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Abstract

A metal-free stereoselective reductive coupling reaction between isatins and aldehydes is reported. 

The reaction relies on commercial diethyl phosphite (∼€70 kg−1) as the stoichiometric reductant. 

Base-catalyzed Pudovik addition and phosphonate/phosphate rearrangement achieved polarity 

inversion on the isatin, and the derived carbanions were trapped by aldehydes with subsequent 

dialkoxyphosphinyl migration. Chiral iminophosphoranes were used as basic catalysts to achieve 

high diastereo- and enantioselectivities with excellent yields.

The reductive coupling of π-unsaturation is a powerful method for the construction of 

carbon–carbon bonds. When the two coupling partners are prochiral, there exists the 

opportunity to establish multiple stereogenic centers concurrent with C–C bond formation. 

In the specific case of two carbonyl reactants, reductive coupling offers an attractive and 

straightforward method for the synthesis of vicinal diols, valuable building blocks in organic 

chemistry. A generic carbonyl reductive coupling manifold encompasses many mechanistic 

subtypes,1 but the pinacol reaction is preeminent among them. The traditional pinacol 

coupling entails single-electron reduction of the carbonyl functionality to generate the 

corresponding ketyl radical and subsequent dimerization between two radical species. The 

reaction has been studied extensively using low-valent metals in this single-electron transfer 

manifold.2–6 Despite numerous advances, however, myriad challenges remain: a 

stoichiometric or super-stoichiometric amount of metal agents is often required and there are 
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sparse examples that use catalytic conditions.4n–r Moreover, the nature of the mechanism 

can render it difficult to control both chemoselectivity (homo- versus cross-coupling) and 

stereoselectivity, and the lack of differentiation of the nascent alcohols can be nettlesome. 

These precedents collectively informed our interest in developing an alternative, potentially 

generalizable reductive coupling strategy that utilizes a polar two-electron reaction 

mechanism for addressing the aforementioned issues. The purpose of this communication is 

to detail a new base-catalyzed cross coupling of carbonyls mediated by an economical 

organic reductant, diethyl phosphite; the stereochemical outcome of this multicomponent 

process is precisely controlled by a chiral triaminoiminophosphorane (Figure 1a).7,8

At the outset, we envisaged the possibility of catalytic generation of an α-oxycarbanion 

from a carbonyl substrate and its rapid and selective trapping with another carbonyl 

compound to form 1,2-diols. For substantiating this hypothesis, polarity reversal of a 

particular carbonyl group is of critical importance and we sought to take advantage of the 

phosphonate–phosphate (phospha-Brook) rearrangement to achieve this requisite process. 

Thus, a base-catalyzed sequence of Pudovik addition and phosphonate–phosphate 

rearrangement between ketone 1 and dialkyl phosphite was projected to lead to carbanion 2. 

The interception of this key intermediate by aldehyde 3 would afford mono-protected diol 4 
through dialkoxyphosphinyl migration (Figure 1b).9 A crucial departure from prior art is the 

fully intermolecular nature of the coupling and the need for the phosphite to exhibit 

complete selectivity between the two carbonyl reactants. We reasoned that the crucial 

chemoselectivity issue underlying this mechanistic framework, viz. the selective generation 

of α-oxycarbanion 2 from ketone 1, would be ensured by the inherent reversibility of 

Pudovik reaction and the reluctance of the aldehyde Pudovik product to undergo phospha-

Brook rearrangement. In addition, absolute stereochemical guidance in the C–C bond-

forming event could be provided by the conjugate acid of a suitable chiral base. In providing 

the conceptual blueprint for this scenario, we focused our attention on the exceptional 

electro-philicity and utility of α-dicarbonyls.9d–g,10

Steps were initially taken to assess the feasibility of the proposed reaction in a racemic sense 

using achiral bases such as potassium tert-butoxide (KOtBu). Initial trials with diethyl 

phosphite as the stoichiometric reductant indicated that the reaction proceeds most cleanly 

and efficiently when a protecting group is used on the isatin. Benzyl, allyl, and methyl 

protecting groups were examined using 20 mol% KOtBu in THF at 0 °C (Table 1, (±)-4a–

(±)-4c). Under these conditions, the reactions were complete in minutes with no observable 

intermediates (if the aldehyde is omitted from the reaction, the Pudovik-phos-pha-Brook 

product can be observed, however).9f These experiments revealed that the benzyl protecting 

group provided the highest isolated yield and diastereoselectivity. We subsequently verified 

that para-tolualdehyde is not capable of phospha-Brook rearrangement when treated with 

diethyl phosphite and 20 mol% KOtBu: only the Pudovik adduct was observed, implying 

that it is the isatin that is undergoing polarity reversal as we expected.

We then briefly studied the scope of the racemic reaction. The reaction gives consistently 

good yields for various aryl aldehydes incorporating substituents of different electronic 

properties (Table 1, (±)-4d–(±)-4g). At the current level of optimization, alkyl aldehydes 

and Boc-protected imine electro-philes were not well tolerated and only provided messy 
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reactions.11 The substitution pattern of the isatin was also examined; we found that the 

racemic reaction is reasonably flexible in terms of isatin electronics ((±)-4h–(±)-4k).

Efforts were next directed to the development of the enantioselective variant.12 We were 

encouraged to find that when we used the chiral iminophosphorane (C1), we obtained the 

secondary phosphate 4a with appreciable enantioenrichment (er 89.5 : 10.5), although the 

diastereoselectivity was poor (Table 2, entry 1). Gratifyingly, we found that upon lowering 

the temperature to −78 °C, phosphate 4a was obtained in 82% yield, 15 :1 

diastereoselectivity and an er of 96.5 : 3.5 (entry 2). Using the same temperature, we 

proceeded to evaluate the effect of the catalyst structure (entries 3 to 6), but ultimately 

concluded that α-branching in ligand substituent R is essential for promoting the desired 

transformations and the valine-derived iminophosphorane C1 was optimal in terms of 

stereoselectivity and chemical yield.

The disparity between the stereoselectivities at 0 °C and −78 °C prompted us to investigate 

the reversibility of the carbon–carbon bond formation via crossover experiments in that 

temperature range (Table 3). When racemic phosphate (±)-4a was subjected to standard 

conditions in the presence of 4-fluorobenzaldehyde, significant incorporation of that 

component in the form of phosphate 4a–F was observed at 0 °C and −40 °C, but no 

crossover was observed at −78 °C. These data support the hypothesis that the increase in 

enantioselectivity at −78 °C is not only a consequence of more rigorous facial discrimination 

of both substrates but also shutting down a stereoablative retro-aldol process that is 

operative at higher temperatures.

Using the optimized conditions, we evaluated the scope of the asymmetric reaction by 

initially looking at various isatins. While electron-deficient 5-halogenated isatins were well 

accommodated under the optimized conditions, use of dimethyl phosphite was indispensable 

for completion of the reactions with 5-methyl and methoxy isatins probably because of the 

slow phospha-Brook rearrangement (Table 4, 4h–4m).13 6-Chloro and 7-fluoro isatins were 

also smoothly converted into the reductive coupling products of high stereochemical purity 

using appropriate phosphite (4n and 4o). The absolute stereochemistry was determined at 

this stage by an X-ray diffraction study of phosphate 4j (Fig. 2).14

For exploration of aldehyde generality, we selected 5-bromo isatin as a coupling partner in 

consideration of its high reactivity and advantage of having an additional functional handle 

at the aromatic nuclei. As included in Table 4, various para-substituted aromatic aldehydes 

were tolerated and relatively electron rich aldehydes exhibited higher reactivity and 

selectivity (4p–4t). Hetero-substituents at the meta-position slightly affected the 

stereochemical outcome (4u–4w). For sterically demanding ortho-substituted aldehydes, 

dimethyl phosphite was needed to accelerate the reaction and virtually complete 

stereocontrol could be achieved (4x–4z).

In summary, we have developed a highly stereoselective, fully organic multicomponent 

coupling reaction between isatins and aldehydes with dialkyl phosphite as an economical 

reductant. The advantages of extending the reductive coupling into a two-electron manifold 

are manifest, and the mechanistic framework established herein may be applicable to other 
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stereoselective reductive carbon–carbon bond constructions. Efforts to exploit this reaction 

paradigm in other systems are ongoing in our laboratories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stereoselective reductive coupling reactions.
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Fig. 2. 
ORTEP diagram of 4j (ellipsoids displayed at 50% probability. Calculated hydrogen atoms 

except for that attached to the stereogenic carbon atom are omitted for clarity. Black: 

carbon, red: oxygen, purple: phosphorous, blue: nitrogen, vermilion: bromine, white: 

hydrogen).
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Table 1

Three component reductive coupling: racemica

a
All reactions were run on 0.2 mmol scale, using 1.1 equiv. of dialkylphosphite and 5.0 equiv. of aldehyde. % Yields refer to isolated yields. All 

d.r. and % yield values are the averages of two trials. Reactions were run until complete as adjudged by TLC.

b
% Yield determined by crude 1H NMR using mesitylene as an internal standard. Products derived from apparent retro-reaction significantly 

diminished the isolated yield; therefore, this substrate was not selected for further study.
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Table 3

Crossover experiments establish reversibilitya

Entry T (°C) 4a : 4a–F

1 0 1.0 : 1.5

2 −40 1.0 : 1.1

3 −78 Only 4a

a
Product distributions were determined by 1H NMR analysis (800 MHz) of the crude mixture.
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Table 4

Scope of asymmetric reactiona

a
All reactions were conducted on a 0.1 mmol scale, using 1.1 equiv. of dialkylphosphite and 5.0 equiv. of ArCHO. Argon was used to purge the 

reaction flasks. % Yields refer to isolated yields. All d.r., e.r., and % yield values are the average of two trials.

b
15 mol% of catalyst was used.

c
2.2 equiv. of dialkylphosphite was used.
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