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Abstract

INTRODUCTION—Plasma levels of amyloid-beta (Aβ) do not correlate well with different 

stages of Alzheimer's disease (AD) in cross-sectional studies. Measuring the changes in Aβ plasma 

levels with an acute intervention may be more sensitive to distinguishing individuals in earlier 

stages of AD (mild cognitive impairment; MCI) from normal controls.

METHODS—57 participants (18 with AD/MCI and 39 cognitively normal controls) underwent 

oral glucose tolerance testing (OGTT). Blood samples were obtained over a 2 hour time period. 

Changes in plasma Aβ40 and42 levels were measured from either baseline or 5 minutes to the 10 

minute time point.
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RESULTS—Compared to normal controls, subjects with AD/MCI had significantly less change 

(Δ) in plasma levels for both Aβ40(-3.13(40.93)pg/ml vs. 41.34(57.16)pg/ml;p=0.002) and 

Aβ42(-0.15(3.77)pg/ml vs. 5.64(10.65)pg/ml; p=0.004).

DISCUSSION—OGTT combined with measures of plasma Aβ40 and 42 is potentially useful in 

distinguishing aging individuals who are in different stages of AD.
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1. Introduction

Alzheimer's disease (AD) is the most common type of dementia in the U.S. [1]. Thus far 

only symptomatic therapies are available, and there is a great need for disease-modifying 

therapies. The results of recent clinical trials have been disappointing, which has led to a 

growing interest in clinical trials design and interventions that target early stages of AD [2] 

such as targeting patients in asymptomatic/preclinical or mild cognitive impairment (MCI) 

stages. This shift to early stages of AD has underscored the need for validated biomarkers to 

identify patient populations who will benefit most from a potential therapeutic intervention.

One of the most widely studied biomarkers for AD is amyloid-beta (Aβ), thought to be an 

important protein in the pathogenic cascade of AD [3]. Cerebrospinal fluid (CSF) levels of 

Aβ42 and Aβ brain imaging measures have been extensively studied for use in clinical trials 

[4]. Although a blood-based biomarker would be even more widely applicable as it would be 

less invasive and less costly, most cross-sectional studies of plasma Aβ levels have not been 

able to show differences between individuals at various stages of AD compared to controls 

[5,6]. In addition, the utility of plasma Aβ in earlier stages, such as MCI is less clear [7,8].

In order to overcome these limitations, efforts to improve the utility of plasma Aβ levels 

using an acute intervention to modulate plasma Aβ have been investigated such as using 

insulin infusion in humans to change plasma and CSF Aβ42 levels [9,10]. More recently, 

oral glucose tolerance test (OGTT) was used to compare AD patients to those with non-AD 

dementias [11]. However, it is still unknown whether a modulator of Aβ plasma levels, such 

as OGTT, can be used to distinguish individuals in the earlier stages of AD from those with 

normal cognitive function. The goal of this study was to assess whether the degrees of 

change in plasma Aβ40 and 42 levels is different in individuals with MCI/AD compared to 

cognitively normal controls in response to oral glucose loading.

2. Methods

2.1 Participants

This study was approved by the Johns Hopkins Institutional Review Board. Written 

informed consent was obtained from all subjects.

The study comprised 57 individuals, two with AD, 16 with MCI, and 39 with normal 

cognition (Table 1). AD and MCI participants were combined in the analysis (exclusion of 
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the AD subjects did not change the results). Subjects with AD met probable AD criteria by 

National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer's Disorder and Related Disorder Association. MCI participants had a memory 

complaint corroborated by an informant, MCI documented in medical or research records, 

and a Clinical Dementia Rating (CDR) of 0.5. Cognitively normal controls (NC) had no 

reported memory impairments by history, a CDR of 0.0, and MMSE≥26 or 3-MS (Modified 

MMSE)≥86. Subjects were excluded if they had significant neurologic diseases, liver and 

renal dysfunction, or history of diabetes or treatment for diabetes.

2.2 Procedures

Subjects were asked to fast for 12 hours prior to a single early morning study visit. A 20 

gauge peripheral IV was inserted, and blood was drawn at baseline prior to drinking a 

solution containing 75 g of glucose, then at 5, 10, 15, 30, 60, 90 and 120 minutes after 

drinking the solution.

Blood was collected in EDTA polypropylene tubes for plasma, and centrifuged immediately 

after each collection at 542 relative centrifugal force (RCF) for 15 minutes at 4°C. Plasma 

was separated from contact with cells immediately after centrifugation and stored at −80°C 

until analysis.

ELISA Aβ40 and Aβ42 levels were measured in plasma [6] using the MSD® Multi-spot 

Abeta validated Triplex Assay (Meso Scale Discovery, Gaithersburg, MD), by the of the 

Alzheimer's Disease Cooperative Study Biomarker Core using established standard 

operating procedures [7]. All samples were previously unthawed and run in duplicate. 

Internal standards were used to control for plate-to-plate variation.

2.3 Statistics

Baseline comparisons were made using two-sample t-tests with Satterthwaite's 

approximation for degrees of freedom. Aβ40 and 42(Δ) values were calculated as the 

difference between the value at ten minutes and the maximum value occurring prior to ten 

minutes (at either 0 or 5 minutes). Logistic regression was performed to adjust for age and 

BMI. All analyses were conducted using STATA (StataCorp LP,TX).

3. Results

At baseline, no significant between-group differences were observed in age, sex, education, 

fasting glucose, baseline plasma Aβ40 and 42 levels and Aβ 42/40 ratios (Table 1). We 

calculated the change (Δ) in plasma Aβ as the higher level of plasma Aβ from either 0 

(baseline) or 5 minutes after ingestion of oral glucose solution to the 10 minute time point 

after ingestion. Subjects with AD/MCI had significantly less change(Δ) in plasma Aβ levels 

compared to controls in both Aβ 40(-3.13(40.93) pg/ml vs. 41.34(57.16) pg/ml;p=0.002) and 

Aβ42(−0.15(3.77)pg/ml vs. 5.64(10.65)pg/ml;p=0.004). Characteristic changes (Δ) in 

plasma Aβ40 and 42 levels are shown in Figure 1. We also performed sensitivity and 

adjusted analyses. 9 subjects had well documented history of depression. Excluding these 

individuals did not change the differences significantly, with subjects with AD/MCI having 

less change(Δ) in plasma Aβ40 levels(−3.14(40.93)pg/ml vs. 41.73(60.99)pg/ml;p=0.004) 
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and in Aβ42 levels(−0.15(3.77)pg/ml vs. 6.38(11.87)pg/ml;p=0.008). Although individuals 

with prior history of diabetes were excluded from the study, there were two subjects whose 

glucose levels at baseline (fasting) and 2 hours after OGTT met the American Diabetes 

Association criteria for Type II diabetes on the day of testing. We performed a sensitivity 

analysis excluding these individuals, and the magnitude of change (Δ) and the inference did 

not change with Aβ40(−3.14(40.93)pg/ml vs. 42.64(57.55)pg/ml;p=0.001) or with 

Aβ42(−0.15(3.77)pg/ml vs. 5.75(10.91)pg/ml;p=0.005). In separate logistic regressions of 

change(Δ) on diagnosis category, the unadjusted OR for Aβ40(Δ) was 0.97(95%CI 0.94, 

0.99;p=0.01) and for Aβ42(Δ) was 0.74 (95%CI 0.57, 0.96; p=0.02) which means that there 

is 3% less risk of being in the MCI/AD group for every 1 pg/ml difference in Aβ 40(Δ) and 

26% less risk for every 1 pg/ml difference in Aβ 42(Δ). After adjusting for age and BMI, 

both odds ratios remained relatively unchanged and statistically significant; the OR for 

Aβ40(Δ) was 0.97(95% CI 0.94, 0.99;p=0.008) and for Aβ42(Δ) was 0.73(95%CI 0.56, 

0.95;p=0.02).

4. Discussion

These findings suggest that individuals with MCI/AD have different degrees of change (Δ) 

in plasma Aβ 40 and 42 levels compared to cognitively normal controls at the ten minute 

time point after an oral glucose load. Although OGTT has been used previously as a 

modulator of plasma Aβ [11], this study focused on comparing individuals with MCI or in 

the earlier stages of AD whereas Takeda et al. focused on comparing individuals with fairly 

advanced AD to those with non-AD dementias [11]. In addition, our finding shows greater 

decline in plasma Aβ 40 and 42 levels from baseline to 10 minutes in cognitive normal 

controls compared to MCI/AD individuals, not evident in the previous study, which 

examined plasma Aβ levels over a 2 hour time period, but did not include the 5 or 10 minute 

time points [11].

At this time, the mechanism explaining these differences in the change in plasma Aβ level is 

unclear. It is possible that OGTT modulated plasma Aβ levels by increasing insulin 

secretion, as insulin is known to increase the level of plasma Aβ42 in AD [10]. However, 

insulin level does not peak until 60-120 minutes after an OGTT [12], while the change in 

plasma Aβ levels occurred in the first 10 minutes after administration of glucose loading.

Another possible mechanism involves glucagon-like protein-1 (GLP-1), a gastrointestinal 

hormone which is secreted in response to a meal or after an oral glucose challenge. GLP-1 

may be involved in hepatic clearance of Aβ. After production in intestinal cells, GLP-1 is 

transported to the liver via the portal vein [13], also thought to be the primary route of 

clearance for Aβ [14]. GLP-1 is also thought to play a role in amyloid precursor protein and 

Aβ regulation [15]. While the mechanism remains speculative, both insulin and GLP-1 

levels after OGTT will be examined in the future studies to further delineate their roles.

In summary, our study suggests that oral glucose loading as a plasma Aβ level modulator 

can “unmask” the differences between individuals with MCI/AD versus normal controls. 

This method might be utilized to complement other existing biomarkers. For example, 

individuals with normal like drops in Aβ levels might not be good candidates for further 
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amyloid oriented investigation via lumbar puncture for CSF collection or amyloid brain 

imaging in clinical trials or vice-versa. In addition, this method might differentiate those 

who are “cognitively normal,” but already be in the preclinical stages of AD. In the latter 

case, normals with plasma Aβ changes similar to the MCI/AD group would undergo more 

invasive amyloid testing. Both scenaria would reduce costs for AD clinical trials, but more 

importantly, spare individuals less likely to have AD pathology from undergoing 

unnecessary tests. This would be especially applicable in the developing world where most 

future AD cases are anticipated, but where resources are limited. OGTT has a distinct 

advantage as a safe, non-invasive, cost-effective, and widely available biomarker that is 

already being used in clinical settings world-wide.
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Research in Context

1. Systematic review: Most cross-sectional studies of plasma amyloid-beta (Aβ) 

have not been able to show differences between individuals at various stages of 

Alzheimer's disease including mild cognitive impairment stage.

2. Interpretation: Our method of an acute intervention using oral glucose tolerance 

test (OGTT) to modulate Aβ 40 and 42 levels demonstrate that compared to 

cognitively normal controls, subjects with AD/MCI showed significantly less 

change (Δ) or drop in Aβ levels between 0 (baseline) or 5 minute to 10 minute 

time point during the course of an oral glucose tolerance test (OGTT).

3. Future directions: OGTT combined with measures of plasma Aβ40/42 might be 

utilized in the future to determine ideal candidates for interventions that target 

amyloid along with other existing biomarkers. In addition, due to its current 

world wide availability, lower cost and noninvasive nature, this method has the 

potential to be widely disseminated to developing nations.
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Figure 1. 
shows characteristic changes (Δ) in plasma Aβ 40 and 42 levels in normal controls (NC) 

(N=39) compared to the MCI/AD (N=18) participants.
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Table 1

Baseline Characteristics

Normal (N=39) Mean (SD) MCI/AD (N=18) Mean (SD) p-value

Demographics

Age (years) 68.2 (6.98) 70.6 (7.31) 0.25

Sex (M) (%) 51.3 % 44.4 % 0.64

Education (years) 15.62 (2.37) 15.28 (3.48) 0.71

MMSE 29.3 (1.41) 27.7 (2.27) 0.01

BMI 28.23 (4.67) 26.94 (4.07) 0.28

Laboratory Values

Fasting glucose mg/dl 94.18 (15.48) 91.22 (13.31) 0.49

Amyloid-β (40) pg/ml 192.37 (73.79) 180.11 (75.10) 0.57

Amyloid-β (42) pg/ml 24.73 (23.77) 17.85 (8.02) 0.11

Amyloid-β 42/40 ratio 0.18 (0.39) 0.11 (0.04) 0.27

Δ Amyloid-β (40) pg/ml 41.34 (57.16) −3.14 (40.93) 0.002

Δ Amyloid-β (42) pg/ml 5.64 (10.65) −0.15 (3.77) 0.004

Aβ40 and 42(Δ) values were calculated as the difference between the value at ten minutes and the maximum value occurring prior to ten minutes 
(at either 0 or 5 minutes).
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