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Abstract

Genome-wide association studies have reported eleven regions conferring risk of high-grade 

serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses 

can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 

47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4×10−3, 

FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role 

of each candidate by perturbing expression of each gene in HGSOC precursor cells. 

Overexpression of HOXD9 increases anchorage-independent growth, shortens population-

doubling time and reduces contact inhibition. Chromosome conformation capture identifies an 

interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal 

variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk 

variants within HOXD9 target genes (P=6×10−10 for risk variants (P<10−4) within 10kb of a 

HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic 

susceptibility to HGSOC.

Introduction

Genome wide association studies (GWAS) have identified hundreds of common single 

nucleotide polymorphisms (SNPs) associated with cancer predisposition. However, the 

functional role of these genetic risk variants in disease biology and the target cancer 

susceptibility genes have been described for only a handful of risk regions1-5. 

Approximately 90 per cent of risk-associated alleles lie within non-protein coding regions of 

the genome, suggesting that some reside within regulatory elements that influence the 

expression of target genes. In support of this, common risk variants often coincide with 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: Simon A Gayther, PhD, Department of Preventive Medicine, Keck School of Medicine, University of 
Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA, 90033. simon.gayther@med.usc.edu.
¶These authors jointly supervised this study

Author Contributions
K.L., Q.L., M.L.F., P.D.P. and S.A.G. designed the study. Q.L. performed the eQTL analysis. K.L., T.S., J.M.L. performed the in vitro 
analyses. J.T. and P.D.P. performed the genetic association analyses. J.S. performed the 3C. K.L. performed the RNAseq and S.K. 
performed the pathway and network analyses. A.K and R.D provided the FT246 cell line. K.L., Q.L., M.L.F., P.D.P., S.K. and S.A.G. 
wrote the manuscript. Remaining authors contributed samples for the genetic analyses and fine mapping. All authors approved the 
final version of the manuscript.

Conflict of Interest Statement
The authors have no conflicts of interest to declare.

HHS Public Access
Author manuscript
Nat Commun. Author manuscript; available in PMC 2016 March 22.

Published in final edited form as:
Nat Commun. ; 6: 8234. doi:10.1038/ncomms9234.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


regulatory biofeatures, including transcription factor binding sites and regions of active 

chromatin, such as transcriptional enhancers4,6-8.

Epithelial ovarian cancer (EOC) has a major heritable component, a proportion of which is 

due to common low penetrance susceptibility alleles. High-grade serous ovarian cancer 

(HGSOC) accounts for about 60 per cent of all invasive EOC cases. Eleven common variant 

risk loci have so far been identified HGSOC using GWAS and replication analyses5,9-14. 

While it is estimated that hundreds of additional risk variants are likely to exist, their 

identification in the future will be challenging because of the limitations in sample size 

restricting the power to detect genetic associations at genome-wide levels of significance. 

One approach to identify additional HGSOC risk alleles may be to use biological and 

functional information to provide additional evidence for risk associations in regions that are 

sub-genome wide significant in genetic association studies.

Expression quantitative trait locus (eQTL) analysis is a straightforward approach to identify 

candidate susceptibility genes at risk loci. The goal is to identify allelic variants associated 

with gene expression on the basis that a proportion of transcripts are under genetic control. 

A transcript that is correlated with a risk variant in a relevant tissue or cell type represents a 

strong candidate susceptibility gene. EQTL analyses have recently identified candidate 

susceptibility genes for multiple cancer types including breast, prostate, lung, and colorectal 

cancers3,15-17. However, rarely have functional studies been performed to validate the role 

of these candidate genes.

In the current study, we evaluate whether eQTL analysis performed in primary HGSOCs can 

be used to identify candidate ovarian cancer susceptibility genes at genomic regions 

showing evidence of susceptibility to HGSOC (P-value for association <1×10−5). We aimed 

to establish if eQTL analyses could provide additional biological evidence supporting 

putative susceptibility loci that have so far failed to reach genome-wide significance. Having 

identified significant cis-eQTL associations, we evaluate the role of candidate genes in the 

early stage development of HGSOC through targeted perturbation of candidate gene 

expression in two HGSOC precursor cell types and use chromosome conformation capture 

assays to identify physical interactions between target gene and risk associated SNPs. 

Finally, we use transcriptomic profiling to identify downstream targets of validated 

susceptibility genes, to identify common biological pathways associated with neoplastic 

development, and to provide functional evidence supporting additional potential HGSOC 

susceptibility loci.

RESULTS

Risk associated variants in high-grade serous ovarian cancer

Genetic association analyses were performed using data from the Ovarian Cancer 

Association Consortium (OCAC) case-control studies5,9-14. Genotype data were available 

for 15,397 women of European ancestry, diagnosed with invasive epithelial EOC, 9,608 of 

whom were diagnosed with serous EOC, and 30,816 controls. These were from 43 studies 

from 11 countries that were part of several genome-wide association studies and the 

Collaborative Oncological Gene-environment Study (COGS) genotyping project 9,18,19. A 
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meta-analysis of these data identified 47 susceptibility regions associated with HGSOC risk 

at a statistical threshold of P<10−5 (Supplementary Table 1). Eleven of these risk loci 

reached genome-wide levels of significance (P≤5×10−8)5,9-14.

Identifying cis-eQTL associations at HGSOC risk loci

Using profiles of gene expression, somatic copy number variation and methylation available 

for 339 primary HGSOCs from The Cancer Genome Atlas (TCGA) project, we evaluated 

determinants of gene expression in ovarian cancer. Copy number variation explains 14% and 

methylation 4.1% of variation in gene expression. We then measured the contribution of cis-

expression quantitative trait loci, adjusting for somatic copy number variation and CpG 

methylation as previously described15. For these analyses we defined cis as a 250kb region 

spanning each single nucleotide polymorphism (SNP). The cis-expression quantitative trait 

locus (eQTL)–based analysis explained a further 0.25% of the variation in gene expression 

in HGSOCs. From 906,600 variants represented on the Affymetrix SNP6.0 arrays, this 

represents 592 eQTL associations with a false discovery rate (FDR) less than 0.1.

Next, we restricted our analyses to SNPs located at the 47 HGSOC risk loci (P<10−5). We 

identified four statistically significant eQTL associations: these associations were between 

rs711830 and HOXD9 at 2q31 (P=5.8×10−4, FDR=0.03, Wald test); rs2268177 and CDC42 

at 1p36 (P=8.4×10−13, FDR=9.1×10−11, Wald test); rs12023270 and CDCA8 at 1p34 

(P=1.4×10−3, FDR=0.05, Wald test); and rs6026496 and GNAS at 20q13 (P=3.3×10−3, 

FDR=0.09). Of these, only rs711830 at 2q31 locus is associated with HGSOC at genome-

wide significance (P=9.0×10−14). For the remaining three loci the associations were 

borderline genome-wide significant: P=6.8×10−7 at 1p36, P=1.4×10−7 at 1p34 and 

P=5.1×10−7 at 20q21. These data are summarized in Figure 1a and Table 1.

Using RT-qPCR analysis we analysed expression of HOXD9, CDC42 and CDCA8 in 

ovarian cancer cell lines (N=14) and ovarian (N=6) and fallopian (N=3) epithelial cells 

(Figure 1b). CDC42 was expressed in all samples with highest expression levels observed in 

cancer cell lines (P<0.028). HOXD9 expression was detected in ~80% of ovarian cancer cell 

lines and all normal ovarian epithelial cell lines, but was absent in the normal fallopian tube 

epithelial cell lines. CDCA8 was expressed by all three cell types, and was significantly 

lower in ovarian epithelial cells compared to ovarian cancer cells (P=5.0×10−4) and 

fallopian epithelial cells (P=2.0×10−3). Figure 2 illustrates each genomic region, the location 

of all candidate functional SNPs, and the expression of all of the genes in the region profiled 

in four ovarian cancer precursor cell lines using RNA-sequencing.

Functional validation of candidate susceptibility genes

We evaluated the functional effects of perturbing the expression of the top three cis-eQTL 

target genes (FDR<0.05) - CDC42, CDCA8 and HOXD9 – in cell line models of the early 

stages of neoplastic transformation of HGSOC. Each gene was evaluated in the two cell 

types that are proposed to be the precursors of high-grade serous ovarian cancer; fallopian 

tube (FT) secretory epithelial cells and ovarian surface epithelial (OE) cells. Both cell lines 

were engineered to be deficient in p53 signaling, since this event occurs in almost all 

HGSOCs20,21. FT cells were immortalized by expression of TERT followed by shRNA-
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mediated knockdown of p53 and expression of the CDK4R24C inhibition resistant mutant 

CDK4 allele (FT246-shp53-R24C)22. OE cells were immortalized with TERT alone23 after 

which we generated a p53-deficient model by stably expressing a dominant negative p53 

allele (IOE11-DNp53). In the latter model, loss of functional p53 signaling was confirmed 

using in vitro assays: upregulation of p21 following exposure to ionizing radiation was 

attenuated, and population-doubling times were reduced in cells expressing the DNp53 

construct (Supplementary Figure 1).

For each cell type, we created isogenic models of candidate gene overexpression or 

knockdown, mimicking the trends in expression associated with the risk allele as defined by 

the eQTL associations. Thus, we stably overexpressed CDC42 and HOXD9 as C-terminal 

GFP fusion proteins, and downregulated CDCA8 using pooled targeting short-hairpin RNAs 

(shRNAs). Overexpression or knockdown of each gene was confirmed by RT-qPCR (Figure 

3 a(i) & b(i)). We confirmed expression of the fusion proteins for CDC42 and HOXD9 by 

fluorescence microscopy (Figure 3 a(ii) & b(ii)). CDC42 was detected throughout the cell, 

whereas HOXD9 expression was restricted to the nucleus. We then evaluated the engineered 

cell lines for phenotypes that are indicative of neoplastic transformation and tumour 

development, specifically anchorage-dependent and independent growth, migration, 

invasion, apoptosis, and DNA content (ploidy). The results of these analyses are shown in 

Figure 3 d(i).

Effects of CDCA8 downregulation

Using lentiviral delivery of CDCA8-targeting shRNAs, CDCA8 gene expression was 

knocked down by 78% in IOE-DNp53 cells, and 85% in FT246-shp53-R24C cell lines 

compared to parental cells and cell lines expressing a non-targeting, scrambled (SCR) 

shRNA (IOE-DNp53-shSCR and FT246-shp53-R24C-shSCR). Downregulation of CDCA8 

had no significant effect on anchorage dependent or independent growth, invasion or 

migration in either IOE-DNp53 or FT246-shp53-R24C cells. However, using propidium 

iodide staining we observed a 2.2-fold increase in the proportion of aneuploid cells in IOE-

DNp53-shCDCA8 cultures compared to IOE-DNp53-shSCR controls (P=0.026, two-tailed 

paired T-test) (Figure 3c).

Effects of CDC42 overexpression

IOE-DNp53 and FT246-shp53-R24C engineered to overexpress CDC42 showed 18- and 24- 

fold increase in CDC42 expression respectively compared to non-transduced and GFP 

transduced control cell lines (IOE11-DNp53-GFP and FT246-shp53-R24C-CDC42). 

Overexpression of CDC42 was associated with a 20% reduction in migration (P=0.040) 

compared IOE11-DNp53-GFP and IOE11-DNp53 control cells (Figure 3d) but no other 

cellular phenotypes were affected in this model. However, FT246-shp53-R24C-CDC42 cells 

had significantly shorter population doubling times in anchorage-dependent growth assays 

(Figure 3e).

Effects of HOXD9 overexpression

HOXD9 expression was undetectable in IOE-DNp53 and FT246-shp53-R24C cells and GFP 

transduced cells; but after lentiviral infection of a HOXD9 construct, IOE-DNp53 cells and 
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FT246-shp53-R24C cells showed robust HOXD9 expression. IOE11-DNp53-HOXD9 cells 

demonstrated a 4.2-fold increase in anchorage-independent growth relative to parental cells 

and control cells expressing GFP only (P=0.026, two tailed paired T-test, Figure 3f). FT246-

shp53-R24C-HOXD9 cells exhibited significantly shorter population doubling times than 

control cells (Figure 3e), and by light microscopy, we observed that HOXD9 expressing 

cells tended to become more tightly packed into the monolayer. We therefore performed 

contact inhibition assays, which revealed that these cells were more proliferative under 

conditions of high cell density, compared to control FT246-shp53-R24C-GFP cells (Figure 

3g). Finally, cell cycle analyses in diploid IOE-DNp53-HOXD9 cells showed a ~78% 

reduction in the proportion of apoptotic cells relative to GFP expressing controls (P=0.034, 

two-tailed paired T-test, Figure 3h).

Interactions between risk associated SNPs at 2q31 and HOXD9

Because of the strong neoplastic phenotypes associated with overexpression of HOXD9, we 

evaluated the 2q31 locus in more detail. While the SNP with the strongest association is the 

best candidate for being the causal variant in this region, other correlated SNPs with slightly 

weaker associations may be the true causal variant. Based on a comparison of the log 

likelihoods from the association testing for each SNP with the most significant SNP there 

are nineteen SNPs that are candidates for being the causal variant at odds of 100:1 or better 

(Figure 4). We created a chromosome conformation capture (3C) interaction map of the 

region, systematically testing for interactions between the HOXD9 promoter (anchor) and 11 

restriction fragments covering the 19 risk SNPs (targets). We observed an interaction 

between the region containing rs2857532 and the HOXD9 promoter in two different 

epithelial ovarian cancer cell lines (Figure 4). There was no evidence of interaction between 

the HOXD9 promoter and any of the other 18 risk-associated variants at this locus. Using the 

Match algorithm and TRANSFAC matrices we identified transcription factors (TFs) that 

differentially bind to the reference (A) and alternative (G) alleles of the rs2857532 variant. 

The alternative allele creates a binding site for HOMEZ, BEN and RelA-p65 TFs (Table 2). 

Analysis of TCGA data confirmed that these three transcription factors are expressed in 

HGSOC. These TFs do not bind the reference allele and thus represent candidate 

transcription factors that may function upstream of rs2857532 to modulate HOXD9 

expression during ovarian cancer development.

Downstream Targets Of HOXD9

RNA sequencing was used to profile transcriptomic changes resulting from HOXD9 

overexpression in IOE11-DNp53 and FT246-shp53-R24C cells; expression of 10 target 

genes was validated by RT-qPCR (Supplementary Figure 2). Transcriptional networks 

downstream of risk-associated genes have themselves been shown to regulate germline 

susceptibility in other diseases24,25. Therefore, we systematically evaluated HOXD9 targets 

for association with HGSOC risk using summary results from the meta-analysis (Methods). 

We identified 128 and 34 genes in IOE11-DNp53 and FT246-shp53-R24C, respectively, as 

cell-specific HOXD9 targets by applying a strict cut-off for differential expression 

(FDR<0.1, fold change>±2; HOXD9 excluded). First, we compared the distribution of P-

values for association with HGSOC risk for SNPs in HOXD9 target genes and their flanking 

regions to the distribution in all other genes and their corresponding flanking regions using 
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two-sample Kolmogorov-Smirnov (K-S) tests26. Flanking regions of 10, 25, 50, and 100 kb 

up- and downstream of each gene were tested under the assumption that HOXD9 binds to 

regulatory elements near its target genes. For all flanking intervals considered, SNP P-values 

in and near HOXD9 targets were significantly smaller or more associated with HGSOC risk 

(K-S test P-value: 4×10−3-3.9×10−6 for ovarian targets; 1×10−3-2.4×10−7 for fallopian 

targets; Table 3).

Next, we evaluated whether HOXD9 targets were enriched for HGSOC risk signals at three 

specific sub-genome-wide SNP P-value thresholds of P<10−3, <10−4, and <10−5 compared 

to the proportion of such associations in all other genes. For all flanking regions as before, 

we observed significant enrichment for associations at the P<10−3 and <10−4 thresholds 

(Fisher's exact P-value range: ovarian targets: 6×10−10-1.2×10−31, fallopian targets: 

3.4×10−9-1.1×10−21; Table 3). At the P<10−5 threshold we only observed a significant 

enrichment for fallopian targets when flanking regions up to 100kb were considered 

(P=5×10−3). Finally, we adopted a complementary approach and used gene set enrichment 

analysis (GSEA) to test association of the ovarian and fallopian HOXD9 target gene sets 

(128 and 34 genes, respectively) with HGSOC risk. All genes in the genome with SNP 

coverage (22,577 genes) were first ranked based on the P-value of the most significant 

HGSOC risk SNP in each gene and its flanking interval (±50kb) (Methods). On running 

GSEA with 10,000 permutations, the ovarian HOXD9 target gene set was significantly 

associated with HGSOC risk (GSEA P=0.017) but fallopian targets failed to reach 

significance (GSEA P=0.094). Thus, genes ranked higher in the GWAS meta-analysis were 

significantly over-represented among the 128 HOXD9 ovarian targets, in particular. All 

three approaches consistently demonstrated that HOXD9 target genes in ovarian cells were 

enriched for HGSOC risk variants.

Guided by the principle that disease genes are likely to cluster in functionally meaningful 

networks27, we also conducted network-based pathway analyses of all genes that showed at 

least two-fold change in transcript abundance after HOXD9 overexpression without 

considering the FDR threshold applied in the previous analyses (IOE11-DNp53: 2,357 

genes; FT246-shp53-R24C: 1,972 genes, analyzed separately). We prioritized genes in each 

downstream target list that are known to interact with each other biologically using 

jActiveModules28, a method that also takes into account the corresponding P-values for 

differential expression after HOXD9 perturbation. This identified a highly inter-connected 

ovarian module or network of 94 genes and 272 interactions and a fallopian network of 269 

genes and 962 interactions. Both the ovarian and fallopian networks identified were 

significantly enriched (FDR<0.05 and >5% pathway involvement) for the focal adhesion 

and TGF-beta signaling pathways from KEGG29 and Ingenuity pathway databases (Table 

4).

Discussion

The main goals in the functional characterization of GWAS risk loci are to identify target 

susceptibility genes and the causal SNP(s) at risk loci. EQTL analysis represents one of the 

most straightforward approaches to identify the putative target genes at risk loci, and 

provides evidence of allele specific functional effects for risk SNPs. We used data from 
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high-grade serous ovarian cancers (HGSOCs) from TCGA for eQTL analysis, and employed 

experimental models of early stage disease to functionally validate the candidate genes we 

identified. Of eleven confirmed GWAS susceptibility loci identified for ovarian cancer, one 

contained a statistically significant eQTL association (HOXD9) at a false discovery rate 

≤0.1. Two additional loci that were sub-genome-wide significant also contained significant 

eQTLs that coincided with risk SNPs (CDC42 and CDCA8). For all three genes, at least one 

of the functional assays scored significantly, indicating they are the likely ovarian cancer 

susceptibility genes at these loci.

There may be several explanations why we did not identify eQTL associations at other loci. 

For example, we evaluated cis-eQTL associations for genes in a 500Kb region spanning the 

most significant risk SNP at each locus, since this threshold is expected to include the 

majority of eQTL associations30. However it is known that enhancers can interact with 

multiple genes, and it is also plausible that risk associated SNPs regulate genes many 

megabases away, or even on a different chromosome (i.e. trans-eQTL associations). Also, 

this study was based on eQTL analysis in tumor tissues. Somatic genetic heterogeneity 

could mask the presence of eQTL associations; but it may also be that genes influence tumor 

development at early stages of neoplastic development requiring eQTL analysis to be 

performed in relevant normal tissues or putative precursor lesions. Moreover, eQTL 

analysis, unlike GWAS, is currently limited to sample sizes in the hundreds and the 339 

HGSOCs used in this study, while comprising the largest available data set of its kind, may 

not be powered to detect all eQTL signals. Our approach was based on the hypothesis that 

risk variants function though cell-autonomous signaling pathways in differentiated cells, but 

it is possible that microenvironmental or precursor cell populations could also be effectors of 

risk variants, or that eQTLs can only be detected in the presence of certain stimuli, such as 

steroid hormones. Finally, our approach does not detect non-eQTL mechanisms underlying 

risk associations, such as splice variants and base changes in non-coding RNAs.

At two of the eQTL loci (1p34 and 2q31) the genes in closest proximity to the most risk 

associated SNP were not the target gene from eQTL analysis. This has also been observed 

for other complex traits8. Furthermore the three candidate genes we identified have not 

previously been implicated in ovarian cancer susceptibility. At 2q31 susceptibility SNPs lie 

within the HOXD gene cluster, a series of conserved DNA binding proteins involved in 

development. Homeobox genes have been broadly implicated in the development of many 

solid tumours, promoting neoplastic development by regulating processes common to 

normal tissue development and carcinogenesis, such as proliferation, invasion, 

differentiation and apoptotic resistance31. HOXD9 lies ~51kb from the 19 risk-associated 

variants identified by fine mapping, which cluster around the HOXD3 and HAGLR genes. 

This suggests that regulatory elements around HOXD3/HAGLR region regulate HOXD9. 

Using chromosome conformation capture (3C) assays we identified a putative interaction 

between one variant, rs2857532, and the HOXD9 promoter, suggesting this SNP is a 

candidate causal variant regulating HOXD9 expression at this locus. A recent study by 

Kelemen et al. (in press) reports that the 2q31.1 region is also a risk locus for the mucinous 

subtype of ovarian cancer with HOXD9 the likely target susceptibility gene. Using 3C, 

Kelemen and colleagues also show that three regions, one of which harbors the rs2857532 
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risk SNP, interact with HOXD9 in mucinous ovarian cancer cells indicating there may both 

tissues specific differences and similarities in the regulation of HOXD9 in the two different 

disease subtypes. Rs2857532 lies within intronic sequence of HOXD3, but does not coincide 

with enhancer marks in normal ovarian or fallopian cells, or in serous ovarian cancer cells32. 

However, the risk allele of this SNP is predicted to create a binding site for two transcription 

factors implicated in early development: BEN, which is part of the TFII-I transcription 

factor family33, and HOMEZ, a putative, sequence-specific DNA binding protein that may 

regulate expression of HOX genes during vertebrate development34.

HOXD9 is a little-studied homeobox gene known to be involved in the development of 

gynecological organs35 and mammary gland maturation during pregnancy and lactation36. 

Previous reports indicate HOXD9 may behave as an oncogene in glioma37 and breast 

cancer38. Consistent with this, in functional assays we showed that higher HOXD9 

expression reduced apoptosis, increased proliferation under conditions of high cell density 

and enhances ectopic proliferation of cells in the absence of attachment to a substrate. 

Analysis of downstream targets of HOXD9 identified by overexpressing this gene in ovarian 

and fallopian in vitro models and performing genome-wide RNAseq profiling indicated 

several candidate genes that may be necessary for HOXD9 to impart its neoplastic function. 

We tested these candidate genes for enrichment of HGSOC risk associations using a battery 

of complementary methods encouraged by the observation that the breast cancer 

susceptibility gene FGFR2 has been shown to act through downstream transcriptional 

networks involving other breast cancer risk loci24. Notably, among the HOXD9 ovarian 

targets enriched for modest (P<10−4) HGSOC risk variants were WNT5A, SYNE1, and IGF2. 

WNT5A and SYNE1 were also the top two genes driving the GSEA signal for the HOXD9 

ovarian gene set. WNT5A, a member of the non-canonical Wnt signaling pathway, has been 

shown to exhibit context-dependent tumor suppressor activity by triggering cellular 

senescence and is prognostic in primary HGSOC39,40. Smaller studies from OCAC have 

previously suggested associations between variants in SYNE1 and IGF2 with HGSOC risk 

but these have been significant only at sub-genome-wide levels41,42. The emergence of these 

two genes in the present analysis further underscores the utility of integrating functional data 

to highlight genetic risk associations and the likely existence of shared biological 

mechanisms underlying polygenic susceptibility. Pathway analysis revealed impact on focal 

adhesion signaling with involvement of the collagen genes COL3A1 and COL12A1 after 

HOXD9 overexpression in both ovarian and fallopian cells. Focal adhesions play a critical 

role in ovarian cancer cellular migration and invasiveness43. Collectively, these findings 

further support the functional evidence indicating that HOXD9 is the HGSOC susceptibility 

gene at the 2q31 locus.

At 1p36, we identified CDCA8 as the target gene. CDCA8 (alternatively known as Borealin) 

is part of the chromosomal passenger complex that functions to properly align and segregate 

chromosomes during mitosis. Consistent with this role, knockdown of CDCA8 expression in 

IOE-DNp53 resulted in an accumulation of aneuploid cells in the culture. This is also 

consistent with genomic instability and aneuploidy that is often observed in HGSOC, 

possibly arising from failure of chromosomal segregation during cell division. Finally, at 

1p34, we identified CDC42 as the putative target susceptibility gene. CDC42 is a small Rho 
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GTPase and well-known oncogene involved in migration, cellular polarity and proliferation, 

and is overexpressed in many cancers44. Elevated expression of CDC42 was associated with 

increased risk of HGSOC, and overexpression of the gene was associated with shorter 

population doubling times and reduced migration.

Identifying additional common variant susceptibility alleles for ovarian cancer will continue 

to be restricted by sample size for this uncommon cancer type. By using eQTL analysis to 

interrogate candidate susceptibility loci that are sub-genome-wide significant, we have 

found evidence for two additional HGSOC risk loci, 1p34 (CDCA8) and 1p36 (CDC42) 

gene. While these functional studies were ongoing, a meta-analysis of the OCAC genetic 

association results with the results of an equivalent analysis of modifiers of ovarian cancer 

risk in 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers was conducted 

by the Consortium of Investigators of Modifiers of BRCA1/219. This study identified six 

novel genome-wide significant risk loci for ovarian cancer, including the 1p34 and 1p36 loci 

described in the current study, thus validating our approach. In the meta-analysis, at 1p34 

the most strongly associated SNP (rs58722170, 1.6×10−8 for all histological subtypes, 

2.7×10−12 for serous) was correlated with the cis-eQTL SNP rs12023270 with r2=0.73; at 

1p36 the most strongly associated SNP (rs56318008, 7.6×10−9 for all histological subtypes, 

5.7×10−8 for serous) was correlated with the top cis-eQTL SNP rs2268177 with r2=0.7619.

In this study we evaluated the functional effects of candidate genes in ovarian and fallopian 

epithelial cells, because both cell types are predicted precursors of high-grade serous ovarian 

cancers45,46. It is of interest that we observed some differences in how each cell type 

responded to altering the expression of the three candidate genes. For example, ovarian 

epithelial cells were more readily transformed in soft agar assays compared to fallopian cells 

even though the FT246-shp53-R24C cells express one additional oncogenic element 

compared to IOE11-DNp53 (mutant CDK4). HOXD9 target genes in ovarian cells were 

consistently more associated with HGSOC risk compared to fallopian HOXD9 targets. One 

possible explanation for these differences is that, even though in both cell lines p53 

signaling was deregulated, the mechanism by which p53 was deregulated differs between 

the two models. An alternative explanation is that HGSOC originates in only one of these 

epithelial cell types and this is reflected by the different phenotypic effects observed when 

perturbing susceptibility genes. There remains debate about the cellular origins of HSGOC. 

The data in this study suggest that ovarian epithelial cells are more prone to neoplastic 

transformation by susceptibility genes associated with HGSOC compared to fallopian tube 

epithelial cells, and that ovarian cell transcriptional networks play a greater role in polygenic 

risk component of HGSOC. These variations in molecular and phenotypic changes between 

cell types highlights the need to consider carefully the likely cell or origin for the disease 

under study when performing functional studies of risk loci identified by GWAS. Moreover 

the heterogeneity in the phenotypic effects observed for the different genes reveal the 

importance of evaluating multiple phenotypes associated with neoplasia, as risk alleles could 

influence cellular transformation through a variety of mechanisms.

In summary, this study has demonstrated the power of eQTL analysis to identify candidate 

susceptibility genes associated with initiation and early stage development of high-grade 

serous ovarian cancer. In particular we show how biological information from the functional 
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characterization of risk loci can be used to interrogate sub-genome-wide significant loci 

from GWAS for the identification of additional, novel risk loci for common multifactorial 

disease traits.

Materials and Methods

Genetic Association Analyses

Summary of data sets—Data were available for the stage 1 of three population-based 

EOC GWAS comprising a total of 4,366 cases and 9,124 controls9,18,19. An additional 

11,030 cases and 21,693 controls from 41 OCAC studies were genotyped using the iCOGS 

array. All duplicates were removed from the analysis and overall, 43 studies from 11 

countries provided data on 15,397 women of European ancestry, diagnosed with invasive 

epithelial EOC, 9,608 of whom were diagnosed with serous EOC, and 30,816 controls from 

the general population. The quality control methods are described in full in the 

Supplementary File 1.

Imputation—We performed imputation separately for OCAC-iCOGS samples and each of 

the GWAS. We imputed variants from the 1000 Genomes Project data using the v3 April 

2012 release as the reference panel. To improve computation efficiency we initially used a 

two-step procedure, which involved pre-phasing in the first step and imputation of the 

phased data in the second. We carried out pre-phasing using the SHAPEIT software47. We 

then used the IMPUTE version 2 software48 for the subsequent imputation for all studies. To 

perform the imputation we divided the data into segments of approximately 5Mb each. We 

excluded SNPs from the association analysis if their imputation accuracy was r2<0.25 or 

their minor allele frequency (MAF) was <0.005. The number of successfully imputed SNPs 

by minor allele frequency is shown in Supplementary File 1.

Data analysis—All analyses were restricted to subject of European intercontinental 

ancestry. In order to be able to control for population substructure we used a set of unlinked 

markers to perform principal components analysis. The three GWAS and the COGS data 

sets were analysed separately using different sets of markers. To enable this analysis on very 

large samples we used an in-house programme written in C++ using the Intel MKL libraries 

for eigenvectors (available at http://ccge.medschl.cam.ac.uk/software/). Unconditional 

logistic regression treating the number of alternate alleles carried as an ordinal variable (log-

additive, co-dominant model) was used to evaluate the association between each SNP and 

ovarian cancer risk. A likelihood ratio test was used to test for association, and per-allele log 

odds ratios and 95 percent confidence limits were estimated. The likelihood ratio test has 

been shown to have greater power than alternatives such as the Wald test and score test for 

rare variants49. The logistic regression model was adjusted for study and population 

substructure by including study-specific indicators and a variable number of eigenvalues 

from the principal components analyses. The number of principal components was chosen 

based on the position of the inflexion of the principal components scree plot. Two principal 

components were included in the analysis of the UK and US GWAS data sets, one was used 

for the Mayo GWAS and five were used for the COGS-OCAC dataset. Results from the 
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three GWAS and COGS were combined using fixed-effects inverse variance weighted meta-

analysis.

eQTL Analysis

We chose 47 candidate HGSOC risk loci from previous GWAS studies with p-

value<1×10−5 (Supplementary Table 1). For each risk SNP, correlated variants with R2>0.7 

in the 1000 Genomes CEU population were identified. The germline genotypes of 443 

ovarian serous cystadenocarcinoma samples were downloaded from TCGA data portal. We 

selected 339 samples with Caucasian ancestry using EIGENSTRAT50. Matched tumour 

gene expression profiles, somatic copy number and CpG methylation data of these samples 

were obtained from the same source and used to adjust the expression profiles for somatic 

copy number changes and CpG methylation variation described as follows:15,16, Briefly we 

adjusted the expression levels for each gene using matched information of somatic copy 

number and CpG methylation using linear models. To perform the eQTL analysis, we took 

germline genotypes of SNPs/proxies as independent variables and adjusted expression levels 

as traits. The association between genotype and gene expression of genes within 250kb 

either side of the corresponding variant was evaluated based on the significance of linear 

regression coefficients. In order to control for multiple testing, we calculated the false 

discovery rate (FDR) from the test P values using Benjamini-Hochberg method and called 

significant associations with a maximal FDR of 0.1.

Cell Lines and Cell Culture

We have previously reported the generation of the IOE11 TERT-immortalized ovarian 

surface epithelial cell line51. IOE11 cultured in NOSE-CM52. To generate a p53-deficient 

line, IOE11 cells were transfected with T7-p53DD-pcDNA3 (Addgene plasmid number 

25989) and positive clones (IOE11-DNp53) selected with 125 μg ml−1 G418. Loss of p53 

function was confirmed by irradiating IOE11-DNp53 and control cells with 6Gy ionizing 

radiation and immunoblotting cell lysates for p21 expression (sc-397, 1:1000 dilution, Santa 

Cruz Biotechnology) 24 hours later. Immortalized fallopian tube secretory epithelial cell 

lines (FT33-shp53-R24C and FT246-shp53-R24C) have been previously described22 and 

were cultured in DMEM/F12 (Sigma) supplemented with 2% Ultroser G (Crescent 

Chemicals) or 10% fetal bovine serum (Hyclone, Thermo Fisher). For 3C, HEY cells were 

grown in RPMI containing 10% FBS and OVCA429 cells were cultured in EMEM 

supplemented with 10% FBS, 1× non-essential amino acids and 1× sodium pyruvate. All 

cell lines used in this study were routinely tested for Mycoplasma infection using a 

Mycoplasma specific PCR, and, for cell line authentication, short tandem repeats profiled 

using the PowerPlex16HS Assay (Promega, University of Arizona Genetics Core).

Viral Transductions

A set of 6 CDCA8 targeting shRNAs and one scrambled shRNA (SCR) cloned into pGIPz 

(RHS4531-EG55143, Dharmacon) were co-transfected with p8.91 and pMD.G into 

HEK293Ts to produce lentiviral supernatants, which were harvested 48 hours after removal 

of the transfection media. Lentiviral GFP fusion constructs were purchased from 

Genecopoeia: Lv122-CDC42-GFP and Lv122-HOXD9-GFP (and a GFP control; Lv-GFP) 
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and also used to make lentiviral supernatants. IOE11-DNp53 and FT246-shp53-R24C cells 

were transduced with lentiviral supernatants overnight, and for IOE11-DNp53, positive cells 

were selected using 400 ng ml−1 puromycin.

Functional Assays

For anchorage dependent growth assays, 0.1×106 cells were plated in triplicate and passaged 

when 80% confluent. Cells were enumerated at each passage and population doublings 

(PDs) calculated with the following formula: PD = log (total cell number at each passage/

initial cell number)/log2. Anchorage-independent growth assays were performed by 

suspending 0.02×106 cells in media containing 0.33% Noble agar and 1mg/ml bacto-

peptone (both Sigma); this mixture was overlayed onto a base layer of medium containing 

0.6% Noble agar/1mg/ml bacto-petone. Cells were cultures for four weeks, stained with 1% 

p-iodonitrotetrazolium violet (Sigma) and counted using phase microscopy. Migration and 

invasion kits (Trevigen) were performed following manufacturers instructions. Contact 

inhibition assays were performed by plating 0.02×106 cells per well in 12-well plates and 

enumerating cells at indicated timepoints. For propidium iodide staining: 0.3×106 cells were 

plated in triplicate and incubated for 48 hours. Cells were washed twice with PBS and fixed 

in 70% ice cold ethanol. Upon fixation cells were washed twice with PBS and stained with 

50 μg/mL propidium iodide staining solution (Calbiochem) combined with 10 μg/mL RNase 

A (Invitrogen). Cells were stained for three hours at 4°C in the dark. Cell cycle status was 

examined using the LSR II flow cytometer (Becton Dickinson) and data was analyzed using 

FlowJo software (Tree Star, Inc).

Chromosome Conformation Capture (3C)

3C was performed as as follows:7 Briefly, HEY and OVCA429 EOC cells were harvested 

by trypsinisation, and 10 million cells were fixed with 1% formaldehyde for 10min. Cells 

were lysed (10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% Nonidet P-40) to release the nuclei 

and, pelleted nuclei were resuspended in restriction enzyme buffer containing 0.1% SDS and 

1.6% Triton-X. 1500 units of Csp6i (Fisher BioReagents) were added and incubated at 37°C 

for overnight. Digestions were halted by incubation with 1.5% SDS at 65°C for 30 minutes. 

Digested samples were added to the ligation buffer containing 4000U T4 DNA ligase (NEB) 

and 1% triton X-100 to neutralize SDS and, incubated for 24 hr at 16°C. Samples were 

decrosslinked by overnight incubation at 65°C with proteinase K. Libraries were extracted 

using standard phenol/chloroform protocols, precipitated using ethanol, and desalted using 

Microcon Ultra Cell YM -100 columns. Primers were designed at the HOXD9 promoter and 

for each restriction fragment containing risk-associated SNPs (Supplementary Table 2). PCR 

was performed using Taq polymerase (QIAGEN), using the following conditions: 5 min at 

94°C, 35 cycles of (20s at 94°C, 20s at 61°C, and 30s at 72°C), and 10 min at 72°C. The 

PCR products were run on a 1.7% agarose gel, gel purified using the QIAgen Gel Extraction 

kit, and sequenced.

For analyzing long-range interaction quantitatively a BAC library (RP11-892F14, CHORI) 

was prepared as follows: . briefly, BAC DNA was purified from a 500ml E. coli culture and 

20ug of BAC DNA was then digested with Csp6i overnight at 37°C followed by ligation 

with T4DNA ligase overnight at 16°C 53,54. 3C libraries as well as the BAC library were 
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titrated by serial dilution to identify the concentration of template for quantitative PCR 

analysis for each genomic region of interest. The PCR products were run on an agarose gel 

and stained with ethidium bromide. Intensity measurements for each of the bands were 

quantified using ImageQuant LAS4000 (Roche) with Image QuantTL8.1 software (Roche). 

The interaction frequency was determined by dividing the amount of PCR product obtained 

using the 3C template by the amount of PCR product obtained using the control template. 

Data were normalized using the lowest interaction value amongst the 11 amplicons (i.e., the 

lowest interaction was set to 1). Each template was run in triplicate and the standard error of 

measurement (SEM) calculated. The SEM for each amplicon was less than 15%.

Transcription Factor (TF) Binding Site Analysis

TF binding site analyses were performed in Biobase, using the TRANSFAC® Match tool. 

Two 21bp sequences, representing the two alleles of rs2857532 ±10bp, were uploaded. The 

TRANSFAC MATRIX TABLE library was used (Release 2014.2), with the 

vertebrate_non_redundant.prf profile and cutoffs selected to minimize the sum of both error 

rates (false positive and false negatives).

RNAseq Analysis in HOXD9 Models

One million cells were plated into a P100 dish and cultured for 48 hours. Cells were washed 

twice with ice cold PBS and lysed in situ. RNA extractions were performed using the 

QIAgen miRNAeasy kit with on-column DNase I digests, following the manufacturer's 

instructions. RNA sequencing was performed by BGI Americas. Briefly, 3μg of RNA was 

depleted of ribosomal RNA and libraries created using the Illumina TruSeq kit. Sequencing 

was performed by multiplexing 6 samples per lane for sequencing on an Illumina 

HiSeq2000. Linear fold change in transcript abundance before and after HOXD9 

overexpression and P-values from ANOVA for differential gene expression were calculated 

using the workflow implemented in the Partek Genomics Suite.

Enrichment Analysis

Enrichment analysis was restricted to genes that demonstrated at least two-fold change in 

transcript abundance and showed significant differential expression (FDR<0.1) after 

HOXD9 overexpression (IOE11-DNp53: 128 genes; FT246-shp53-R24C: 34 genes). 

Ovarian and fallopian gene lists were analysed separately. First, all SNPs (n=9,772,651) 

with MAF>0.01 from the HGSOC risk meta-analysis described above were mapped to genes 

from the UCSC hg19 knownGene track. SNPs were assigned to genes if they were in the 

gene or 50 kb on either side of it. We then compared the distribution of P-values for 

association with HGSOC risk for SNPs in HOXD9 target genes and their flanking regions to 

the distribution in all other genes and their corresponding flanking regions using two-sample 

Kolmogorov-Smirnov tests 26. The analysis was repeated using extended boundaries of 10, 

25, and 100 kb on either side of each gene. Second, proportions of SNPs associated with 

HGSOC risk at P-value thresholds of P<10−3, <10−4, and <10−5 in HOXD9 target genes was 

compared to the corresponding proportions in all remaining genes using two-tailed Fisher's 

exact tests for each of the flanking boundaries considered in the first analysis. Third, we 

ranked all genes in descending order of the –log10 of the P-value of the most significant SNP 

Lawrenson et al. Page 13

Nat Commun. Author manuscript; available in PMC 2016 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in each gene (+/− 50 kb). A total of 22,577 genes were covered by SNPs with the 50 kb 

flanking regions considered. Gene set enrichment analysis with 10,000 permutations was 

used to test enrichment of genes ranked highly in this list among the ovarian and fallopian 

tube HOXD9 targets55.

Pathway Analysis

Pathway analysis involved genes that demonstrated at least two-fold change in transcript 

abundance after HOXD9 overexpression (IOE11-DNp53: 2,357 genes; FT246-shp53-R24C: 

1,972 genes). These genes and corresponding P-values for differential expression were used 

as input for the jActiveModules28 (v 2.2.3) plugin in Cytoscape56 (v 3.1.0). Ovarian and 

fallopian gene lists were analysed separately. The jActiveModules approach combines input 

P-values with prior knowledge of biological interactions between input genes to identify 

modules or networks of input genes with high functional connectivity and significant 

differential expression. We set up the plugin to identify the single best network using default 

parameters (except regional scoring). Known biological interactions in the data were 

prioritized using 290,438 non-redundant binary interactions between 17,977 genes/proteins 

compiled from up-to-date, high-quality, curated resources that combine comprehensive 

genetic, molecular, protein-protein and protein-DNA interaction annotation. These were 

Multinet57, InWeb58, HINT59, and 252 KEGG60 pathways converted to binary format using 

the Bioconductor package graphite61. Pathways from the Ingenuity Knowledge Base and 

KEGG significantly enriched in the single best network discovered by jActiveModules for 

the ovarian and fallopian gene lists were identified using a right-tailed Fisher's exact test 

with FDR control for multiple pathway comparisons by the Benjamini-Hochberg method. 

The KEGG-based analysis was conducted using the Database for Annotation, Visualization 

and Integrated Discovery (v 6.7)62. We reported pathways common to both the ovarian and 

fallopian HOXD9 networks that were significant at FDR<0.05 with >5% of the pathway 

involved.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression quantitative trait locus analyses identify candidate genes at HGSOC risk 
loci
(a) CDC42 at 1p36, HOXD9 at 2q31, CDCA8 at 1p34 and GNAS at 20q13. Genotypes 

associated with increased risk are indicated in red font. On the boxplots the horizontal line 

indicates the median, the box indicates the 1st to 3rd quartile of expression and whiskers 

indicate 1.5 × the interquartile range. (b) Analysis of the 3 genome-wide significant genes in 

14 ovarian cancer cell lines (predominantly of high-grade serous histology), 6 TERT 

immortalised ovarian epithelial (IOE) cell lines and three TERT, shRNA-p53 and mutant 

CDK4 immortalised fallopian tube (FT) epithelial cell lines.
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Figure 2. Fine mapped HGSOC risk regions and gene expression in HGSOC precursor cells
A 0.5MB region spanning each risk locus is shown. The region defined by fine mapping is 

indicated by a red box, the candidate gene outlined by a blue box, and candidate genes 

identified by eQTL analyses are indicated in bold blue font. The most significant SNP is 

indicated by a purple dashed line. RNAseq data for HGSOC precursor cells are shown. (a) 

At the 1p34 locus, the risk SNPs cluster around the RSPO1 gene, but this gene is not 

expressed in IOE and FT cells. (b) At 1p36, the risk SNPs span a 145 kb window 

encompassing LIN00339, CDC42 and WNT4.

Lawrenson et al. Page 25

Nat Commun. Author manuscript; available in PMC 2016 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Characterisation of overexpression and knock-down models of eQTL genes
ShRNAs targeting CDCA8 were used to knock-down CDCA8 expression and C-terminal 

GFP fusion proteins of CDC42 and HOXD9 were delivered by lentiviral transduction to 

overexpress these two genes in (a) IOE-DNp53 cells and (b) FT246-shp53-R24C cells. (i) 

Gene expression measured by RT-qPCR; (ii) protein expression visualised by fluorescence 

microscopy, CDC42 expression is detected throughout the cell, whereas HOXD9 expression 

is exclusively nuclear. (c) Quantification of aneuploid cell population (>4N) following 

perturbation of each gene, in IOE11-DNp53 models. (d) Overexpression of CDC42 is 

associated with reduced migration in IOE-DNp53. (e) Growth curve analysis of anchorage-

dependent growth, cells expressing CDC42 and HOXD9 have significantly shorter 

population doubling times. (f) Overexpression of HOXD9 is associated with increased 

colony formation in anchorage-independent growth assays in IOE-DNp53. (g) Contact 

inhibition assay, HOXD9 expressing FT246-shp53-R24C cells are more proliferative under 

conditions of high cell density, compared to GFP expressing controls. (h) Overexpression of 

HOXD9 is associated with reduced apoptosis. Data shown represent mean ± standard 

deviation of three independent experiments. *P<0.05, two-tailed paired T-test.
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Figure 4. 3C Analysis at the 2q31 locus
We systematically tested for interactions between the HOXD9 promoter and risk SNPs. We 

identified an interaction between a region containing rs2857532 and the HOXD9 promoter. 

(a) Map of the genomic region, showing the HOXD gene cluster and the fine mapped risk 

SNPs. (b) The interaction was verified by sequencing. (c) Agarose gel electrophoresis of 

ligation products. There was no ligation product in the absence of ligase (Lg). M, 100bp 

molecular weight marker. (d) Quantification of 3C interaction frequencies between a 

constant fragment containing the HOXD9 promoter and each target fragment. In both cell 

lines, a peak of interaction is observed with the fragment containing the rs2857532 variant 

located 48 kb away from the constant fragment. The y-axis refers to semi-quantitative PCR 

products from 3C libraries in both cell lines normalized by each interrogated ligation PCR 

product using BAC control template. The error bars represent the SEM.
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