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Abstract

Wilms tumor (WT) is the most common childhood kidney cancer worldwide and poses a cancer
health disparity to black children of sub-Saharan African ancestry. Although overall survival from
WT at 5 years exceeds 90% in developed countries, this pediatric cancer is alarmingly lethal in
sub-Saharan Africa and specifically in Kenya (36% survival at 2 years). Although multiple
barriers to adequate WT therapy contribute to this dismal outcome, we hypothesized that a
uniquely aggressive and treatment-resistant biology compromises survival further. To explore the
biologic composition of Kenyan WT (KWT), we completed a next generation sequencing analysis
targeting 10 WT-associated genes and evaluated whole-genome copy number variation. The study
cohort was comprised of 44 KWT patients and their specimens. Fourteen children are confirmed
dead at 2 years and 11 remain lost to follow up despite multiple tracing attempts. TP53 was
mutated most commonly in 11 KWT specimens (25%), CTNNB1 in 10 (23%), MYCN in 8 (18%),
AMERL in 5 (11%), WT1 and TOP2A in 4 (9%), and IGF2 in 3 (7%). Loss of heterozygosity
(LOH) at 17p, which covers TP53, was detected in 18% of specimens examined. Copy humber
gain at 1q, a poor prognostic indicator of WT biology in developed countries, was detected in 32%
of KWT analyzed, and 89% of these children are deceased. Similarly, LOH at 11q was detected in
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32% of KWT, and 80% of these patients are deceased. From this genomic analysis, KWT biology
appears uniquely aggressive and treatment-resistant.

INTRODUCTION

Wilms tumor (WT) is the most common childhood kidney cancer worldwide and arises
disparately and most prevalently among children of black sub-Saharan African ancestry,
regardless of original nationality, country of immigration, or subsequent generation (Stiller
and Parkin, 1990; Breslow et al., 1993, 1994). Although survival from WT in developed
countries now exceeds 90% at 5 years, dismal outcomes are experienced in low-income
nations of sub-Saharan Africa. For example, our recent efforts to establish a comprehensive
WT Registry and Tissue Repository in Kenya have shown that overall survival at 2 years
remains alarmingly and unacceptably low at 36% in this resource-challenged country
(Abdallah and Macharia, 2001; Axt et al., 2013; Libes et al., 2014a). While a lack of
standardized treatment protocols, an inconsistent availability of chemotherapeutics, and
frequent care abandonment contribute significantly to this poor outcome from WT in Kenya,
we have had reason, based on consistent clinical observations of its lethal behavior, to
postulate that a unique and potentially more aggressive biology imparts a major obstacle to
treatment efficacy (Murphy et al., 2012a; Libes et al., 2014b).

WT is a genetically heterogeneous disease arising in the context of several classical
mutations that, depending on the stage of kidney organogenesis and the respective sequence
in which each occurs, determine its histology and biology (Gadd et al., 2012; Scott et al.,
2012). The combined frequency of three genetic alterations fundamental to Wilms
tumorigenesis, specifically WT1, CTNNBL, and WTX (i.e., AMER1 or FAM123B), has been
estimated to occur in roughly one third of WT, whereas aberrant expression of IGF2 has
been shown to occur in 70% of WT specimens (Huff, 2011; Gadd et al., 2012). Furthermore,
WT maintenance and disease progression are associated with the altered expression of
multiple other genes, such as TP53, MYCN, CITED1, 9X2, TOP2A, and CRABP2 (Lovvorn
et al., 2007; Schaub et al., 2007; Williams et al., 2011; Murphy et al., 2012b; Libes et al.,
2014b; Murphy et al., 2014; Pierce et al., 2014; Williams et al., 2015). Specifically,
mutations in TP53 and accumulation of its protein product, TP53, are a common finding in
unfavorable histology (UH) WT and a notorious marker of treatment resistance (Lahoti et
al., 1996; Sredni et al., 2001; Natrajan et al., 2007; Maschietto et al., 2014).

Within developed countries of North America and Europe, recent advances in WT therapy
and outcome have evolved to modify the intensity of treatment algorithms according to
specific biological properties. Specifically, combined loss of heterozygosity (LOH) at 1p
and 16q in favorable histology (FH) WT has been associated with treatment resistant disease
and portends a poor outcome, albeit only occurring in approximately 5% of FHWT cases
(Grundy et al., 1994, 2005; Dome et al, 2014). An even more recent prognostic marker of
poor outcome is copy number gain (CNG) at 1q in FHWT specimens, which too has been
associated with adverse biologic behavior (Hing et al., 2001; Natrajan et al., 2006; Perotti et
al., 2012; Gratias et al., 2013). The presence of these biologic variables, specifically LOH of
1p and 16q, has been incorporated into the current Children's Oncology Group (COG)
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therapy paradigm to warrant a more intensive drug regimen up front for FHWT (Dome et
al., 2014). Loss of genetic material at 4q, 11q, and 14q has also emerged as features of
UHWT and poor prognosis (Wittmann et al., 2007; Williams et al., 2011). However, the
frequency and prognostic consequence of these genetic and chromosomal alterations in WT
among patients residing in the resource-constrained nation of Kenya have not been
previously characterized and may serve as a biologic road map for other sub-Saharan
African countries.

Building on our recent proteomic efforts to clarify the molecular basis for the persistently
poor survival from WT in Kenya, we hypothesized that specimens from children in this
disadvantaged country would harbor genetic signatures of biologically aggressive and
treatment resistant disease.

MATERIALS AND METHODS

Kenyan Wilms Tumor Patients

To study the molecular composition of and survival from WT in Kenya, we established a
comprehensive patient registry, consecutively enrolling children who were treated at four
collaborating hospitals beginning January 15t, 2008 (Axt et al., 2013; Libes et al., 2014a).
Concomitantly, we established a Kenyan WT tissue repository to archive corresponding
specimens for biological study (Libes et al., 2014b). Through December 2014, 263 Kenyan
WT patients have been registered into this database. Available tissue blocks (formalin fixed
and paraffin embedded) of registered patients were shipped bi-annually to VVanderbilt
University for molecular analysis; specimens from 146 Kenyan WT (KWT) patients could
be located within the study time frame.

Histologic Analysis

Because resources to archive WT specimens consistently and in a timely manner are limited
in Kenya, and because treatment regimens are not currently standardized there, we
performed upfront a thorough histologic analysis of all shipped tissue blocks to verify
diagnosis and to assure the highest tissue quality for genomic analysis. Briefly, 5 um
sections were obtained from each tissue block and stained with hematoxylin and eosin
(H&E). A fellowship-trained pediatric pathologist (HC) was blinded to all clinical and
research data before histologic review of each tissue section. Specimens were reviewed on
two separate occasions to determine pathologic diagnosis, histology (i.e., using COG criteria
and the presence of diffuse anaplasia to define unfavorable histology), integrity of fixation,
and tissue viability (Faria et al., 1996). Due to many WT patients receiving neoadjuvant
chemotherapy in Kenya as a principal cause of tissue necrosis, we identified 44 different
patient specimens as being of sufficient integrity to perform these genetic studies; the
remaining 102 specimens showed predominant tissue necrosis either from treatment effect
or delayed fixation that precluded reliable molecular analysis and therefore were excluded.
Ten KWT specimens had adjacent kidney available for control germ line analysis, but only 5
tumor and kidney blocks could be paired, given current archiving methodologies and tumor
specimen necrosis.
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Next Generation Sequencing Analysis

To explore the genetic and chromosomal alterations in KWT, genomic DNA was isolated
from all 44 WT and 10 adjacent kidney specimens using the QlAamp DNA FFPE Tissue Kit
according to the manufacturer's protocol (Qiagen, Valencia, CA). Briefly, 4 paraffin sections
at 10 um each were acquired from the highest quality tissue block of each KWT patient
(Vanderbilt Translational Pathology Shared Resource). After removal of wax in xylene,
tissue sections were digested and genomic DNA was isolated and purified. To evaluate the
presence of mutations in 10 WT-associated genes (WT1, CTNNB1, AMERL [i.e., WTX],
IGF2, TP53, MYC-N, CITED1, SIX2, CRABP2, and TOP2A), genomic DNA was analyzed
using next generation sequencing (NGS) technology for single nucleotide variations,
insertions, and deletions in these targeted loci. Briefly, multiplex amplicon sequencing
libraries were prepared using an amplicon gene primer panel that targeted coding regions of
these 10 genes. Input DNA was quantified using the high-sensitivity dSDNA assay on the
Qubit fluorometer and normalized to 4 ng/ul. The multiplex PCR was performed in eight
reactions per sample using a custom Qiagen GeneRead DNA-seq Panel following
manufacturer's protocol without deviation (Qiagen).

Data Quality Control and Analysis

Variant calling was performed using the standard Genome Analysis Toolkit Haplotype
Caller pipeline (GATK version 3.1-1, http://www.broadinstitute.org/gatk/) (McKenna et al.,
2010). Single nucleotide variant (SNV) mutation calls were made using the following
threshold filters: 1) each candidate mutation had to pass GATK Variant Quality Score
Recalibration filtering, 2) DP (depth) filtering was greater than 10, 3) Genotype Quality was
greater than 30, 4) SNV was not observed in the 10 adjacent kidneys, and 5) the allele
frequency in the 1000 Genomes Project was lower than 0.2%. For small insertions and
deletions (indels), we further manually inspected, using “samtools tview”, the alignment and
removed calls close to the end of aligned reads. Additionally, we used MuTect software to
call SNV mutations further to detect low allele fraction (AF) mutations (Cibulskis et al.,
2013). Given the lower number of adjacent kidney specimens that could be located, we
combined these ten germ line controls as a single sample and ran the MuTect analysis of
individual tumors against this combined sample. We selected mutation calls with AF greater
than 0.1 for further analysis. Mutation calls are reported for those SNVs occurring only in
the WT specimens, and not concomitantly in the adjacent kidneys, and are annotated using
ANNOVAR (version 2014jull14) (Wang et al., 2010). Only non-synonymous SNV
mutations with predicted deleteriousness in one of the algorithms implemented in
ANNOVAR, and indel mutations in exonic regions, are called as potentially functionally
significant. In aggregate, this strict approach to mutation calls yielded the greatest possible
confidence, given the constrained resources.

Copy Number Variation and Loss of Heterozygosity Analysis

To evaluate copy number variations (CNV) and LOH at genomic regions that associate with
adverse behavior of WT, we contracted with Affymetrix (Santa Clara, CA), which has a
unique platform to analyze whole-genome DNA isolated from FFPE specimens (Malek et
al., 2011; Wang et al., 2012). Genomic DNA was available from 34 of these KWT
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specimens for this analysis and was shipped to Affymetrix to perform the OncoScan™

FFPE Assay Kit, as described (Singh et al., 2015). Data were compared against two
Affymetrix controls, and quality control metrics were applied according to manufacturer
standards. Nexus Express for OncoScan™ 3.0 (BioDiscovery, Inc., Hawthorne, CA) was
used to generate all data figures and to analyze statistical significance, as described (Wang et
al., 2012). Significance (P<0.05) of chromosomal changes between group comparisons (e.g.,
dead versus alive and unfavorable versus favorable histology) is shown with a horizontal bar
(blue is copy gain, red is copy loss, and yellow is LOH) in the row designated “Significant”.
Furthermore, this OncoScan array interrogates, using molecular inversion probes, 74
somatic mutations in 9 genes, including KRAS(Singh et al., 2015).

RESULTS

Kenyan Wilms Tumor Patients

For this cohort of 44 KWT patients, 11 children were and remain lost to follow up (LTFU)
after various intervals of adjuvant treatment following tumor resection, and their outcomes
could not be accurately estimated despite exhaustive tracing efforts. Among those patients
for whom vital status could be accurately determined through the medical record and
multiple tracing calls (n=33), 14 children are confirmed deceased. This cohort of 44 KWT
included 8 specimens that showed diffuse unfavorable histology (UH; 18%), and 5 of these
children are deceased (63%). Among the 36 patients having favorable histology (FH), 9 are
deceased (25%). A total of 19 children (43%) received variable neoadjuvant therapy before
resection, but the precise extent (i.e., specific drugs and cumulative dosing) could not be
determined reliably from review of existing medical records.

Next Generation Sequencing Analysis

Among this study sample of 44 KWT specimens, potentially deleterious mutations were
detected in all 10 target genes sequenced but at a variable frequency (Table 1). In
descending order of occurrence, TP53 was mutated most commonly in 11 KWT specimens
(25%), CTNNBL1 in 10 KWT specimens (23%), MYCN in 8 (18%), AMERL (i.e., WTX) in 5
(11%), WT1 and TOP2A in 4 each (9%), IGF2in 3 (7%), and CITED1, SX2, and CRABP2
in 1 KWT specimen each (2%). Multiple of these mutations are previously reported “hot
spots” in WT arising in patients from other regions of the world, whereas certain mutations
are unreported in the COSMIC database and may be novel and unique to this Kenyan cohort
(Table 1). Concomitant mutations in CTNNB1 were detected in 2 of the 4 KWT specimens
having a WT1 mutation (Maiti et al., 2000; Gadd et al., 2012).

Interestingly, three of these targeted genes showed multiple mutations within a given
specimen (Table 1). Specifically, TP53 was mutated thrice each in KWT-13 and -23 and
twice in KWT-18. AMER1 was mutated thrice in KWT-14, while TOP2A was mutated at
four separate positions in KWT-1, and twice in KWT-30.

Copy Number Variation and Loss of Heterozygosity Analysis

In the sub-group of 34 KWT available for whole genome copy number analysis,
chromosomal instability was detected readily and in a pattern associated with poor prognosis
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in developed countries (Fig. 1). Specifically, copy number gain (CNG) at 1q, an emerging
feature of adverse WT biology (Hing et al., 2001; Gratias et al., 2013), was detected in 11
(32%) of the KWTSs analyzed, a frequency similar to other regions of the world; of these
children, 8 are confirmed deceased, and only 1 is confirmed alive at 2 years (2 patients
remain LTFU; Table 2; Fig. 2). CNG at 1q was significantly associated with death among
this KWT cohort (Fig. 2). One unexpected finding from these studies was the frequent
occurrence of LOH at region 16p11.2-11.1, which is a locus rich in TP53 target genes
(Table 2) (Hurst et al., 2012). Taken together with the frequency of mutations in TP53 and
of CNL and LOH at 17p13.1 (i.e., the TP53 locus) observed in this cohort, it appears that
loss of TP53 activity is common in and important to KWT biology (Tables 1 and 2; Fig. 2).

As expected, separating the KWT specimens according to histologic subtype revealed
greater chromosomal instability among UH tumors, showing many significantly different
regions for both CNV and LOH (Fig. 3). LOH at 1p and 16q are poor prognostic features of
FHWT in developed countries, particularly when occurring together, and warrant more
intensified therapy to reduce the risk for subsequent relapse (Grundy et al., 1994, 2005).
Fortunately, this pair of allelic loss occurs in only 5% of FHWT patients in the developed
world and was detected in only one of these KWT specimens, which showed UH, and that
child is deceased from disease progression. CNL and LOH at 1p and 17p were more
commonly associated with UH in this study (Fig. 3). Of further interest, copy number loss
(CNL) at 11q was observed differentially in UH relative to FH KWT specimens and appears
to be associated with death too. LOH at 11q was detected in 11 KWT specimens, and 80%
of these patients are confirmed deceased (Table 2). Separated according to histology, LOH
at 11qg was present in 71% of UH KWT analyzed but in only 22% of FH KWT (Table 2).

KRAS Mutations

To explore the consistent gain at chromosome 12 observed in this KWT cohort and reported
in other WT populations as well, we examined the OncoScan array data for somatic
mutations in KRAS which is the only of 9 genes included on this platform to be located on
chromosome 12 and which has been shown in a transgenic WT model to drive disease
progression (Clark et al., 2011; Yi et al., 2015). CNG at 12p12.1, the KRAS locus, was
observed in 14 of the KWTs (47%), and six of these children (43%) are confirmed deceased.
A total of six point mutations, which exceeded 2 standard deviations from the mean
MutScore (Affymetrix OncoScan™ 3.0 platform), were detected in 11 KWT specimens; as
an even stricter threshold of mutation confidence, five of these point mutations exceeded 3
standard deviations from the mean MutScore and were detected in 3 KWT specimens (Table
3).

DISCUSSION

WT poses a significant cancer health disparity to black children of sub-Saharan African
ancestry, not only because of its more common occurrence among black populations
worldwide, but also because of its persistently high lethality in resource-constrained nations
on the African continent, such as Kenya. To identify both societal and biological risk factors
that contribute to the persistently dismal 2-year survival from WT of only 36%, we, as a
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five-institution collaborative research team (1 American and 4 Kenyan hospitals),
established a Kenyan Wilms Tumor Registry and Tissue Repository, initially registering
patients treated in 2008 (Axt et al., 2013; Libes et al., 2014a). Indeed, many barriers to
adequate WT therapy, its completion, and the long term follow up of survivors compromise
optimal outcomes. Yet, we asked the fundamental question whether a population-specific
biology was also a deleterious contributing factor. As a complement to our recent study that
evaluated differences in peptide profiles among North American and Kenyan WT
specimens, we conducted the present and first-ever investigation to characterize the genetic
and chromosomal alterations in the latter population, as much has been published on this
genomic topic in the developed world (Murphy et al., 2012; Libes et al., 2014b). WT is a
genetically heterogeneous disease, and specific patterns of recurring mutations comprise the
theory as to its tumorigenesis, whereas chromosomal aberrations have been associated with
poor prognosis. Moreover, developed countries now risk-stratify FHWT patients according
to the presence or absence of LOH at both 1p and 16q, which together guide upfront
intensity of therapy (Dome et al., 2014). Emerging as another poor prognostic indicator of
WT outcome is CNG at 1q (Gratias et al., 2013). So, to optimize therapy in a low resource
environment such as Kenya it is necessary to identify both societal and biological risk
factors that form the basis for the poor outcome from WT experienced there.

The foremost observation from this genomic analysis of KWT reveals a pattern of genomic
instability that indeed associates with adverse biological behavior and treatment resistance
seen in developed regions of the world. Specifically, CNG at 1q was detected at a similar
frequency as in North American specimens but was associated with a nearly uniform risk for
death (Hing et al., 2001; Gratias et al., 2013). This observation suggests that CNG at 1q in a
KWT indicates treatment resistant and potentially lethal disease, and will require more
intensive therapy upfront and a greater effort to retain these high risk patients in therapy
through its completion and close monitoring for subsequent relapse post therapy.
Interestingly, combined LOH at 1p and 16q was not observed among 34 FHWT specimens
analyzed in this Kenyan cohort, but this paired genomic event was detected in one UH
specimen, and predictably that child died from disease. LOH at both 1p and 16¢, which
commonly accompanies CNG at 1q, occurs in approximately 5% of FHWT specimens and
significantly reduces 5-year survival in developed countries, but its frequency and effect on
survival in sub-Saharan countries remains to be clarified (Grundy et al., 2005). Importantly,
CNL and LOH at 11q also emerged from this cohort of KWT as a feature of UH and an
ominous risk for death (Klamt et al., 1998; Wittmann et al., 2007).

Accumulation of the TP53 protein in WT specimens has been associated with UH and
treatment resistance (Lahoti et al., 1996; Sredni et al., 2001; Natrajan et al, 2007; Maschietto
et al, 2014). It has been further postulated that TP53 mutation in WT is a late occurrence in
its disease sequence and progression (Natrajan et al., 2007). In this cohort of KWT, TP53
was the most frequently mutated gene we tested, found in 25% of the specimens, and LOH
at 17p, which covers TP53, was detected in 18% of specimens examined. This frequency of
alterations in TP53 (i.e., 32% total having either a potentially deleterious mutation or LOH
at 17p) exceeds those reported in other WT studies (Scott et al., 2012). One related finding
of this Kenyan study was the common occurrence (79%) of LOH at a region on 16p that
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harbors a number of TP53 target genes (Ng et al., 1999). Although 16p is a region that can
be prone to copy number variability, its specific variance among the Kenyan population is
currently unknown and therefore the presence of constitutional polymorphisms could not be
distinguished.

Taken together, these observations suggest that loss of TP53 and its wild-type protein
product potentially contribute fundamentally to KWT biology, although its functional
significance in this context has yet to be defined. In parallel epidemiologic studies of this
patient registry, we have reported that Kenyan children present with WT at an age typical
for this disease, as documented in other populations (i.e., between 3 and 4 years); as a result,
delayed presentation at a later stage in disease progression is not solely explanatory of these
observed alterations in TP53. Copy number gain of MYCN is another feature of treatment-
resistant WT (Schaub et al., 2007; Williams et al., 2011). A recent article describes a similar
frequency of MYCN alterations (18.5%) in a cohort of European WT and reports the same
P44L mutation that was detected in two of these KWT (Wegert et al., 2015). Finally, we and
others have observed consistent gain of whole chromosome 12 in WT. Because we have
reported previously on activation of KRAS which resides at 12p12.1, as a mechanism that
drives tumor dissemination in a mouse model, we queried what changes may be occurring
with KRAS in these KWT (Clark et al., 2011). KRASCNG was frequent in almost half of
these specimens, and mutations were observed relatively commonly too, three of which
were detected with high confidence at p.G12, the site that was engineered into the transgenic
model. For comparison, in a parallel screen of 20 North American WT specimens, we
detected the p.G12D mutation in 1 patient tumor (5% mutation rate at this locus), which
represents a similar variation frequency (data unpublished at time of this writing). These
observations of KRASalterations suggest a potentially targetable mechanism that drives the
disease progression of KWT.

The authors would like to acknowledge several limitations of this study that temper
interpretation of the results, which center principally around the challenges of conducting
molecular research on tissues acquired from resource-constrained countries. Foremost,
stratifying the clinical significance of specific mutations and chromosomal alterations on
outcomes among KWT patients is minimized by: 1) the lack of a nationally standardized
therapeutic regimen, 2) a high frequency of patients to abandon care, and 3) a substantial
loss to follow up rate. As a result, it is difficult to define clearly what genetic aberrations
align with favorable or poor prognosis and with treatment efficacy when many children are
not completing therapy. For example, we have been unable to determine a precise incidence
of and time interval for relapse and any effect this adverse event has on overall survival, as
salvage therapy is not standardized or widely available in Kenya. Kenyan parents often view
relapse as a non-survivable condition and may not seek additional treatment, particularly
when on-therapy toxicity is so high (Axt et al., 2013; Libes et al., 2014). Nevertheless,
through exhaustive tracing efforts, we have been able to determine a reasonably accurate
overall survival at two years for this KWT cohort that allowed evaluation of whole-genome
CNV between those who died or were alive at conclusion of the study. A second study
limitation concerns the integrity and consistency of methods employed to archive WT
tissues in Kenya. It is unknown for what duration and at what temperature a specimen may
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sit in pathology before formalin fixation, which together limit experimental approaches to
reveal precise biological markers. To overcome this question of study tissue integrity, we
first performed a thorough quality assurance histologic analysis to select the KWT
specimens showing greatest viability, which would yield the greatest confidence of having
analyzed tumor and not inflammatory or apoptotic cells. Third, given that many WT patients
in Kenya are pre-treated with neoadjuvant therapy (43% in this cohort), it is possible that we
may have selected unintentionally a more treatment-resistant cohort of specimens, wishing
to avoid sequencing of tissues having a large fraction of necrosis. Unfortunately, it was not
possible as another control measure to determine the precise dosing of neoadjuvant therapy
or the effect it had on tumor regression in this KWT cohort. As a result, the increased
incidence of UH may be real or may be artificial as a consequence of this histologic subtype
to resist treatment, thereby imparting a bias in the selection of viable tissues. Nevertheless,
our chromosomal comparison between histology types and vital status remain reliable, as the
tissue specimens again were controlled for quality (i.e., viability). Finally, for analysis as
germ line controls, we could locate only 10 adjacent kidney specimens from which a WT
arose, and only half of these could be matched definitively to tumor samples. As a result, our
mutation calls rarely may include potential polymorphisms unique to the Kenyan
population; however, by combining genomic data from all 10 adjacent kidney specimens
and excluding any single nucleotide variation arising in this “control” pool, we should have
preserved strict integrity for mutation calls.

In summary, this targeted genomic and chromosomal analysis of KWT reveals a pattern of
treatment-resistance and late phases of the WT sequence despite a typical age at presentation
for this disease globally. Mortality remains unacceptably high among this KWT cohort for
multiple reasons, but an aggressive, treatment-resistant biology may indeed contribute more
to the dismal outcomes than previously anticipated. Standardization of WT care in Kenya
will help to reduce overall mortality and will permit a better understanding of the clinical
significance for the various molecular signatures, whether genomic or proteomic.
Furthermore, simple and inexpensive immunohistochemical screening for TP53 as a marker
of treatment resistant KWT could help to risk-stratify patients in this low-income nation. If
resources and collaborations improve, a focused analysis for CNG at 1g and CNL at 11q
could further guide the intensity of future treatment regimens in Kenya. Finally, the
administration of drugs that target the -catenin or KRAS pathways may be of future benefit
to treat these challenging KWT patients, assuming efficacy can be proven without violating
the Declaration of Helsinki for research involving vulnerable populations.
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(A) Whole genome view of copy number gain (blue) and loss (red) across 34 Kenyan Wilms
tumors. Arrowheads denote gain at 1q and loss at 17p. (B) Whole genome view of loss of
heterozygosity (yellow) across the same KWT specimens. Arrowheads denote regions of
interest to Wilms tumor biology.
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Figure 2.
Comparison of copy number variation (A) and loss of heterozygosity (B) across the Kenyan

Wilms tumor genome between patients who died (n=14) or survived until conclusion of the
study (n=13). (A) Copy gain is denoted in blue and loss in red, and arrowheads highlight a
statistically significant gain at 1q and loss at 11q among those who died. Other significant
regions are noted. (B) For loss of heterozygosity, only two regions were statistically
different between outcome groups: 16p and 17p. The latter (arrowhead) covers the TP53
region.
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Figure 3.
Comparison of copy number variation (A) and loss of heterozygosity (B) across the Kenyan

Wilms tumor genome between unfavorable (UH) and favorable (FH) histology specimens.
As expected, UH specimens show greater variability relative to FH, as depicted by
significant regions.
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TABLE 3

KRAS Mutations in Kenyan Wilms Tumor
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No. of mutations > 2 standard deviations

No. of mutations > 3 standard deviations

beyond mean MutScore beyond mean MutScore KRAS mutation Cosmic_ID
1 1 p.G12A:c.35G>C COSM522
2 p.G12C/S:c.34G>T/A | COSM517;516
5 1 p.G12D/V:c.35G>A/T | COSM520; 521
5 1 p.G13D:c.38G>A COSM532
3 1 p.Q61H:c.183A>C COSM554
1 0 p.Q61H:c.183A>T COSM555
11 KWT - 32% 3 KWT -9%
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