INTRODUCTION

GI cancers, including colorectal cancer (CRC), gastric cancer, pancreatic cancer, and 

cancers of the liver and bile duct, are all consistently in the top ten malignancies diagnosed 

annually in the United States.1 For early-stage cancer, surgical resection remains the 

mainstay of curative-intent treatment. Current management strategies and treatments are 

limited primarily by lack of specificity to the cancer cells and by general treatment toxicities 
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that limit full delivery of anticancer agents.2,3 For these reasons, novel therapeutic strategies 

are urgently needed. One of the more recent and exciting new fields in anticancer 

therapeutics is immune therapy.

ROLE OF INFECTION IN GI CANCERS AND THE MICROBIOME

Increasing evidence suggests that as many as one third of cancers worldwide are associated 

with microbial infections. For GI cancers, common examples include Helicobacter pylori 

associated with gastric cancer, Clonorchis sinensis and Opisthorchis viverrini associated 

with bile duct cancer, and enterotoxigenic Bacteroides fragilis associated with colon 

cancer.4 Under normal conditions, an acute inflammatory response is self-limiting. 

However, under conditions associated with chronic inflammation, the production of reactive 

oxidative species and inflammatory cytokines can induce DNA damage in proliferating 

cells, thus leading to the generation of gene mutations or to epigenetic changes. 

Alternatively, de novo mutation of oncogenes such as K-ras and p53 can directly initiate the 

cascade of events associated with chronic inflammation.

Despite this new understanding regarding the role of infection in the development of some 

GI cancers, the clinical observation is that most cancers, including GI cancers and especially 

pancreatic cancers, are considered poorly immunogenic. In contrast to infectious disease–

generated neoantigens, the programmed progression of somatic gene mutations that 

transforms normal cells into malignant cells generates cancer proteins that are usually 

altered self-proteins. These proteins are masked from the immune system as a result of 

immune regulatory mechanisms.

ROLE OF ONCOGENES IN INDUCING CANCER-ASSOCIATED 

INFLAMMATION

Mutated K-ras is the prototype oncogene known to initiate chronic inflammatory changes 

within a cancer. As an example, mutated K-ras is the key driver gene that initiates the 

pancreatic cancer–associated inflammation program. For this reason, cancer-mediated 

inflammation is thought to be an additional pillar characteristic that defines a cancer.5 The 

net effect is often a downregulation of any potential immune activity from effector cells 

capable of recognizing and lysing the malignant cells at this critical location and timing. The 

balance and difference between tumor-promoting and tumor-suppressing immune response 

ultimately determines whether a cancer escapes immune recognition mechanisms.

LOCAL AND SYSTEMIC FACTORS THAT LEAD TO OVERALL IMMUNE 

SUPPRESSION: THE KEY PLAYERS

Defining the complex relationships between the tumor, the tumor environment, and the 

immune system has been critical in facilitating the development of successful 

immunotherapies. This is particularly true for pancreatic cancer because the generation of 

genetically engineered mouse models such as KPC mice (LSL-K-rasG12D;LSL-

p53R172H/+;Pdx1-Cre) closely reproduces the gradual progression from premalignant to 
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malignant human pancreatic cancer and has greatly accelerated our understanding of the 

contributions of the tumor, the tumor’s stroma, and the immune response to both (Fig 1).6,7

Tumor Cells

Tumor cells have developed several mechanisms to modulate the immune system and avoid 

detection by effector immune cells. Examples include cell surface expression of immune 

system checkpoint ligands such as programmed death-ligand 1 (PD-L1)8,9; secretion of 

soluble immunosuppressive factors, including transforming growth factor beta (TGF-β), 

vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), galectin-1, and 

indoleamine 2,3 dehydrogenase10–12; downregulation of major histocompatibility complex 

(MHC) class I expression; overexpression of receptors such as C-X-C chemokine receptor 

type 4 (CXCR4) via upregulation of hypoxia inducible factor 1 alpha (HIF1-α), basic 

fibroblast growth factor, and epidermal growth factor, which when bound to C-X-C 

chemokine ligand 12 (CXCL12) can lead to tumor growth, angiogenesis, metastasis, and 

chemotherapeutic resistance.13,14

Stroma

Both preclinical and clinical studies are now providing strong evidence that genetic 

alterations alone are not sufficient for tumor development. The tumor-stroma interactions in 

GI cancers are best illustrated in studies conducted in both human and mouse pancreatic 

cancer models. In fact, the pathologic hallmark of pancreatic cancer is the development of 

an abundant inflammatory response (desmoplasia).15,16 This inflammatory environment 

consists of regulatory immune cell populations, activated stellate cells, extracellular matrix 

(ECM) proteins, and fibroblasts. These cancer-associated fibroblasts (CAFs) represent the 

most abundant cell type in the tumor stroma. TGF-β and its isoforms are thought to be early 

mediators secreted by tumor cells that lead to the activation of CAFs.17 This subsequently 

leads to the production of ECM components, including collagens, secreted protein acidic 

and rich in cysteine, osteopontin, osteonectin, elastin, tenascin-C, fibronectin, 

thrombospondin, proteoglycans, hyaluronic acid, and STAT3. These components in turn 

secrete tumor-promoting factors that contribute to tumor invasion through the basement 

membrane via proteolytic enzymes including matrix metalloproteinases 1, 2, and 9; increase 

in angiogenic factors such as VEGF that lead to new blood vessel development; and changes 

in vascular permeability leading to the release of additional ECM-modulating events.18,19 

Interestingly, at least in the pancreatic cancer genetic mouse models, the increased rigidity 

of the new stroma has been shown to compress the local vasculature and alter perfusion.20 In 

addition, other mediators are secreted, including hepatocyte growth factor, platelet-derived 

growth factor, insulin-like growth factor, and nerve growth factors. Finally, CAFs are also 

known to secrete chemokines such as stromal cell derived factor 1 (also known as 

CXCL12). Ultimately, the stroma becomes transformed and is able to support invasion, 

migration, and tumor growth and is protected by an immune suppressive shield that is 

devoid of activated killer T cells.21,22

Local and Systemic Immune System

Tumor cells express multiple immune mediators that directly or indirectly block the activity 

of effector CD4+ and CD8+ T cells and dampen local tumor-infiltrating immune 
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responses.23–25 Galectin-1 expression, for example, is induced by the hypoxic tumor 

microenvironment. Galectin-1, in turn, induces increased IL-10 production, which results in 

decreased interferon gamma production by activated T cells.10 Tumors also produce 

increased amounts of indoleamine 2,3 dehydrogenase, which in turn depletes tryptophan 

from the tumor microenvironment and decreases T-cell function.11,12,17

Inflammatory immune cells such as dendritic cells and macrophages, when activated 

through engagement with antigen, display a metabolic profile similar to that of a glycolytic 

tumor cell. This involves a shift in metabolism away from oxidative phosphorylation under 

normal oxygen conditions toward aerobic glycolysis, a phenomenon known as the Warburg 

effect. This change in macrophages rapidly provides energy and metabolic intermediates for 

the biosynthesis of additional immune and inflammatory proteins. The generation of lactate 

as an additional byproduct of aerobic glycolysis further stimulates a proinflammatory storm 

by generating the hypoxic factor HIF1-α.26

Immune checkpoint modulation is another well-described mechanism by which tumor cells 

control the local immune response. In the normal host setting, immune checkpoint 

molecules modulate the T-cell response to antigens by either upregulating costimulatory 

pathways or downregulating coinhibitory pathways of immune signaling. Programmed cell 

death protein 1 (PD-1) is a coinhibitory receptor that downregulates T-cell activity in 

peripheral tissues during inflammation, thus preventing increased collateral tissue damage 

during an immune response and preventing the development of autoimmunity. PD-1 is 

activated by its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), which are both upregulated 

during an inflammatory response. Tumor cells of various malignancies have been shown to 

upregulate PD-L1 as a mechanism that dampens the local T-cell response by decreasing 

cytokine production and T-cell proliferation. In GI malignancies, PD-L1 upregulation occurs 

in pancreatic cancer, CRC, and gastric cancer (Fig 2).27–29

Tumors naturally attract and activate several immune cell populations with regulatory 

functions that normally infiltrate inflamed normal tissue to prevent autoimmune activity 

such as CD4+CD25+FOXP3+ regulatory T cells (Tregs). Increased numbers of Tregs are 

identified in the tumor microenvironment in most GI cancers and have been shown to have a 

presence even in premalignant lesions in pancreatic cancers. These cells in turn suppress the 

proliferation of tumor-specific CD4+ and CD8+ effector T cells as well as natural killer 

cells. Patients with pancreatic cancer have increased numbers of Tregs at the tumor site and 

in the circulation.30–32 It has been reported that a low percentage of Tregs in the circulation 

1 year after resection correlates with improved survival.33

In addition, increased numbers of tumor-infiltrating myeloid-derived suppressor cells 

(MDSCs) further suppress T-cell proliferation and increase T-cell apoptosis.11,17 MDSCs 

are immature myeloid cells that suppress both innate and adaptive immunity. MDSCs inhibit 

the function of effector T cells and natural killer cells and promote the development of 

Tregs. Increased numbers of circulating MDSCs is an independent poor prognostic factor in 

patients with pancreatic cancer.34 In addition, as a direct result of substances produced by 

the tumor microenvironment such as IL-10 and TGF-β, tumor-associated macrophages 

(TAMs) switch their differentiation from M1 (proinflammatory macrophages) to M2 (anti-
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inflammatory macrophages), which in turn have protumor properties. The identification and 

localization of MDSCs and TAMs in the surrounding preinvasive pancreatic cancer lesions 

known as pancreatic intraductal neoplasia is supporting evidence that these suppressor 

immune cells closely follow the histologic progression of pancreatic cancer.35

IMMUNOTHERAPY APPROACHES

Tumor Vaccines Targeting GI Cancers in the Clinic

Several proteins such as carcinoembryonic antigen, mutated K-ras, BRAF, PI3K, the mucin 

family of proteins (MUC1 and MUC5), telomerase, human epidermal growth factor receptor 

2 (HER2), and gastrin are overexpressed in several GI cancers (Table 1) 47,48 Vaccines and 

antibodies designed to target these antigens have been tested in clinical trials either alone or 

by using viral vectors or dendritic cells.36,37,49

Because few tumor antigens have been identified, the whole tumor cell has been the best 

source of immunogens. The entire tumor cell provides an unbiased method for allowing the 

immune system to determine which tumor antigens are the best for activating an immune 

response against. An allogeneic granulocyte-macrophage colony-stimulating factor (GM-

CSF) –secreting whole-cell pancreatic tumor vaccine (GVAX) approach was tested initially 

in sequence with adjuvant chemoradiotherapy in patients who had resected pancreatic 

adenocarcinoma. In particular, the molecule GM-CSF is secreted by the irradiated tumor cell 

and deposited locally (ie, site of the vaccinating tumor cells). This local secretion of GM-

CSF then recruits dendritic cells to the site of the vaccine to take up the tumor proteins and 

prime T-cell responses. Several phase I and II studies have been reported in both adjuvant 

and chemotherapy refractory metastatic pancreatic cancer.38,50–52 Mesothelin-specific CD8+ 

T-cell responses have also correlated with improved survival following whole-cell 

vaccination.53 Mesothelin is a cell surface tumor-associated antigen that is overexpressed in 

the majority of pancreatic adenocarcinomas and is postulated to be involved in cell adhesion 

and metastases.54 Other vaccines that have shown encouraging results in pancreatic cancer 

include the Listeria-based vaccine CRS-207 (live-attenuated Listeria-expressing 

mesothelin).39 CRS-207 has been studied in combination with GVAX on the basis of 

findings from a phase I study in which three patients with metastatic poorly differentiated 

adenocarcinoma (PDA) who had received prior GVAX had survival greater than 15 

months.38 This prime/boost study (in which the first vaccine was given as a means of 

jumpstarting the immune system [prime] and the antigen was readministered to build on the 

overall immune response [boost]) demonstrated a prolonged survival in a heavily pretreated 

group of patients who received low-dose cyclophosphamide-GVAX with CRS-207 

compared with those who received cyclophosphamide-GVAX alone.40 It is important to 

note however, that in the LSL-K-rasG12D; LSL-p53R172H/+; Pdx1-Cre genetically engineered 

pancreatic cancer mouse model, tumor-derived GM-CSF was essential for suppressing 

antigen-specific T cells in the stroma.55,56 This was explained by the fact that unopposed 

GM-CSF secreted locally in the tumor microenvironment without a counteracting signal 

contributed to recruitment of suppressive monocytes and subsequent immune suppression. 

However, in the case of vaccination at multiple intradermal sites, as is performed with 

GVAX, GM-CSF levels peak at 48 hours after vaccination and diminish to zero by 96 hours. 
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This allows recruitment and activation of antigen-presenting cells at a natural immunizing 

site, which facilitates antitumor adaptive immunity, especially in the setting of simultaneous 

immune checkpoint blockade.50

The most compelling data for the role of vaccines in initiating antitumor immune responses 

comes from a recent neoadjuvant study that assessed the effects of GVAX given with a low-

dose of cyclophosphamide to target suppressive Tregs 2 weeks before surgical resection of 

pancreatic tumors. That study identified for the first time vaccine-induced intratumoral 

tertiary lymphoid aggregates in the majority of resected surgical specimens. These tertiary 

lymphoid structures were shown to be regulatory, that is, they induced antigen-specific T 

cells that could still be downregulated by immune checkpoint signals within the tumor, 

including PD-L1. That study provided the first example of immune-based therapy 

converting a nonimmunogenic neoplasm into an immunogenic neoplasm by inducing 

infiltration of T cells and development of tertiary lymphoid structures in the tumor 

microenvironment.57 Studies are already underway that use combinations of GVAX, 

CRS-207, and anti-PD-1 monoclonal antibodies (mAbs) as immune strategies in several 

clinical settings, including neoadjuvant therapy, adjuvant therapy, and metastatic disease 

(NCT02243371; GVAX Pancreas Vaccine [With CY] and CRS-207 With or Without 

Nivolumab).

Another whole-cell vaccine platform is algenpantucel-L (NewLink Genetics, Ames, IA). 

This vaccine is derived from two human PDA cell lines (HAPa-1 and HAPa-2) that have 

been genetically modified to express alpha(1,3)Galactosyl epitopes. The rationale is to 

induce complement and antibody-dependent cell-mediated hyperacute rejection of the 

vaccine through anti-alpha(1,3)Galactosyl antibodies that are already present in most 

patients because of the presence of bacterial flora in the intestinal tract. A phase II clinical 

trial investigating the addition of algenpantucel-L immunotherapy to adjuvant gemcitabine 

chemotherapy and chemoradiotherapy in 70 patients with resected PDA was recently 

completed. Of interest, patients who received a higher dose of vaccine in the study (300 

million v 100 million cells per dose) had an increase in 12-month disease-free survival and 

12-month overall survival.41 A larger follow-up adjuvant study using algenpantucel-L at 300 

million cells per dose has recently been completed; results will be forthcoming.

IMMUNE ANTIBODIES

Antibodies That Target Tumor Antigens

To date, mAbs have been the most successful form of immunotherapy clinically. mAbs 

mediate antitumor activity via antibody-dependent cell-mediated cytotoxicity, phagocytosis, 

and complement-dependent cytotoxicity. Advantages of mAbs include specific targeting of 

tumor cells while sparing normal tissue, relative ease of administration, and low toxicity 

profile. Major disadvantages include the absence of direct T-cell activation, which therefore 

precludes T-cell–mediated cytotoxic killing and the generation of memory immune 

responses. In addition, a potential limiting factor in the use of mAbs involves tumor 

heterogeneity. Specific examples are antibodies that target the HER2 protein (trastuzumab) 

and VEGF receptor 2 (VEGFR2; ramucirumab) approved in gastric cancer and antibodies 

that target VEGF (bevacizumab) and epidermal growth factor receptor (cetuximab, 
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panitumumab) approved in CRC. There are additional clinical trials (still accruing patients) 

that target other GI cancer proteins such as MUC5 (NCT01040000; Phase 2 Study of 

NPC-1C Chimeric Monoclonal Antibody to Treat Pancreatic and Colorectal Cancer). As an 

alternative approach, immunoconjugates can combine the specificity of mAbs with the 

potency of cytotoxic moieties. 90-Yttrium and 177-lutetium–labeled somatostatin have been 

examined in hepatocellular cancer and in neuroendocrine cancers. Dual affinity re-targeting 

molecules are multispecific antibodies capable of targeting two or more antigens 

simultaneously. At least one study that uses a colon cancer antigen (gpA33) together with a 

CD3 T-cell receptor for patients with chemotherapy refractory CRC will soon be tested in an 

early-phase clinical trial (NCT02248805; Phase 1 Study of MGD007 in Relapsed/Refractory 

Metastatic Colorectal Carcinoma) as will dual affinity re-targeting molecules that target 

epidermal growth factor receptor and CD3 (NCT01420874; Anti-CD3 x Anti-Erbitux® 

Armed Activated T Cells [Phase Ib] for Gastrointestinal [GI] Cancer).

Antibodies That Target Costimulatory Molecules

Although vaccines can induce T-cell responses against tumor antigens, significant clinical 

responses have not yet been observed. Emerging data together with recent clinical findings, 

such as the induction of regulatory lymphoid infiltrates following GVAX, strongly support 

the need to combine antibodies that either enhance costimulatory signals or downregulate 

inhibitory signals with vaccines that induce an adaptive response to achieve the most potent 

antitumor immune responses.

The CD40 pathway is one example that demonstrates the potential of targeting a stimulatory 

signal within the pancreatic tumor microenvironment. CD40 engagement of macrophages 

and/or dendritic cells within the pancreatic tumor stroma upregulates surface expression of 

MHC and additional costimulatory molecules and augments T-cell activation. On the basis 

of strong preclinical data, this strategy was tested in a first-in-human clinical trial in patients 

with solid tumors (including two patients with cholangiocarcinoma) by using the humanized 

CD40 agonist CP-870,893.58 A subsequent study tested CP-870,893 administered after 

gemcitabine in 22 previously untreated patients with advanced pancreatic cancer.42 A 

follow-up study is planned that will use the CD40 agonist RO7009789 (previously known as 

CP-870,893) in patients with resectable pancreatic cancer; one dose of RO7009789 will be 

administered as a single agent before surgery followed by four cycles of adjuvant therapy 

with gemcitabine plus nab-paclitaxel plus RO7009789.

Antibodies That Target Immune Checkpoints

Immunotherapy has finally become a cancer treatment modality. Antibodies that inhibit 

immune checkpoint signals within tumors are the game changers. Two have already been 

approved for the treatment of metastatic melanoma. Antagonist antibodies that target 

cytotoxic T-lymphocyte antigen-4 (CTLA-4) and PD-1 signals on T cells activate pre-

existing melanoma-specific T cells. Both agents have demonstrated efficacy as single agents 

and in combination for metastatic melanoma, lung cancer, renal cancer, and others. Three 

mAbs in this group, the anti-CTLA-4 mAb ipilimumab and the anti-PD-1 mAbs 

pembrolizumab and nivolumab, are approved by the US Food and Drug Administration for 
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the treatment of metastatic melanoma. Additional ongoing studies are testing these agents in 

many other cancers, including colorectal, gastric, and pancreatic cancers.

A small phase I study with only 11 patients was completed in a chemotherapy refractory 

population, and no responses were reported for the three patients with CRC.59 A phase II 

study using ipilimumab was tested in 27 patients with locally advanced and/or metastatic 

pancreatic cancer. There were no responders by classic RECIST criteria, but one patient 

experienced a delayed response after initial progressive disease. This patient developed new 

metastases after two doses of ipilimumab (progressive disease). However, continued 

administration per protocol led to a significant delayed regression of the primary tumor and 

multiple liver lesions.43 More recently, the anti-PD-L1 antibody BMS-936559 was tested in 

207 patients with solid tumor (18 patients with CRC, 14 patients with pancreatic cancer, and 

seven patients with gastric cancer). Although there were radiographic responses seen in 

patients with other cancers (melanoma, renal cell cancer, non–small-cell lung cancer, and 

ovarian cancer), there were no responses seen in the patients with GI cancer.44 In addition, 

the anti-PD-1 antibody pembrolizumab was tested in treatment refractory gastric cancer that 

had PD-L1–positive tumors in the stroma or in ≥ 1% of tumor cells. Overall, treatment was 

well tolerated with a response rate of 32%.45 A study is planned using pembrolizumab and 

chemotherapy for CRC, gastroesophageal, and pancreaticobiliary cancers (NCT02268825; 

Phase I/IIA Study MK-3475 With Chemotherapy in Patients With Advanced GI Cancers 

[MK-3475 GI]).

There are several reasons why these immune checkpoint agents fail to show responses in GI 

cancers. Unlike melanoma, renal cancer, and some lung cancers, most GI cancers do not 

naturally induce effector T-cell responses. In addition, preclinical pancreatic cancer models 

suggest that the stroma provides a formidable barrier to effector T-cell infiltration. A recent 

neoadjuvant study demonstrated the ability of GVAX to induce lymphoid structures and 

effector T cells that can infiltrate pancreatic tumors. However, the infiltration of effector T 

cells was associated with production of interferon gamma, which in turn upregulates 

immune checkpoints including the PD-1/PD-L1 signaling pathway. This response to 

infiltrating interferon gamma–expressing effector T cells has been referred to as adaptive 

resistance. A small pilot study compared the checkpoint inhibitor ipilimumab alone with 

GVAX given to induce and activate pancreatic cancer–specific T cells along with 

ipilimumab given to block the CTLA-4 pathway from turning the T cells off once they have 

been activated. That study demonstrated tumor responses of 27% 1-year survival in the 

combination arm versus 7% 1-year survival in the ipilimumab alone arm.38 That study 

provided support for the need to combine a T-cell–inducing agent such as a vaccine with 

these immune checkpoint inhibitors in patients with GI cancers in which T cells do not 

naturally exist. In the genetically engineered mouse model of pancreatic cancer (LSL-K-

rasG12D;LSL-p53R172H/+; Pdx1-Cre), the stromal environment inhibits activated T cells 

from infiltrating into the tumor. However, immune control of pancreatic cancer growth 

could be achieved by first depleting CXCL12-expressing carcinoma-associated fibroblasts, a 

major contributor to the stromal barrier.14

Rrenewed enthusiasm in immunotherapy has led many groups to review previous pathology 

specimens and identify the immune characteristics of tumors along with histology and 
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genetic features. It is now recognized that CRC and other GI cancers such as small bowel, 

ampullary, and gastric cancers that have microsatellite instability (MSI-high) or CpG island 

methylator phenotype tumors have been associated with extensive tumor-infiltrating 

lymphocytes and, in general, a better prognosis when compared with microsatellite stable 

tumors.60 One possible explanation is that this increase in CD3+ and CD8+ intratumoral 

lymphocytes is a direct result of increased immunologic recognition of mutated proteins on 

the cell surface of tumor cells. This likely explains why single-agent immune checkpoint 

inhibitors are showing greater activity in cancers with high mutation frequency burdens such 

as MSI-high tumors.

MSI-high tumors are thought to be present in 15% of CRCs and in approximately 20% of 

gastric cancers in the US population. However, in less common cancers, the presence of 

MSI-high tumors is more difficult to estimate, and the literature reports ranges of 0% to 22% 

for ampullary cancer, 0% to 3% for pancreatic cancer, and 5% to 45% for small bowel 

cancers.61–63 Clinical trials are studying anti-PD-1 mAbs in patients with GI cancer with 

MSI-high tumors to test the hypothesis that MSI-high tumors respond more effectively to 

checkpoint mAbs (NCT01876511).

It is important to point out that these immune-modulating agents do have immune-mediated 

toxicities. These immune-modulating agents are not cancer T cell–specific. Rather, they will 

enhance the activation status of other T-cell populations in the patient. High rates of 

autoimmune toxicities, including colitis, nephritis, hypophysitis, pleuritis, and hepatitis, 

have been reported with ipilimumab (up to 85% with the highest dose of 10 mg/kg). The rate 

of toxicity with PD-1/PD-L1 blockade is more modest but can still result in severe grade 3 

to 4 autoimmunity and occasional death despite attempts to manage the 

autoimmunity.43,44,59 Future studies will be needed to determine how best to control the 

non-cancer T cells to minimize these autoimmune events.

ADOPTIVE CELL TRANSFER

With the adoptive cell transfer approach, T cells are removed from the tumor tissue (tumor-

infiltrating lymphocytes), expanded ex vivo, and reinfused back to the patient at cell doses 

of approximately 1 × 10−9 cells following a nonmyeloablative lymphocyte-depleting 

preparative regimen. This allows manipulation of the T cells by priming the cells to tumor 

antigens or by transfection with recombinant DNA encoding for T-cell receptors specifically 

directed toward tumor antigens. This approach has been used successfully in a patient with 

chemotherapy refractory bile duct cancer in which an erbb2-interacting protein expressed by 

the cancer was targeted.46 The adoptive cell transfer approach is currently being tested in 

clinical trials for pancreatic cancer that use an anti-mesothelin chimeric antigen receptor 

(NCT01583686; CAR T Cell Receptor Immunotherapy Targeting Mesothelin for Patients 

With Metastatic Cancer).

CHIMERIC ANTIGEN RECEPTORS

Chimeric antigen receptors (CARs) are recombinant receptors that combine the specificity 

of an antigen-specific antibody with the activating functions of T cells. Unlike T-cell antigen 

receptors, CARs engage their target independent of antigen processing by the target cell and 
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independent of MHC. CARs are grouped into three generations of increasing costimulatory 

activity. These CARs share the extracellular domain that engages the target via a single-

chain variable fragment derived from an antibody. First-generation CARs include only 

CD3ζ as an intracellular signaling domain, whereas second-generation CARs include a 

single costimulatory domain derived from either CD28 or 4-1BB; third-generation CARs 

include two costimulatory domains (CD28 and 4-1BB) and other costimulatory molecules.64

Although the published literature suggests that antigen-specific targeted CARs are safe, the 

safety profiles are still fairly limited. In one study, a patient with colon cancer treated with 

HER2/neu CAR T cells died 5 days after the adoptive transfer; this patient died of what 

appears to have been a cytokine storm and respiratory failure triggered by the recognition of 

the low levels of antigens on lung epithelial cells.65

FUTURE DIRECTIONS AND CHALLENGES

The limitations of currently available immunotherapy for GI malignancies became clear as 

we began to appreciate the complex interplay between the tumor, the supporting tumor 

microenvironment, and the immune system at both the local and systemic level. As 

illustrated by GM-CSF and TAMs, the context in which different signals are received and at 

what time, how they are delivered, and the location of delivery can determine whether the 

signal is ultimately immune suppressive or activating. Preclinical models have already 

revealed the synergy between immunotherapy and other targeted therapeutics, including 

using the appropriate costimulatory molecules and integrating what has recently been 

discovered regarding checkpoint inhibitors. Critical concepts have been learned from the 

preclinical pancreatic cancer genetically engineered mouse models and from completed 

clinical trials in pancreatic cancer that use neoadjuvant GVAX. First-line treatment with 

agents that deplete or inhibit key immune-suppressing stroma molecules and that provide 

costimulatory support, treatment using vaccines that induce an immune response in 

nonimmunogenic cancers, or a combination of these agents should be the first step toward 

recruiting activated T cells into the tumor. Once activated T cells infiltrate the tumor 

environment, subsequent administration of immune checkpoint inhibitors can achieve 

maximum immune efficacy.

However, there are still many challenges that must be overcome. Despite the approval of 

ipilimumab and pembrolizumab for advanced melanoma and the use of these agents for GI 

cancers in clinical trials, there is still much to be learned. Monitoring immunologic 

parameters has been an integral component of all completed and ongoing clinical trials 

discussed in this review. Although several ongoing studies testing anti-PD-1 antibodies are 

measuring PD-1 or PD-L1 expression on tumors, it remains to be determined whether cell 

surface expression of PD-1 on T cells or PD-L1 on tumor cells will be validated as a 

predictive biomarker. Another challenge relates to the traditional evaluation of antitumor 

response in immunotherapy trials because both conventional and nonconventional (ie, 

scenarios that include radiographic stable disease or partial response following an initial 

increase in tumor burden that might have otherwise led to a patient coming off study 

secondary to disease progression) responses have been reported. GI cancer studies focused 

on immunotherapy have shown that it can take more than 3 months to observe a 
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radiographic effect in some patients. It has also been demonstrated that these clinical and 

radiographic effects can be durable once they occur. A similar concern is how to define and 

grade immune-mediated adverse events.

As we move to the next phase of studies that will combine multimodality immune therapies, 

we are reminded that there is still much to learn regarding the safety profiles of agents given 

in combination to patients who may already have baseline GI, liver function, and endocrine 

abnormalities from their underlying cancer or as complications from prior treatment. We are 

at a key moment in which we can develop improved methods to deliver potentially multiple 

key antigens to a tumor environment that can be manipulated to become more receptive to 

immune infiltration of effector T cells. The possibility of overcoming immune privilege and 

delivering personalized immunotherapy might one day become a reality.
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Fig 1. 
(A) Normal relationship between the epithelial layer, basement membrane, and extracellular 

matrix (ECM). (B) Interaction between the tumor initiation process and its relationship to 

the stroma. A pathologic hallmark of pancreatic cancer is the development of an abundant 

inflammatory response. The inflammatory environment consists of activated stellate cells, 

ECM proteins, and fibroblasts. These cancer-associated fibroblasts are thought to secrete 

factors such as transforming growth factor beta (TGF-β). This subsequently leads to the 

production of ECM components, including collagens, fibroblast growth factor, C-X-C 
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chemokine ligand 12 (CXCL12), proteoglycans, and hyaluronic acid. These in turn secrete 

tumor-promoting factors that contribute to the tumor’s invasion through the basement 

membrane via proteolytic enzymes, including matrix metalloproteinases. There are also 

increases in angiogenic factors such as vascular endothelial growth factor (VEGF) that lead 

to the development of new blood vessels and changes in vascular permeability that lead to 

the release of additional ECM-modulating events. (C) Tumor initiation-stroma interaction. 

Mutated K-ras is thought to be the driver of a cancer-associated inflammation program that 

leads to predominance and infiltration of immunosuppressive immune cells into the tumor 

stroma at the expense of effector T cells. Tumors harbor the ability to increase the number 

regulatory T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated 

macrophages (TAMs) and to upregulate molecules such as C-X-C chemokine receptor type 

12. Ultimately, they produce a local immunosuppressive environment ideal for tumor 

growth. CXCR4, C-X-C chemokine receptor type 4; NK, natural killer (cell); PDGF, 

platelet-derived growth factor; PGF, placental growth factor.
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Fig 2. 
Immune costimulatory and coinhibitory ligands and receptors involved in T-cell activation 

and inhibition. Tumor cells are poor antigen-presenting cells because they often do not 

possess or downregulate class I antigens. The activation of the adaptive immune response 

begins when activated macrophages and specialized antigen-presenting cells and/or dendritic 

cells process antigens and present antigens onto appropriate major histocompatibility 

complex (MHC) class I and II molecules where they can be recognized by a T cell with the 

appropriate T-cell receptor that recognizes the specific bacterial and/or viral antigen pep-

tide. In the context of a second costimulatory signal consisting of the B7 family of receptors 

on the antigen-presenting cell and CD28 on the T cell, the combination of signal 1 and 

signal 2 leads to maximal immune activation. ab, antibody; CTLA-4, cytotoxic T-

lymphocyte antigen-4; PD-1, programmed cell death protein 1; PD-L1, programmed death-

ligand 1; TCR, T-cell receptor.
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