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Abstract

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 

gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, 

attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a 

valuable model for understanding gene-brain-behavior relationships. While mouse models have 

elucidated molecular and cellular mechanisms underlying learning deficits associated with this 

mutation, little is known about functional brain architecture in human subjects with NF1. To 

address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate 

the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically 

matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to 

quantify differences in local connectivity (edge strength) and modularity structure, in combination 

with traditional global graph theory applications. Our findings suggest that individuals with NF1 

have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity 

clustering relative to healthy controls. Further, edge strength and modular clustering indices were 

correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling 

disruption may lead to abnormal functional brain connectivity; further investigation into the 

functional consequences of these alterations in both humans and in animal models is warranted.
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Introduction

Neurofibromatosis type I (NF1) is a genetic disorder caused by heterozygous mutations in 

the neurofibromin 1 gene at locus 17q11.2 (Barker et al., 1987; Cawthon et al., 1990; 

Viskochil et al., 1990; Wallace et al., 1990). The intact neurofibromin 1 protein is expressed 

during early embryonic neural development and plays a critical role in central nervous 

system (CNS) neural differentiation by regulating the p21Ras GTP-ase signaling pathway 

(North, 2000; Trovó-Marqui and Tajara, 2006). Over 1000 mutations in the NF1 gene have 

been documented, although a clear genotype-phenotype correlation has yet to be established 

(Friedman, 1999; van Minkelen et al., 2014). NF1 is one of the most common human 

genetic disorders (prevalence 1:3500) that affects neurological, cognitive, social, and 

physical development (Kayl and Moore, 2000; Hyman et al., 2006; Pride et al., 2013). 

Individuals with NF1 experience highly variable phenotypic expression of physical 

symptoms, including neurofibromas (benign tumors), skeletal malformations, and Lisch 

nodules (Kayl and Moore, 2000). Despite typically having intelligence quotients (IQ) in the 

average to low-average range, children with NF1 have high rates of specific learning 

disabilities (Hyman et al., 2006), autism spectrum disorders (Garg et al., 2013), and attention 

deficits (Hyman et al., 2005).

As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-

behavior relations. Mouse models have provided insight into the molecular and cellular 

mechanisms underlying cognitive deficits in NF1. In a seminal paper, Costa and colleagues 

showed that the spatial learning deficits seen in mice with NF1 mutations are caused by an 

increase in the p-21 Ras signaling pathway. By pharmacologically decreasing Ras levels, the 

learning deficits were rescued (Costa et al., 2002). Later studies showed that the increased 

Ras levels led to increases in MAPK activity, enhanced GABA release, and deficits in long 

term potentiation that likely contribute to the learning deficits in mice (Cui et al., 2008). 

Furthermore, recent studies have substantiated the finding that hyperactive Ras/mitogen-

activated protein kinase (MAPK) cascade is critically involved in many pathogenic features 

of NF1 (Sharma et al., 2013). More work is needed to elucidate the mechanisms by which 

these signaling alterations impact neural connectivity in individuals with NF1.

In a parallel line of investigation, neuroimaging studies have recently begun to examine 

structural and functional properties of the NF1 brain in order to understand the neural 

consequences of NF1 mutations in humans. Enlarged brain volume is one of the most 

consistent neuroanatomic findings in individuals with NF1, with about 50% of individuals 

meeting criteria for macrocephaly (Moore et al., 2000; Greenwood et al., 2005; Payne et al., 

2010). This is likely attributable to disrupted cell proliferation and differentiation due to 

mutation of the neurofibromin protein (Lee et al., 2010). This finding is notable given that 

early brain overgrowth is one of the earliest signs of autism (Courchesne et al., 2003), which 

is present at elevated rates in individuals with NF1 and other disorders involving mutations 
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in the Ras/MAPK signaling pathway (‘Ras-opathies’; Adviento et al., 2014). Some studies 

have attributed this enlargement in NF1 individuals to globally increased white matter 

volume (Dubovsky et al., 2001; Margariti et al., 2007). A recent diffusion tensor imaging 

(DTI) investigation revealed disproportionate disruption of white matter tracts connecting 

frontal regions in young adults with NF1, as well as an overall increase in diffusivity 

(Karlsgodt et al., 2012). Together, these studies suggest that thicker, less organized white 

matter pathways may contribute to the increased brain size in individuals with NF1 

(Eastwood et al., 2001; Alkan et al., 2005; Tognini et al., 2005).

Much less is known about the functional consequences of these structural abnormalities. 

Limited task-based functional magnetic resonance imaging (fMRI) studies suggest that 

individuals with NF1 recruit vastly different brain regions than controls to process the same 

stimuli. Violante and colleagues found that NF1 individuals showed deficient activation in 

visual cortex during a low-level visual processing paradigm (Violante et al., 2012), while 

other studies have observed reduced activation in frontal regions in NF1 subjects during 

reading, visuo-spatial (Billingsley et al., 2003, 2004) and spatial working memory tasks 

(Shilyansky et al., 2010). Although task studies provide insight into particular behavioral 

deficits, the more fundamental question remains: how does the resting NF1 brain compare to 

that of healthy controls? This can be addressed via resting state functional connectivity (rs-

fcMRI), a method for evaluating intrinsic network activity in the brain while a subject is 

alert but not performing an explicit task (Biswal et al., 1995; Dijk et al., 2010). Only one 

previous study has examined neural activity in individuals with NF1 during ‘pseudo-resting 

state’ activity (i.e., subjects are presented with a task, but task-related activation is 

removed). Findings suggested that use of the drug Lovastatin increased previously deficient 

long-range connectivity in seven NF1 subjects (Chabernaud et al., 2012). However, lack of 

demographically matched controls limited interpretability of these intriguing findings. 

Without a demographically well-matched control group, it is impossible to quantify the 

extent and magnitude of functional connectivity alterations in NF1 patients. To our 

knowledge, the only existing study of resting functional connectivity in NF1 (Chabernaud et 

al., 2012) did not include a control group, and thus could only qualitatively compare their 

findings to those of prior studies to infer ‘abnormal’ baseline connectivity in the patient 

group.

One of the primary goals of rs-fcMRI is to quantify the functional relationship between 

multiple brain regions (nodes) by constructing a network of significant relationships 

between regions (edges). Once the subject- and group-level network variance is accounted 

for (Narayan and Allen, 2013), a network graph is estimated and local properties such as 

edge strength can be compared between groups (Tomson et al., 2013). Further application of 

graph theoretical techniques are applied to the network to characterize the global 

organization and structure of the resulting network (Bullmore and Sporns, 2009, 2012; 

Rubinov and Sporns, 2010; van den Heuvel and Sporns, 2011). Graph theory has been 

recently applied to many studies in healthy individuals and in various clinical populations 

(Buckner et al., 2009; Lynall et al., 2010; Delmonte et al., 2013) to quantify the location of 

hubs, characterize the makeup of modules (neighborhoods), and network flexibility during 

learning (Bassett et al., 2011). This technique provides a unique window into how brain 

regions communicate and how such communication may break down in the context of a 
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disease that may disrupt neural connectivity like NF1 (Buckner et al., 2009; Lynall et al., 

2010).

The present study represents, to our knowledge, the first rs-fcMRI investigation to study the 

functional architecture of the resting brain in subjects with NF1 relative to demographically 

matched healthy controls. Here we sought to elucidate how the intrinsic network structure of 

the NF1 brain differs from typically developing controls by inferring network structure, 

comparing the strength of individual edges, and calculating graph theoretical metrics from 

true resting state data. In addition to furthering our understanding of NF1, our analysis also 

applies novel methods for estimating network structure and evaluating differences in edge 

strength between groups. We demonstrate that these methods improve upon existing 

statistical frameworks and are robust to the uncertainty inherent in rs-fcMRI data.

Methods

Subjects

30 participants diagnosed with NF1 (mean age 27±12; 12 males) and 30 healthy controls 

(mean age 29±11; 16 males) were recruited for this study (Table 1). All individuals provided 

written consent for participation, as approved by the Institutional Review Board of the 

University of California, Los Angeles (UCLA), after study procedures were fully explained. 

NF1 participants were diagnosed with NF1 by a physician familiar with the disorder and 

recruited via IRB-approved advertisements at UCLA. All NF1 participants fulfilled the 

diagnostic criteria specified by the National Institutes of Health Consensus Development 

Conference (1987), as confirmed by clinical interview and physical examination. Healthy 

controls were recruited through advertisements at UCLA for ongoing research studies. 

Controls did not have any Axis-I psychiatric disorders or medical conditions that might 

affect cognitive function, as assessed by the Structured Clinical Interview for DSM-IV (First 

et al., 1997). All participants were screened for significant substance use in the last six 

months, history of head injury, mental retardation (IQ less than 70) and/or insufficient 

fluency in the English language. All participants received a brief cognitive assessment on 

the day of the MRI scan, the Wechsler Abbreviated Scale of Intelligence (WASI; (WASI, 

1999)). NF1 participants younger than 18 completed the standard psychological assessment 

tool the Child Behavioral Checklist (CBCL; (Achenbach, 1992)). NF1 participants over 18 

completed the Youth Adult Self Report (YASR; (Achenbach, 1997)), derived directly from 

the CBCL and adapted for participants older than 18.

Magnetic Resonance Imaging Acquisition

All subjects were scanned at either the Ahmanson–Lovelace Brain Mapping Center (BMC) 

or the Staglin Center for Cognitive Neuroscience (CCN) in Los Angeles, CA, USA. Both 

sites had identical three Tesla Siemens Trio systems, utilizing a 12-channel head coil. A T2 

matched-bandwidth structural image was acquired for the purposes of registration to the 

functional data (voxel size 1.5×1.5×4.0mm, TR=5000 ms, TE=34 ms, echo spacing=0.89 

ms, 34 axial slices, slice thickness 4.0mm, flip angle 90°, FOV=192, matrix size=128×128). 

Functional T2 scans were collected while participants were instructed to fixate on a 

crosshair for five minutes. 152 volumes were collected (voxel size 3.0×3.0×4.0mm, 
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TR=2000 ms, TE=30 ms, echo spacing= 0.79 ms, 34 axial slices, slice thickness 4.0mm, flip 

angle 90°, FOV=192, matrix size=64×64).

MRI Pre-processing

All functional data underwent basic preprocessing using the FMRIB Software Library 

(http://fsl.fmrib.ox.ac.uk/fsl/). Preprocessing steps included brain extraction, motion 

correction, spatial smoothing with a 5mm Gaussian kernel, band-pass temporal filtering 

(0.01Hz < f < 0.1 Hz), registration to matched bandwidth structural scan, and final 

registration to MNI standard space. No subject exceeded 2 mm translational mean 

framewise displacement prior to motion correction (Power et al., 2012), and after motion 

correction no subject exceeded 1mm FD. Global signal, 24 motion parameters, and motion 

confound files were regressed from the resting timeseries data (Power et al., 2014) in lieu of 

‘scrubbing’ (Carp, 2013). There were no significant differences in motion between groups, 

before or after motion correction (Table 1). Additionally, there were no significant 

differences in global signal between groups (p=.82). All volumes were subsequently 

parcellated into 113 regions using the Harvard-Oxford atlas (Desikan et al., 2006). All voxel 

time-series within a brain region were averaged together to yield a single time-series for 

each brain region. Each subject’s individual data consisted of 113 time-series with 152 

timepoints.

Constructing Networks

We inferred one network for each subject to represent the pairwise relationship between all 

brain regions under consideration. Partial correlation coefficients were used to estimate the 

relationship between BOLD activity traces in each of the 113 Harvard-Oxford brain regions 

(Smith et al., 2011). We whiten the time-series assuming an AR(1) model and used the 

QuIC implementation (Hsieh et al., 2011) of Graphical Lasso (Friedman et al., 2008) to 

produce Markov networks that quantify the relationship between each pair of regions (Smith 

et al., 2011) for each subject. Stability selection (Liu et al., 2010; Meinshausen and 

Bühlmann, 2010) was used to determine the optimal network sparsity, or number of edges in 

the network. The primary benefit of stability selection is that it retains only the most stable 

edges in the network, therefore eliminating the need for ‘hard’ thresholding of the network 

(i.e. all values less than .3 are arbitrarily discarded). This approach results in a sparse 

network whose remaining edges represent direct connections between nodes (Ryali et al., 

2012; Narayan and Allen, 2013; Tomson et al., 2013). To estimate a network for each group, 

all NF1 time-series were whitened and then concatenated into a single timeseries. The single 

NF1 concatenated time-series was subjected to the same procedures described above for 

single subject network estimation. The same procedure was performed for controls.

Testing for group differences in edges

Once individual subject networks were constructed and sparsified, we tested whether 

individual edges were stronger in one group than the other. A strong edge (i.e., with a high 

partial correlation coefficient) will be sufficiently robust to remain in the network after 

sparsification, and thus will be present in the final sparsified network. A weak edge (i.e., 

with a low partial correlation coefficient) will not survive sparsification, and will be 

removed from the network. In this way, we can test each edge individually for its presence 
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or absence in the network and compare whether an edge exists more often in one group’s 

network than the other. This is challenging using standard methods (Narayan and Allen, 

2013; Narayan et al., 2015), which often miss true edge differences and find false positives, 

as seen in the motivating example in Figure 1. Existing methods first estimate the 

connectivity network for each subject, use a two-sample binomial Wald test for each edge, 

and then correct for multiple testing (Zalesky et al., 2010; Palaniyappan et al., 2013; Tao et 

al., 2013). To improve the accuracy of edge testing, we developed a novel procedure called 

the R3 approach that obtains both a better estimate of edge presence and also accounts for 

inter- and intra-subject variability in multi-subject networks (described below).

R3 edge testing

The R3 method utilizes three primary procedures: resampling, random penalization, and 

random effects. The motivation for resampling arises from the fact that networks are 

estimated from noisy fMRI measurements. Thus, estimated edges in the network possess 

some variance. By determining whether an edge remains in a network after small 

perturbations to the time-series, we are able to quantify uncertainty in estimated edges. We 

use subsampling to perturb the data and provide us with pseudo-replicates of fMRI 

measurements. For every perturbation of the data, we estimate a corresponding network. 

Stable edges are present across a majority of these perturbations, and are less likely to occur 

by chance.

To determine whether individual edges exist exclusively in one group, we resample the 152 

fMRI observations (timepoints) with replacement 100 times for every subject 

(bootstrapping), estimate the Markov network for each resample with random penalties 

(Meinshausen and Bühlmann, 2010; Narayan and Allen, 2013; Narayan et al., 2015), and 

then compute how often an edge is present or absent in each network estimate. This 

resampling procedure does not address temporal change throughout the time-series. Because 

the preliminary whitening step removes correlation between all timepoints, we can randomly 

select a subset of the total time-points 100 times with replacement. These 100 resampled 

networks allow us to calculate a variance on any network metric in which we are interested 

(in this case, the existence of a single edge in a single subject). Since the presence or 

absence of an edge is binary, we aggregate these estimates per subject to obtain an edge 

proportion, where proportions can vary between 0 and 1. This procedure allows us make the 

following exemplar statement: “Subject 1 has an edge connecting regions 4 and 5 in 81 of 

the 100 total resamplings (i.e., 81% of the time).” As the number of subjects is relatively 

small (< 100), we model the probability of observing an edge using a beta-binomial 

distribution and construct a corresponding two-sample random effects test statistic 

(Crowder, 1978; Liang and Hanfelt, 1994; Narayan et al., 2015). These test statistics do not 

follow known distributions, so we perform a basic permutation test, permuting subject labels 

to determine whether any significant difference is due to chance or actual group assignment 

(Good, 2005; Tomson et al., 2013). We also test whether the total number of edges (after R3 

sparsification) differed between groups. Finally, we use Storey’s direct false discovery rate 

(FDR) procedure (Storey, 2002) to control for FDR at the 10% level.
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As an illustration of the efficacy of our approach, we provide a simulated example for two 

groups of 20 subjects each with 50 nodes, 400 time-points, and 150 truly differential edges. 

In comparison to standard techniques, the R3 approach finds over twice as many true edges, 

with substantially fewer false positive differences (Figure 1).

Modularity

Modularity is a traditional graph theory metric that describes how nodes in a network 

organize into neighborhoods, or modules. A module consists of a group of nodes that have 

more edges connecting one another than connecting the group to the rest of the network. 

However, current clustering algorithms assign nodes to modules based on a single snapshot 

of the network, providing no information about how consistently a node falls into a 

particular module. For this reason, we improve on the existing graph theoretical metric by 

using a modularity stability measurement (Dudoit and Fridlyand, 2002) to score the strength 

of the module allegiance of each node. In other words, rather than assume that each node 

belonged to only one module based on a single estimate, we perturbed the data by 

resampling it, then re-estimating and re-clustering the networks, finally arriving at a co-

occurrence frequency that determines how consistently two nodes belonged to the same 

module (Tomson et al., 2013). Thus, in each resample we obtain a binary statistic for every 

pair of nodes, indicating a co-occurrence. We aggregated these co-occurrences across all 

resamples to obtain a co-occurrence frequency. Just as in edge-testing, as described above, 

we used a two-sample beta binomial test statistic to compare the co-occurrence frequencies 

of all pairs of nodes between two groups. To determine how nodes cluster into modules, we 

applied Newman’s modularity algorithm (Newman, 2006) to each group-level graph. Prior 

to testing for statistical significance, we screened out node-pairs that consistently had low 

co-occurrences (below 40%) across all subjects in all groups. We use the terminology 

‘clustering’ to describe nodes that fall into modules with a significantly greater co-

occurrence frequency between groups. To determine whether clustering patterns differed 

between groups, we used permutation tests (Good, 2011) to obtain p-values for group 

differences, and controlled for FDR at 10% (Storey, 2002).

Graph theory

After testing networks for edge strength differences and modularity clustering, we also 

studied the networks for differences in traditional graph theory metrics (Buckner et al., 

2009; Telesford et al., 2010; van den Heuvel and Hulshoff Pol, 2010; Fornito et al., 2013), 

including: the number of edges belonging to each node (degree), the average shortest path 

length between nodes (global efficiency), the overall number of modules (modularity 

coefficient; Q), and the index of balance between connections that are made within and 

between modules (participation coefficient). Graph metrics of degree and participation 

coefficient, which are computed separately for each individual node, were then compared at 

both the node level (i.e. is the degree of node × higher in controls?) and at the average 

network level (i.e. is the average degree of all nodes greater in controls than in Nf1 

participants?). Rather than use a standard t-test to find differences in these metrics between 

groups, we computed the relevant graph metric for each resampled network in each subject 

and used a linear mixed effects two-sample test statistic to determine whether the group 

networks differed significantly. We subsequently used permutation tests (Good, 2011) to 
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obtain p-values. We corrected for multiplicity for all node level tests, using Storey’s method 

(Storey, 2002) to estimate the false discovery rate (FDR) at 10% (Benjamini and Hochberg, 

1995).

Nuisance variables

Estimating Markov networks for large networks in fMRI is statistically challenging, and we 

lack adequate statistical power and error control to adjust for a large number of covariates at 

the edge level (Narayan et. al. 2015). Thus, we chose to account for nuisance covariates at 

the region of interest (ROI) level. Since the ROI time-series comprise the input to the 

network analyses, we employed an ANOVA to model the whitened time-series using group, 

scanner location and group × scanner location interaction as fixed effects and a subject-level 

random effect. We found no significant relationship with scanner, group, nor a group by 

scanner interaction effect for any of the 113 ROIs after correcting for multiple comparisons 

at 10% FDR using the Benjamini-Yekutieli procedure (all p>.05). We also tested for scanner 

effects on the global sparsity (total number of edges) of each network using another linear 

mixed effects model and found no significant relationship between network sparsity and 

scanner location (p=.54), nor a patient by group interaction (p=.41). These results indicate 

no evidence of a main effect of scanner on the ROI timeseries, the fundamental unit upon 

which edge structure, graph theory, and modularity calculations were made.

Relationships to clinical measures

We examined three clinical measures as they related to our network findings: IQ as 

estimated by the WASI (for all subjects), Total Internalizing Score (only NF1 subjects) and 

Total Problem Score (only NF1 subjects). Internalizing and Problem scores were acquired 

using the widely-used standardized measure in child psychology, the Childhood Behavioral 

Checklist (CBCL)(Achenbach, 1992). NF1 participants older than 18 were given the Youth 

Adult Self Report (YASR), which was derived from the CBCL (Achenbach, 1997).

To test the hypothesis that graph metric measurements could predict clinical measures, we 

fit a separate mixed effects model between each clinical variable, and each graph metric. We 

used standard linear mixed effects models for the continuous responses: sparsity, global 

efficiency, anterior-posterior sparsity, and bilateral sparsity. In the case of edges and co-

modularity, which produce discrete proportions, we used nonlinear beta-binomial models. 

We focused these tests on the 10 most significant differential edges and the 10 most 

significant differential modular pairs.

Results

Demographics

As shown in Table 1, control and NF1 participants were matched for age and gender. NF1 

participants did not differ significantly from controls in years of education, but had 

significantly lower Full Scale IQ, as measured by the WASI. Although IQ scores for NF1 

participants are in the average range, this downward shift in IQ is consistent with previous 

findings (Kayl and Moore, 2000; Hyman et al., 2005).
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R3 edge testing

The goal of R3 edge testing is to find edges that are significantly stronger in one group than 

the same edge in another group. Therefore, we report only differential edges. We first tested 

whether the total number of edges remaining in the sparsified networks was significantly 

different between groups, and found no difference in overall sparsity. Differential edge 

testing revealed 26 edges that were significantly stronger in controls than in NF1 

participants (Figure 2, Table 2). These 26 edges connect nodes across hemispheres and 

across the anterior-posterior plane. Ten unique edges were significantly stronger in NF1 

participants than controls. By comparison, these edges were short-range, unilateral, and 

demonstrated less anterior-posterior connectivity relative to the edges that were significantly 

stronger in the control network.

Modularity

The modularity analysis is also differential: we only test/report which nodes cluster more 

often in one group than another. Results from the differential modularity analysis revealed 

19 node pairs (16 unique nodes; Table 3) clustering more often in controls than in NF1 

participants (Figure 3, Table 3). We plotted the node locations on a map of seven functional 

networks defined by a previous study of resting state data obtained from 1000 subjects 

(Figure 3; Yeo et al., 2011), and found that the vast majority (13) of these nodes observed in 

controls belonged to either the visual or the default mode network, with many bilateral pairs 

clustering together. NF1 participants, by contrast, clustered 6 node pairs (9 unique nodes) 

significantly more often than controls. The 9 unique nodes were distributed throughout five 

of the seven functional networks shown (Figure 3) and were not preferentially aligned to any 

particular network. The clustering pattern of NF1 nodes reveals a right-lateralized pattern 

and no bilateral pairs, when compared with control clustering patterns.

Graph theory

We found no significant differences between the controls and NF1 participants for any 

traditional graph theory metric (degree, global efficiency, modularity coefficient, or 

participation coefficient) at the average group level. At the node level, we tested whether 

any individual nodes had higher degree or participation coefficient in either group, finding 

no significant differences for either metric.

Relationships to Clinical Measures

Modular clustering tests revealed a significant correlation with internalizing symptoms in 

patients with NF1 in five node-pairs, each of which contains the inferior left lateral occipital 

cortex. The five significant node pairs (corrected at FDR 10%) are inferior left lateral 

occipital cortex paired with: 1) left intracalcarine cortex (P=.01), 2) right intracalcarine 

cortex (P=.009), 3) left supracalcarine cortex (P=.007), 4) right cuneal cortex (P=.003) and 

5) right supracalcarine cortex (P=.004). Edge testing also revealed a significant relationship 

between the most significantly differential edge (connecting right precentral gyrus with the 

right inferior temporal gyrus) and IQ (P=.01, FDR 10%). However, we found no significant 

relationships between clinical metrics (IQ, TIS or TPS) and graph-based measures of overall 

sparsity, global efficiency, anterior-posterior sparsity, or bilateral sparsity.
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Discussion

We present the first study elucidating resting state functional network architecture in 

individuals with the monogenic disorder NF1. Novel analysis techniques introduced here 

allowed us to evaluate all network edges for greater strength (i.e., increased connectivity) in 

each group. As such, one of the primary findings of this study is reduced anterior-posterior 

connectivity in NF1 participants compared with healthy controls. After stringent corrections 

for multiple comparisons, 26 edges were found to be significantly stronger in controls than 

NF1 participants, while 10 edges were stronger in NF1 participants than those same edges in 

controls. Importantly, the pattern of differential edge distribution provides insight into the 

nature of connectivity deficits in NF1. In Figure 2, we show exclusive maps of all edges that 

were significantly stronger in one group than another. If an edge appears in the control 

network, for example, it is significantly stronger than the identical edge in NF1 subjects, 

hence there is no edge overlap shown. Comparing the NF1 and control networks in Figure 2, 

the edge distribution suggests a pattern of long-range anterior-posterior connectivity in 

controls that is noticeably absent from the NF1 cohort. In other words, although anterior-

posterior edges are present in both groups, our results suggest that these types of edges are 

significantly weaker in NF1 subjects. These findings are in accord with previous suggestions 

of connectivity impairments in NF1 assessed using different methodologies, including task-

based fMRI studies of visual, spatial and working memory, in which NF1 patients generally 

show a pattern of increased short-range and diminished long-range connectivity (Billingsley 

et al., 2004; Shilyansky et al., 2010; Chabernaud et al., 2012; Violante et al., 2012). Using a 

seed-based approach, Chabernaud et al. (2012) found that, prior to treatment with the Ras-

inhibiting drug lovastatin, patients with NF1 showed an absence of typical long-range 

resting state functional connectivity between the posterior cingulate and medial prefrontal 

cortex, two hubs within the default mode network of the brain. Although the absence of a 

healthy control group limits the extent to which these findings deviate from typical resting 

state connectivity patterns, our findings of reduced anterior-posterior connectivity relative to 

control subjects appear to align well with this report. Notably, many studies have observed 

diminished long-range connectivity in adolescents and adults with idiopathic autism 

spectrum disorders (Müller et al., 2011; Dichter, 2012; Verly et al., 2013; von dem Hagen et 

al., 2013), as well as local over-connectivity in posterior brain regions (Maximo et al., 

2013). Given that our findings are derived from resting state data, we speculate that these 

connectivity differences represent an intrinsic difference between control and NF1 network 

structures, which might predispose NF1 participants to further difficulties when task 

requirements are involved. Additionally, this convergence of findings between our study and 

those observed in idiopathic ASD is important and suggests specific points of convergence 

in patterns of resting state alterations, e.g. altered anterior-posterior connectivity, which may 

be informative regarding shared downstream circuit malformations (albeit possibly caused 

by distinct molecular mechanisms). Translational studies in mouse models of NF1 will be 

critical to elucidate the underlying molecular basis of the observed functional connectivity 

disturbances.

Another novel finding is altered modularity clustering patterns in NF1 participants. In large 

brain networks, it is valuable to understand how brain regions organize into neighborhoods 
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or modules. Although existing modularity algorithms accurately assign nodes into 

neighborhoods (modules; Newman 2006), these algorithms are not equipped to quantify the 

allegiance of a node to a module (i.e. does node 5 fall into module 1 90% of the time, or just 

5% of the time?). For this reason, we discarded the notion of absolute module allegiance in 

favor of a metric that examines how often each pair of nodes falls into the same module 

together. We call this metric ‘clustering’. For example, if we resample the modularity 

calculation and find that nodes 5 and 6 consistently fall into module 1 together, we conclude 

that the nodes have similar behavior and are functionally connected. This modularity 

clustering test estimates how well any two nodes share modularity affiliation, and can be 

thought of as a metric of functional connectivity. When we compare two groups, we ask 

which nodal pairs cluster together more frequently in one group than another. For example, 

if nodes 5 and 6 cluster into module 1 90% of the time for group A, but only 10% of the 

time for group B, we can conclude that nodes 5 and 6 cluster together more often (and are 

thus more functionally related) in group A than group B.

Overall, the edge and modularity clustering metrics describe two very different properties of 

the network. All edge strength differences in these data represent direct edges, while 

modularity clustering can be affected by direct or indirect relationships between shared 

neighbors. Our modularity results reveal differential clustering patterns in 16 unique nodes 

(19 total pairs) in controls (Figure 3). These 16 nodes belong primarily to the visual and 

default mode networks, with only three nodes (brainstem and bilateral amygdala) belonging 

to the limbic network. Notably, every node pair belongs to the same network affiliation, 

labels which were imposed from a separate dataset after modularity results were calculated 

(Yeo et al., 2011). This pattern suggests that the visual and default mode networks are more 

tightly clustered in controls than in individuals with NF1. It is important also to consider that 

of the 16 unique nodes that differentially cluster in controls relative to NF1 participants, the 

two most frequently appearing are the inferior division of the left lateral occipital cortex and 

the left occipital pole. Each node shows up six times in clustered pairs, and both nodes are 

within the visual network. We cannot speculate about the relationship between these two 

visual nodes and perceptual experience, but it does raise an important question for future 

studies about why we see such a compelling difference in the visual network between 

groups.

By contrast, NF1 participants cluster six node pairs more frequently than controls and have 

nine unique nodes (compared to 16 unique nodes in controls). The important distinction 

between groups is that the nine unique NF1 cluster nodes span five of the seven functional 

networks (visual, default mode, limbic, fronto-parietal, and somatomotor). This contrasts 

with controls, whose 16 unique nodes were found largely within two primary networks 

(visual and default mode). In further contrast to controls, for which each node pair belongs 

to the same module, no node pair in NF1 participants belongs to the same assigned module. 

The observed intra-module clustering pattern suggests that NF1 networks have stronger 

between-module connectivity and weaker within-module connectivity than controls. These 

findings are in line with the two prior resting state functional MRI studies of NF1, in which 

(using seed-based approaches) the investigators find altered short-range connectivity 

patterns in NF1 participants compared to controls (Chabernaud et al., 2012; Loitfelder et al., 
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2015). Together, these data indicate less tightly organized clustering of visual and default 

mode networks and potentially impaired intra-modular affiliation.

In addition to evaluating individual edge strength and modularity clustering abnormalities in 

NF1 participants, we characterized the networks using graph theory metrics including 

degree, global efficiency, modularity coefficient, and participation coefficient. These metrics 

have become popular in network analyses as descriptors of network structure (Buckner et 

al., 2009; Telesford et al., 2010; van den Heuvel and Hulshoff Pol, 2010; Fornito et al., 

2013). After accounting for inter-subject variance and performing permutation testing, we 

saw no significant group differences in degree (average number of edges connected to each 

node), global efficiency (average number of edges required to connect all node pairs), 

modularity coefficient (number of neighborhoods that divide the network), or participation 

coefficient (average number of edges connecting a node to modules outside its affiliation). 

Given the tremendous dependence of graph theory metrics on network sparsity and 

variability, we were not surprised to find an insignificant difference between groups when 

sparsity and variability were accounted for in the model. A lack of group differences in these 

graph theory metrics suggest that NF1 participants overall have similar global network 

properties, but differ from controls in more localized structure, such as edge strength and 

module composition. For example, although NF1 functional networks have the same raw 

number of modules as controls, the clustering pattern of nodes within those modules is not 

identical. Thus, while traditional graph properties appear to be indistinct in individuals with 

NF1, local differences in edge strength and modular affiliation may be relevant to 

characteristic behavioral findings in the disorder.

To further investigate the influence of edge strength and modularity on clinical measures, 

we evaluated three behavioral metrics: IQ (all subjects), Total Internalizing Score (NF1 

participants only), and Total Problem Score (NF1 participants only), from the Childhood 

Behavioral Checklist (CBCL; for participants under 18) and the Youth Adult Self Report 

(YASR; for participants over 18). We found a significant negative relationship between 

internalizing symptoms from the Problem Score and clustering patterns in NF1 subjects. 

Specifically, five clustered pairs varied inversely with internalizing symptoms (blue 

highlight, Figure 3). Notably, each of the five significant pairs contained one node in 

common, the left inferior lateral occipital cortex (LOC). The LOC is the same node that 

showed up in six of the 19 node pairs that clustered less often in Nf1 participants than 

controls, indicating that the left LOC in patients becomes more disconnected to the 

remaining 5 nodes as internalizing symptoms increase. In other words, a higher internalizing 

score in NF1 patients (which is associated with anxiety and mood symptoms) is correlated 

with a weaker affiliation between these six nodes. Additionally, we found one edge 

(connecting right precentral and right temporal gyri) that correlated significantly with IQ in 

both groups (Table 2, blue highlight). Regardless of group identity, this finding suggests that 

the relationship between the right precentral and right temporal gyri is weaker in individuals 

with low IQ. Larger, external datasets are necessary to validate this finding, and further 

explore the relationship between functional connectivity of these regions. Finally, we 

investigated the relationship between clinical metrics and graph metrics such as global 

sparsity and global efficiency; no significant relationship was observed. Additionally, the 

total number of anterior-posterior and total bilateral connections was not associated with 
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these clinical variables. Nonetheless, the observed edge-IQ and modularity-internalizing 

relationships are promising and warrant further exploration in independent datasets.

Although direct relationships between structural and functional connectivity in typically 

developing populations have yet to be fully elucidated (Grayson et al., 2014; Lohse et al., 

2014), it is notable that abnormal white matter structure has been reported in several studies 

of both children and adults with NF1, particularly in the context of hyperintensities on T2-

weighted images in the brain, or unidentified bright objects (UBOs) (Moore et al., 2000; 

Pride et al., 2010). While the exact nature of the UBOs is not known, histological analysis 

has revealed that they are often transient and can be caused by intramyelinic edema 

(DiPaolo et al., 1995). A few studies to date have explored structural connectivity in NF1 

applying a region of interest (ROI)-based approach to diffusion tensor imaging (DTI) data; 

these studies have generally shown decreases in fractional anisotropy (FA), an indicator of 

water’s directional coherence in white matter, as well as increases in overall diffusivity 

(Zamboni et al., 2007; van Engelen et al., 2008; Wignall et al., 2010). To our knowledge, 

ours is the only previous DTI study to take a whole-brain approach. In an independent 

sample of young adult NF1 patients (Karlsgodt et al., 2012) we found that, relative to 

healthy controls, NF1 patients showed widespread reductions in white matter integrity 

across the entire brain, as reflected by decreased FA and significantly increased absolute 

diffusion (ADC). We additionally found pronounced differences in radial diffusion in NF1 

patients, indicative of either decreased myelination or increased space between axons. FA 

and radial diffusion effects were of greatest magnitude in the frontal lobe (Karlsgodt et al., 

2012).

Notably, NF1 mutations are known to impact myelin, as the gene encoding the 

oligodendrocyte-myelin glycoprotein (OMgp) is embedded within an intron of the NF1 gene 

(Viskochil et al., 1991). This protein has been the focus of much interest as a potential 

mechanism underlying overproliferation of oligodendrocytes, which may explain structural 

neuroanatomic findings of enlarged white matter. Increased corpus callosum area and/or 

callosal thickening has been frequently reported in studies of patients with NF1(Kayl and 

Moore, 2000; Dubovsky et al., 2001; Cutting et al., 2002; Pride et al., 2010; Violante et al., 

2013; Duarte et al., 2014). Additionally, two cross-sectional studies have found increased 

corpus callosum size to be associated with lower IQ and poorer performance on measures of 

academic achievement, abstract concept formation, verbal memory and visual-spatial and 

motor skills in children with NF1, indicating that greater callosal size is associated with 

impaired functional computations the brain in patients with NF1 (Moore et al., 2000; Pride 

et al., 2010). Additionally, prior work in a mouse model of NF1 found that developmental 

Nf1 loss throughout the brain resulted in corpus callosum enlargement that could be reduced 

in size by treatment with a MEK/ERK inhibitor during neonatal stages (Wang et al., 2012). 

Mapping the network topology of structural alterations in white matter fiber tracts in NF1 

patients using similar methods – in order to determine whether core topological properties 

characterize both structural and functional connectivity alterations - is an important next 

step. This will be critical for elucidating the relationships between structural and functional 

brain alterations in NF1.
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A limitation of the present study is a lack of a priori knowledge of the functional 

architecture of the resting brain in NF1. In order to explore a wide range of possible 

findings, we included all nodes, all edges, and many graph theory metrics in our analyses. 

Consequently, our penalties for multiple comparisons were perhaps overly stringent. In 

addition, our sample included a wide age range. Although groups were age-matched, the 

broad range provides a substantial challenge when considering the pace of network 

reorganization during development (Supekar et al., 2009; Zielinski et al., 2010). A larger 

sample size would have allowed us to either narrow the age range or bin the subject pool to 

examine network changes in NF1 during development. It should also be noted that we 

employed global signal regression as a preprocessing step (Power et al., 2014). Global signal 

regression helps remove influences that affect signal all over the brain, thereby highlighting 

the relationship between smaller, individual regions. There is some debate about the effect 

that this procedure has on the resulting timeseries (Weissenbacher et al., 2009; Schwarz and 

McGonigle, 2011; Power et al., 2014), but in our dataset, we found that global signal 

regression produced a more Gaussian distribution of correlation coefficients than if we 

eliminated this step. Another methodological consideration is our use of an anatomical atlas 

to define regions of interest. The benefit of this method is that the identity of each brain 

region is accepted by the field. A limitation is that different brain regions are often markedly 

different in size, which means that the number of voxels averaged together to create a single 

regional time-series varies as well. The alternative, using functionally-derived regions, has 

its own set of distinct limitations, however, and we chose anatomical labeling to avoid 

problems of region identification.

Although the underlying biological basis for these altered connectivity findings is not yet 

known, a recent magnetic resonance spectroscopy study (Violante et al., 2012) found 

reduced gamma-aminobutyric acid (GABA; an inhibitory neurotransmitter) levels in visual 

cortex in participants with NF1, whereas no alterations were observed in glutamine levels, 

indicating an imbalance in the excitatory/ inhibitory push–pull mechanism in NF1 

participants. This study also found that GABA/total creatine levels were inversely correlated 

with neural activity (peak BOLD amplitude) during a low-level visual processing task in 

both NF1 participants and controls, suggesting that BOLD response is sensitive to 

excitatory-inhibitory balance and, in turn, to GABA concentrations (Chen et al., 2005). 

Previous studies in NF1 rodent models have shown evidence of increased inhibitory 

postsynaptic potentials, which was attributable to higher levels of GABA release (Cui et al., 

2008). The NF1 protein is highly expressed in rodent and human oligodendrocytes (Daston 

et al., 1992). A recent study in an NF1 loss of function mouse model examined the role of 

H-Ras activation in oligodendrocytes (Mayes et al., 2013), finding gross enlargement of 

optic nerves, consistent with findings of white matter enlargement in human patients with 

Nf1; further, Ras pathway activation in oligodendrocytes upregulated nitric oxide synthases 

(NOS) in white matter and elevated oligodendrocyte reactive oxygen species, including NO, 

which contributed to behavioral abnormalities in the mouse. These findings suggest a 

potential cellular and molecular mechanism of Nf1-associated brain abnormalities.

In summary, here we applied novel network analysis methods to study the functional 

architecture of the resting brain in individuals with NF1 mutations. Our data suggest that 
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NF1 is indeed characterized by diminished anterior-posterior connectivity and disorganized, 

unilateral modular clustering compared with controls. Investigation of the global features of 

NF1 and control networks indicates that both groups have similar hubs, are equally efficient, 

and divide into the same number of modules. However, local network differences in edge 

strength and modular clustering may contribute to the cognitive deficits experienced by 

individuals with NF1. Future, larger-scale studies are warranted in order to evaluate how 

these local features are relevant to learning and memory deficits common to the NF1 

population.

Acknowledgments

This work was supported by 5T32NS048004-08 (ST), R34 MH089299-01/MH/NIMH NIH (CEB) and DOD/
CDMRP W81XWH-12-1-0081 (CEB).

Works Cited

Achenbach, T. Manual for the Child Behavior Checklist/2-3 and 1992 Profile. Burlington, VT: 
University of Vermont Department of Psychiatry; 1992. 

Achenbach, T. Young Adult Self Report. Burlington, VT: University of Vermont, Department of 
Psychiatry; 1997. 

Adviento B, Corbin IL, Widjaja F, Desachy G, Enrique N, Rosser T, Risi S, Marco EJ, Hendren RL, 
Bearden CE, Rauen K, Weiss L. Autism traits in the RASopathies. J Med Genet. 2014; 51:10–20. 
[PubMed: 24101678] 

Alkan A, Sigirci A, Kutlu R, Ozcan H, Erdem G, Aslan M, Ates O, Yakinci C, Egri M. 
Neurofibromatosis type 1: diffusion weighted imaging findings of brain. Eur J Radiol. 2005; 
56:229–234. [PubMed: 15963674] 

Anon. Neurofibromatosis. NIH consensus Statement Online. Arch Neurol. 1987; 6:1–19.

Barker D, Wright E, Nguyen K, Cannon L, Fain P, Goldgar D, Bishop DT, Carey J, Baty B, Kivlin J. 
Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 
17. Science. 1987; 236:1100–1102. [PubMed: 3107130] 

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic reconfiguration of 
human brain networks during learning. Proc Natl Acad Sci U S A. 2011; 108:7641–7646. [PubMed: 
21502525] 

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A practical and powerful approach 
to multiple testing. J R Stat Soc Ser B. 1995; 57:289–300.

Billingsley RL, Jackson EF, Slopis JM, Swank PR, Mahankali S, Moore BD. Functional Magnetic 
Resonance Imaging of Phonologic Processing in Neurofibromatosis 1. J Child Neurol. 2003; 
18:731–740. [PubMed: 14696899] 

Billingsley RL, Jackson EF, Slopis JM, Swank PR, Mahankali S, Moore BD. Functional MRI of 
visual–spatial processing in neurofibromatosis, type I. Neuropsychologia. 2004; 42:395–404. 
[PubMed: 14670578] 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magn Reson Med. 1995; 34:537–541. [PubMed: 8524021] 

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling 
RA, Johnson KA. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment 
of stability, and relation to Alzheimer’s disease. J of Neuroscience. 2009; 29:1860–1873. 
[PubMed: 19211893] 

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional 
systems. Nat Rev Neurosci. 2009; 10:186–198. [PubMed: 19190637] 

Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012; 13:336–
349. [PubMed: 22498897] 

Tomson et al. Page 15

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Carp J. Optimizing the order of operations for movement scrubbing: Comment on Power et al. 
Neuroimage. 2013; 76:436–438. [PubMed: 22227884] 

Cawthon RM, Weiss R, Xu G, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, 
Connell PO, White R. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, 
genomic structure, and point mutations. Cell. 1990; 62:609.

Chabernaud C, Mennes M, Kardel PG, Gaillard WD, Kalbfleisch ML, Vanmeter JW, Packer RJ, 
Milham MP, Castellanos FX, Acosta MT. Lovastatin regulates brain spontaneous low-frequency 
brain activity in neurofibromatosis type 1. Neurosci Lett. 2012; 515:28–33. [PubMed: 22433254] 

Chen Z, Silva AC, Yang J, Shen J. Elevated endogenous GABA level correlates with decreased fMRI 
signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res. 2005; 
79:383–391. [PubMed: 15619231] 

Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. 
Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002; 
415:526–530. [PubMed: 11793011] 

Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in 
autism. JAMA. 2003; 290:337–344. [PubMed: 12865374] 

Crowder MJ. Beta-binomial anova for proportions. Appl Stat. 1978:34–37.

Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. 
Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008; 
135:549–560. [PubMed: 18984165] 

Cutting LE, Cooper KL, Koth CW, Mostofsky SH, Kates WR, Denckla MB, Kaufmann WE. 
Megalencephaly in NF1: predominantly white matter contribution and mitigation by ADHD. 
Neurology. 2002; 59:1388–1394. [PubMed: 12427889] 

Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N. The protein product of the 
neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and 
oligodendrocytes. Neuron. 1992; 8:415–428. [PubMed: 1550670] 

Delmonte S, Gallagher L, O’Hanlon E, McGrath J, Balsters JH. Functional and structural connectivity 
of frontostriatal circuitry in Autism Spectrum Disorder. Front Hum Neurosci. 2013; 7:430. 
[PubMed: 23964221] 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006; 
31:968–980. [PubMed: 16530430] 

Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin 
Neurosci. 2012; 14:319–351. [PubMed: 23226956] 

Van Dijk KRA, Hedden T, Venkataraman A, Karleyton C, Lazar SW, Buckner RL, Evans KC, Van 
Dijk KRA, Hoptman J, Hyde JS, Kiviniemi VJ, Kotter R, Li S, Lin C, Lowe MJ, Mackay C. 
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and 
optimization. J Neurophysiol. 2010; 103:297–321. [PubMed: 19889849] 

DiPaolo DP, Zimmerman RA, Rorke LB, Zackai EH, Bilaniuk LT, Yachnis AT. Neurofibromatosis 
type 1: pathologic substrate of high-signal-intensity foci in the brain. Radiology. 1995; 195:721–
724. [PubMed: 7754001] 

Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-Branco M. Multivariate pattern 
analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis 
type 1. Hum Brain Mapp. 2014; 35:89–106. [PubMed: 22965669] 

Dubovsky EC, Booth TN, Vezina G, Samango-Sprouse Ca, Palmer KM, Brasseux CO. MR imaging of 
the corpus callosum in pediatric patients with neurofibromatosis type 1. AJNR Am J Neuroradiol. 
2001; 22:190–195. [PubMed: 11158908] 

Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in 
a dataset. Genome Biol. 2002; 3:RESEARCH0036. [PubMed: 12184810] 

Eastwood JD, Fiorella DJ, MacFall JF, Delong DM, Provenzale JM, Greenwood RS. Increased brain 
apparent diffusion coefficient in children with neurofibromatosis type 1. Radiology. 2001; 
219:354–358. [PubMed: 11323456] 

Tomson et al. Page 16

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV® Axis I 
Disorders (SCID-I), Clinician Version, Scoresheet. 1997

Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: Promise, progress, 
and pitfalls. Neuroimage. 2013; 80:426–444. [PubMed: 23643999] 

Friedman JM. Epidemiology of neurofibromatosis type 1. Am J Med Genet. 1999; 89:1–6. [PubMed: 
10469430] 

Garg S, Green J, Leadbitter K, Emsley R, Lehtonen A, Evans DG, Huson SM. Neurofibromatosis type 
1 and autism spectrum disorder. Pediatrics. 2013; 132:e1642–e1648. [PubMed: 24190681] 

Good, P. Permutation, parametric, and bootstrap tests of hypotheses. Third. Springer; 2005. 

Good, PI. Analyzing the Large Number of Variables in Biomedical and Satellite Imagery. Hoboken, 
NJ, USA: John Wiley & Sons; 2011. 

Grayson DS, Ray S, Carpenter S, Iyer S, Dias TGC, Stevens C, Nigg JT, Fair Da. Structural and 
functional rich club organization of the brain in children and adults. PLoS One. 2014; 9:e88297. 
[PubMed: 24505468] 

Greenwood RS, Tupler LA, Whitt JK, Buu A, Dombeck CB, Harp AG, Payne ME, Eastwood JD, 
Krishnan KRR, MacFall JR. Brain morphometry, T2-weighted hyperintensities, and IQ in children 
with neurofibromatosis type 1. Arch Neurol. 2005; 62:1904–1908. [PubMed: 16344348] 

Hsieh C, Sustik MA, Dhillon IS, Ravikumar PD. Sparse Inverse Covariance Matrix Estimation Using 
Quadratic Approximation. NIPS. 2011:2330–2338.

Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with 
neurofibromatosis type 1. Neurology. 2005; 65:1037–1044. [PubMed: 16217056] 

Hyman SL, Shores A, North KN. Learning disabilities in children with neurofibromatosis type 1: 
subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol. 
2006; 48:973–977. [PubMed: 17109785] 

Karlsgodt KH, Rosser T, Lutkenhoff ES, Cannon TD, Silva A, Bearden CE. Alterations in white 
matter microstructure in neurofibromatosis-1. PLoS One. 2012; 7:e47854. [PubMed: 23094098] 

Kayl AE, Moore BD. Behavioral phenotype of neurofibromatosis, type 1. Ment Retard Dev Disabil 
Res Rev. 2000; 6:117–124. [PubMed: 10899804] 

Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH, Becher OJ, Holland EC. Neurofibromatosis-1 
regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific 
manner. Genes Dev. 2010; 24:2317–2329. [PubMed: 20876733] 

Liang KY, Hanfelt J. On the use of the quasi-likelihood method in teratological experiments. 
Biometrics. 1994; 50:872–880. [PubMed: 7981409] 

Liu W, Zhu P, Anderson JS, Yurgelun-Todd D, Fletcher PT. Spatial regularization of functional 
connectivity using high-dimensional Markov random fields. Med Image Comput Comput Assist 
Interv. 2010; 13:363–370. [PubMed: 20879336] 

Lohse C, Bassett DS, Lim KO, Carlson JM. Resolving Anatomical and Functional Structure in Human 
Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations. 
PLoS Comput Biol. 2014; 10:e1003712. [PubMed: 25275860] 

Loitfelder M, Huijbregts S, Veer I, Swaab H, van Buchem M, Schmidt R, Rombouts S. Functional 
connectivity changes and executive and social problems in Neurofibromatosis type I. Brain 
Connect. 2015

Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E. Functional 
connectivity and brain networks in schizophrenia. J Neurosci. 2010; 30:9477–9487. [PubMed: 
20631176] 

Margariti PN, Blekas K, Katzioti FG, Zikou AK, Tzoufi M, Argyropoulou MI. Magnetization transfer 
ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1. 
Eur Radiol. 2007; 17:433–438. [PubMed: 16733674] 

Maximo JO, Keown CL, Nair A, Müller R-A. Approaches to local connectivity in autism using resting 
state functional connectivity MRI. Front Hum Neurosci. 2013; 7:605. [PubMed: 24155702] 

Mayes DA, Rizvi TA, Titus-Mitchell H, Oberst R, Ciraolo GM, Vorhees CV, Robinson AP, Miller 
SD, Cancelas JA, Stemmer-Rachamimov AO, Ratner N. Nf1 loss and Ras hyperactivation in 
oligodendrocytes induce NOS-driven defects in myelin and vasculature. Cell Rep. 2013; 4:1197–
1212. [PubMed: 24035394] 

Tomson et al. Page 17

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B (Statistical Methodol). 2010; 
72:417–473.

Moore BD, Slopis JM, Jackson EF, De Winter AE, Leeds NE. Brain volume in children with 
neurofibromatosis type 1: relation to neuropsychological status. Neurology. 2000; 54:914–920. 
[PubMed: 10690986] 

Müller R-AA, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK. Underconnected, but how? A 
survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex. 2011; 
21:2233–2243. [PubMed: 21378114] 

Narayan M, Allen GI. Randomized approach to differential inference in multi-subject functional 
connectivity. Proc 3rd Int Work Pattern Recognit Neuroimaging. 2013

Narayan M, Allen GI, Tomson SN. Two sample inference for populations of graphical models with 
applications to functional brain connectivity. 2015 Submitted. 

Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006; 
103:8577–8582. [PubMed: 16723398] 

North K. Neurofibromatosis type 1. Am J Med Genet. 2000; 97:119–127. [PubMed: 11180219] 

Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience 
processing system in schizophrenia. Neuron. 2013; 79:814–828. [PubMed: 23972602] 

Payne JM, Moharir MD, Webster R, North KN. Brain structure and function in neurofibromatosis type 
1: current concepts and future directions. J Neurol Neurosurg Psychiatry. 2010; 81:304–309. 
[PubMed: 20185469] 

Power JD, Barnes Ka, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion. Neuroimage. 2012; 59:2142–
2154. [PubMed: 22019881] 

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, 
characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014; 84:320–341. 
[PubMed: 23994314] 

Pride, Na; Crawford, H.; Payne, JM.; North, KN. Social functioning in adults with neurofibromatosis 
type 1. Res Dev Disabil. 2013; 34:3393–3399. [PubMed: 23911645] 

Pride N, Payne JM, Webster R, Shores EA, Rae C, North KN. Corpus callosum morphology and its 
relationship to cognitive function in neurofibromatosis type 1. J Child Neurol. 2010; 25:834–841. 
[PubMed: 20142468] 

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage. 2010; 52:1059–1069. [PubMed: 19819337] 

Ryali S, Chen T, Supekar K, Menon V. Estimation of functional connectivity in fMRI data using 
stability selection-based sparse partial correlation with elastic net penalty. Neuroimage. 2012; 
59:3852–3861. [PubMed: 22155039] 

Schwarz AJ, McGonigle J. Negative edges and soft thresholding in complex network analysis of 
resting state functional connectivity data. Neuroimage. 2011; 55:1132–1146. [PubMed: 21194570] 

Sharma R, Wu X, Rhodes SD, Chen S, He Y, Yuan J, Li J, Yang X, Li X, Jiang L, Kim ET, Stevenson 
DA, Viskochil D, Xu M, Yang F-C. Hyperactive Ras/MAPK signaling is critical for tibial 
nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet. 2013; 22:4818–4828. 
[PubMed: 23863460] 

Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, 
Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ. Neurofibromin regulates 
corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S 
A. 2010; 107:13141–13146. [PubMed: 20624961] 

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, 
Woolrich MW. Network modelling methods for FMRI. Neuroimage. 2011; 54:875–891. [PubMed: 
20817103] 

Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B. 2002; 64:479–498.

Supekar K, Musen M, Menon V. Development of Large-Scale Functional Brain Networks in Children. 
Development. 2009; 7:e1000157.

Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J. Depression uncouples brain hate circuit. 
Mol Psychiatry. 2013; 18:101–111. [PubMed: 21968929] 

Tomson et al. Page 18

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Telesford QK, Morgan AR, Hayasaka S, Simpson SL, Barret W, Kraft RA, Mozolic JL, Laurienti PJ. 
Reproducibility of graph metrics in FMRI networks. Front Neuroinform. 2010; 4:117. [PubMed: 
21165174] 

Tognini G, Ferrozzi F, Garlaschi G, Piazza P, Patti A, Virdis R, Bertolino C, Bertolino G, Manfredini 
D, Zompatori M, Crisi G. Brain apparent diffusion coefficient evaluation in pediatric patients with 
neurofibromatosis type 1. J Comput Assist Tomogr. 2005; 29:298–304. [PubMed: 15891494] 

Tomson SN, Narayan M, Allen GI, Eagleman DM. Neural Networks of Colored Sequence 
Synesthesia. J Neurosci. 2013; 33:14098–14106. [PubMed: 23986245] 

Trovó-Marqui, aB; Tajara, EH. Neurofibromin: a general outlook. Clin Genet. 2006; 70:1–13. 
[PubMed: 16813595] 

Van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI 
functional connectivity. Eur Neuropsychopharmacol. 2010; 20:519–534. [PubMed: 20471808] 

Van den Heuvel MP, Sporns O. Rich-Club Organization of the Human Connectome. J Neurosci. 2011; 
31:15775–15786. [PubMed: 22049421] 

Van Engelen SJPM, Krab LC, Moll Ha, de Goede-Bolder a, Pluijm SMF, Catsman-Berrevoets CE, 
Elgersma Y, Lequin MH. Quantitative differentiation between healthy and disordered brain matter 
in patients with neurofibromatosis type I using diffusion tensor imaging. AJNR Am J Neuroradiol. 
2008; 29:816–822. [PubMed: 18339726] 

Van Minkelen R, van Bever Y, Kromosoeto JNR, Withagen-Hermans CJ, Nieuwlaat a, Halley DJJ, 
van den Ouweland AMW. A clinical and genetic overview of 18 years neurofibromatosis type 1 
molecular diagnostics in the Netherlands. Clin Genet. 2014; 85:318–327. [PubMed: 23656349] 

Verly M, Verhoeven J, Zink I, Mantini D, Van Oudenhove L, Lagae L, Sunaert S, Rommel N. 
Structural and functional underconnectivity as a negative predictor for language in autism. Hum 
Brain Mapp 00. 2013

Violante IR, Ribeiro MJ, Cunha G, Bernardino I, Duarte JV, Ramos F, Saraiva J, Silva E, Castelo-
Branco M. Abnormal brain activation in neurofibromatosis type 1: a link between visual 
processing and the default mode network. PLoS One. 2012; 7:e38785. [PubMed: 22723888] 

Violante IR, Ribeiro MJ, Silva ED, Castelo-Branco M. Gyrification, cortical and subcortical 
morphometry in neurofibromatosis type 1: an uneven profile of developmental abnormalities. J 
Neurodev Disord. 2013; 5:3. [PubMed: 23406822] 

Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, 
Copeland NG, Jenkins NA, White R, Connellt PD. Deletions and a translocation interrupt a cloned 
gene at the neurofibromatosis type 1 locus. Cell. 1990; 62:187–192. [PubMed: 1694727] 

Viskochil D, Cawthon R, O’Connell P, Xu GF, Stevens J, Culver M, Carey J, White R. The gene 
encoding the oligodendrocyte-myelin glycoprotein is embedded within the neurofibromatosis type 
1 gene. Mol Cell Biol. 1991; 11:906–912. [PubMed: 1899288] 

Von dem Hagen, EaH; Stoyanova, RS.; Baron-Cohen, S.; Calder, AJ. Reduced functional connectivity 
within and between “social” resting state networks in autism spectrum conditions. Soc Cogn 
Affect Neurosci. 2013; 8:694–701. [PubMed: 22563003] 

Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton 
A, Nicholson J, Mitchell AL. Type 1 neurofibromatosis gene: identification of a large transcript 
disrupted in three NF1 patients. Science. 1990; 249(80-):181–186. [PubMed: 2134734] 

Wang Y, Kim E, Wang X, Novitch BG, Yoshikawa K, Chang LS, Zhu Y. ERK inhibition rescues 
defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell. 
2012; 150:816–830. [PubMed: 22901811] 

WASI. Weschler Abbreviated Scale of Intelligence. San Antonio, TX: The Psychological Corporation; 
1999. 

Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. Correlations and 
anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of 
preprocessing strategies. Neuroimage. 2009; 47:1408–1416. [PubMed: 19442749] 

Wignall EL, Griffiths PD, Papadakis NG, Wilkinson ID, Wallis LI, Bandmann O, Cowell PEE, 
Hoggard N. Corpus callosum morphology and microstructure assessed using structural MR 
imaging and diffusion tensor imaging: initial findings in adults with neurofibromatosis type 1. 
AJNR Am J Neuroradiol. 2010; 31:856–861. [PubMed: 20299428] 

Tomson et al. Page 19

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller 
JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral 
cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011; 106:1125–1165. 
[PubMed: 21653723] 

Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. 
Neuroimage. 2010; 53:1197–1207. [PubMed: 20600983] 

Zamboni SL, Loenneker T, Boltshauser E, Martin E, Il’yasov KA. Contribution of diffusion tensor 
MR imaging in detecting cerebral microstructural changes in adults with neurofibromatosis type 1. 
AJNR Am J Neuroradiol. 2007; 28:773–776. [PubMed: 17416837] 

Zielinski B, Gennatas ED, Zhou J, Seeley WW. Network-level structural covariance in the developing 
brain. Proc Natl Acad Sci U S A. 2010; 107:18191–18196. [PubMed: 20921389] 

Tomson et al. Page 20

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The R3 approach detects fewer spurious differences and more true edge differences, while 

also controlling the false discovery rate more effectively than standard inference tests (two-

sample Wald tests with FDR adjustments for multiple testing). Two artificial networks of 50 

nodes and 510 edges were constructed, with 360 edges common to both graphs, and only 

150 edges existing exclusively in one graph. Using standard inference tests and the novel R3 

approach, we compared each technique’s ability to uncover the latent graph structure 

beneath simulated functional MRI data from two groups of 20 subjects. Upper halves 

represent inference results, detailing common edges that were incorrectly identified as 

differential between groups (turquoise; false positives), differential edges that were correctly 

identified as differential (navy; true positives), and differential edges that went undetected 

(lilac; false negatives).
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Figure 2. 
Axial and medial view (left hemisphere) of significantly stronger edges in healthy controls 

(left) and participants with NF1 (right), indicating relatively greater anterior-posterior 

connectivity in controls vs. NF1 participants. Spheres represent the center coordinate of 

brain regions from the Harvard-Oxford atlas, and black lines represent exclusive maps of 

edges that exist in each cohort. Spheres are colored to demonstrate membership to one of 

seven functional networks derived from resting state studies of 1000 subjects (Yeo et al., 

2011). All edges are significant at FDR 10% corrected for multiple comparisons.
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Figure 3. 
Axial and medial view (right hemisphere) of significantly greater modular clustering in 

controls (left; 15 unique nodes) and NF1 participants (right; 9 unique nodes). Brain 

networks consist of several modules, or smaller ‘neighborhoods’ of brain regions more 

connected to one another than to the rest of the network. “Modular clustering” evaluates the 

frequency with which any two nodes are members of the same module, and identifies nodes 

that are functionally related to one another. Highlighted nodes (white circles) are brain 

regions that consistently fall in the same module together, and do so significantly more often 

than identical nodes in the opposing group. Uncircled nodes have modular clustering 

patterns, but the pattern is not significantly different between groups. Results suggest that 

the largest difference between groups is in the clustering patterns of the visual (purple) and 

default mode (red) networks. Controls demonstrate a tightly clustered visual network and 

bilateral clustering of visual, default-mode, and limbic nodes. NF1 participants show 

broader and more diffuse clustering patterns, combining nodes from visual, default mode, 

limbic, frontoparietal, and somatomotor networks. NF1 clustering is primarily in the right 

hemisphere. Anatomical locations of all 113 nodes are represented by spheres. Sphere colors 

match those specified in Figure 2. Module clusters shown at FDR 10%.

Tomson et al. Page 23

Hum Brain Mapp. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tomson et al. Page 24

TABLE I

Demographic information for NF1 and control participants

NF1 participants (n = 30) Control participants (n=30) p-value

Age (years, ±SD) [range] 27.1 (12.1) [10-46] 25.5 (11.1) [10-45] 0.596

Gender (N, % female) 18 (60%) 14 (47%) 0.309

Full Scale IQ (mean, ±SD) 97 (12.6) 113 (19.1) <0.001

Years education (±SD) 14 (2.6) 12 (4.1) 0.062

Motion (mm, ±SD) 0.160 (.31) 0.269 (.21) 0.187

Scanner Location 1 (N) 19 5

Scanner Location 2 (N) 11 25
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TABLE II

Differential edge testing on whole-brain networks

P

“The edge connecting nodes 1 and 2 is stronger in group X than in group Y…”

Node 1 Node 2

Controls 1e−6 Right precentral gyrus Right inferior temporal gyrus

0.00003 Right inferior frontal gyrus, pars opercularis Right middle temporal gyrus

0.00009 Right inferior frontal gyrus, pars opercularis Left middle temporal gyrus

0.00014 Right middle temporal gyrus, posterior division Left paracingulate gyrus

0.00015 Right middle temporal gyrus, posterior division Left cingulate gyrus, anterior division

0.00031 Right middle frontal gyrus Left temporal occipital fusiform cortex

0.00047 Right amygdala Left frontal orbital cortex

0.00059 Right middle frontal gyrus Right middle temporal gyrus

0.00059 Left frontal orbital cortex Left temporal fusiform cortex, posterior division

0.00105 Left cingulate gyrus, posterior division Left cuneal cortex

0.00108 Right superior frontal gyrus Right lateral occipital cortex, superior division

0.00118 Left frontal orbital cortex Right parahippocampal gyrus, anterior division

0.00119 Right frontal orbital cortex Right parahippocampal gyrus, anterior division

0.00122 Left precentral gyrus Right temporal occipital fusiform cortex

0.00123 Left inferior frontal gyrus, pars opercularis Left inferior temporal gyrus

0.00172 Right middle temporal gyrus Right supramarginal gyrus, anterior division

0.00193 Left lateral occipital cortex, superior division Right temporal occipital fusiform cortex

0.00227 Right precentral gyrus Right temporal occipital fusiform cortex

0.00227 Right caudate Left cerebellum

0.00227 Left amygdala Left frontal orbital cortex

0.00227 Left precentral gyrus Left lingual gyrus

0.00230 Left superior frontal gyrus Left middle temporal gyrus

0.00236 Left superior parietal lobule Left temporal occipital fusiform cortex

0.00241 Left inferior frontal gyrus, pars opercularis Left temporal occipital fusiform cortex

0.00245 Right inferior temporal gyrus, posterior division Left frontal orbital cortex

0.00253 Left precentral gyrus Right inferior temporal gyrus

NF1 0.00001 Right middle temporal gyrus, posterior division Right lateral occipital cortex, inferior division

0.00022 Right middle temporal gyrus, posterior division Left parahippocampal gyrus, anterior division

0.00072 Left supracalcarine cortex Right occipital pole

0.00152 Left supracalcarine cortex Left occipital pole

0.00162 Left accumbens Right subcallosal cortex

0.00162 Left middle temporal gyrus Right cuneal cortex

0.00162 Left superior temporal gyrus, posterior division Left precuneous cortex

0.00163 Right middle temporal gyrus Right lingual gyrus

0.00164 Right middle frontal gyrus Left inferior frontal gyrus, pars triangularis

0.00287 Right middle temporal gyrus Right cuneal cortex

Results indicate that 26 edges are stronger in controls than NF1 participants, and 10 edges are stronger in NF1 participants than controls. Only 
significant results are shown (corrected for multiple comparisons with false discovery rate at 10% using Benjamini–Hochberg). Bold text indicates 
one edge, significantly stronger in controls than NF1, that correlates positively with IQ in both groups.
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